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1 Proofs of Theorems 1 and 2

Before presenting the proofs of Theorems 1 and 2 we need a preliminary result.
Lemma 1. For any n ≥ 1 and A ⊂ Rd measurable, we have

E|FA| = n

∫
A

f(x)

(
1−

∫
y�x

f(y)dy

)n−1
dx. (1)

Proof. Since Y1, . . . , Yn are i.i.d, we have E|FA| = nP (Y1 ∈ F). Conditioning on Y1 we obtain
E|FA| = n

∫
Rd f(x)P (Y1 ∈ F |Y1 = x)dx. The proof is completed by noting that

P (Y1 ∈ F |Y1 = x) =

{(
1−

∫
y�x f(y)dy

)n−1
, x ∈ A,

0, x 6∈ A.

Proof of Theorem 1. By selecting h > 0 smaller, if necessary, we can write (1) as

E|FTh | =
∫
T

∫ h

0

nf(x)

(
1−

∫
y�x

fdy

)n−1
(1 +O(t))dtdz, (2)

where x = z+ tν(z) for z ∈ T . Since ∂Ω is smooth, we can approximate T near z by a hyperplane
with normal ν(z). By the assumption that {y ∈ Ω : y � x} = {x} we can make h > 0 smaller, if
neceessary, so that {y ∈ Ω : y � x} is approximately a simplex with side lengths t/νi(z). Hence∫

y�x
f(y)dy = (f(z) +O(t/δ))

∫
y�x

dy

=
f(z)td

d!ν1(z) · · · νd(z)
+O

(
td+1

δd+1

)
.

Substituting this into (2), we have

E|FTh | =
∫
T

∫ h

0

n(f(z) +O(t))

(
1− f(z)td

d!ν1(z) · · · νd(z)
+O(td+1/δd+1)

)n−1
dtdz. (3)

We can now do an asymptotic analysis of the inner integral which is a special case of the general
equation

An :=

∫ h

0

tλ(1− atd +O(btd+1))n−1dt, λ ∈ [0, 1], a, b > 0.

Making the change of variables −s = (n− 1) ln(1− atd +O(btd+1)) and simplifying, we obtain

An =
1

(a(n− 1))
1+λ
d

∫ P (n−1)

0

(
1

d
s

1+λ
d −1 +

b

(n− 1)
1
d

O(s
2+λ
d −1)

)
e−sds,
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where
P = − ln(1− ahd + bO(hd+1)).

We can, of course, choose h small enough so that P is finite and positive. Recalling the definition
of the Gamma function, Γ(z) =

∫∞
0
tz−1e−tdt, we see that

An =
Γ
(
1+λ
d

)
d(an)

1+λ
d

+O

(
b

n
2+λ
d

)
.

Note that we are keeping track ofO(b) terms because b = O(1/δd+1) may become large at different
points of T , whereas O(1/a) is uniformly bounded independent of δ along T . Applying this to (3)
with

a =
f(z)

d!ν1(z) · · · νd(z)
, and b = δ−(d+1),

completes the proof.

Proof of Theorem 2. Since Y1, . . . , Yn are i.i.d., we have E|L| = nP (Y1 ∈ L). For (x, y) ∈ [0, 1]2

let Dx,y be the event that Y1 = (x, y) and (x, y) ∈ F . Conditioning on Dx,y we have

E|L| = n

∫ 1

0

∫ 1

0

(1− xy)n−1P ((x, y) ∈ L |Dx,y) dxdy

= n

∫ 1
2

0

∫ 1
2

0

(1− xy)n−1P ((x, y) ∈ L |Dx,y) dxdy +O(1). (4)

Define
A =

{
(u, v) ∈ [0, 1]2 | 0 < u < x, y < v < 2y − uy

x

}
,

and
B =

{
(u, v) ∈ [0, 1]2 | x < u < 1, 0 < v < 2y − uy

x

}
.

Let E be the event that A and B each contain at least one sample from Y2, . . . , Yn. If E occurs, then
(x, y) is in the interior of the convex hull of F and hence (x, y) 6∈ L. Let F denote the event that
none of the samples from Y2, . . . , Yn fall in A ∪B. If F occurs, then we clearly have (x, y) ∈ L. It
follows that

P (F |Dx,y) ≤ P ((x, y) ∈ L |Dx,y) ≤ P (Ec |Dx,y).

Conditioned onDx,y , the samples Y2, . . . , Yn remain independent. The conditional density function
of each remaining sample is fYi |Dx,y (u, v) = 1

1−xy . Let EA (resp. EB) denote the event that no
samples from Y2, . . . , Yn are drawn from A (resp. B). Then Ec = EA ∪ EB and F = EA ∩ EB .
Noting that |A| = |B| = 1

2xy, we see that

P (Ec |Dx,y) = P (EA |Dx,y) + P (EB |Dx,y)− P (EA ∩ EB |Dx,y)

= 2

(
1− xy

2(1− xy)

)n−1
−
(

1− xy

1− xy

)n−1
,

and

P (F |Dx,y) = P (EA ∩ EB |Dx,y) =

(
1− xy

1− xy

)n−1
.

Substituting this into (4), we obtain

E|L| ≤ n
∫ 1

2

0

∫ 1
2

0

2

(
1− 3

2
xy

)n−1
− (1− 2xy)n−1 dxdy,

and

E|L| ≥ n
∫ 1

2

0

∫ 1
2

0

(1− 2xy)n−1 dxdy.

A short calculation (change variables to u = anxy and v = x) shows that∫ 1
2

0

∫ 1
2

0

n(1− axy)n−1dxdy =
1

a
lnn+O(1).

Applying this result to the bounds above completes the proof.
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(a) Criteria |∆x|,|∆y|
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(b) Criteria |∆x|+ |∆y|,|∆x| − |∆y|

Figure 1: 990 dyads constructed with two different sets of criteria from 45 samples uniformly dis-
tributed in [0, 1]2.
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(b) Criteria |∆x|+ |∆y|,|∆x| − |∆y|

Figure 2: Sample means for E|F \L| versus n. We can see the expected logarithmic and half-power
growth in (a) and (b) respectively. The dotted lines indicate the best fit curves described in this
section. In (b), the best fit curve is too closely aligned with the experimental data to be visible.

2 Experimental support for Theorems 1 and 2

Independence of Y1, . . . , Yn is built into the assumptions of Theorems 1 and 2, but it is clear that
dyads (as constructed in Section 4 of the main paper) are not independent. Each dyad Di,j repre-
sents a connection between two independent samples Xi and Xj . For a given dyad Di,j , there are
2(N − 2) corresponding dyads involving Xi or Xj and these are clearly not independent from Di,j .
However, all other dyads are independent from Di,j . So while there are O(N2) dyads, each dyad is
independent from all other dyads except for a set of size O(N). Since Theorems 1 and 2 deal with
asymptotic results, this suggests they should hold for the dyads even though they are not i.i.d. In this
section we present some experimental results that support this non-rigorous statement.

We first drew samples uniformly in [0, 1]2 and computed the dyads corresponding to the two criteria
|∆x| and |∆y|, which denote the absolute differences between the x and y coordinates, respectively.
The domain of the resulting dyads is again the box [0, 1]2, as shown in Figure 1(a), so this experiment
tests Theorem 2. In this case, Theorem 2 suggests that F \ L should grow logarithmically. Figure
2(a) shows the sample means versus number of dyads and a best fit logarithmic curve of the form
y = α lnn, where n =

(
N
2

)
denotes the number of dyads. A linear regression on y/ lnn versus lnn

gave α = 0.3142 which falls in the range specified by Theorem 2.

We next looked to find criteria that induce domains other than boxes in order to test Theorem 1.
A somewhat contrived example involves the criteria |∆x| + |∆y| and |∆x| − |∆y|, which, when
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applied to uniformly sampled data on [0, 1]2, yields dyads sampled on a diamond domain, as shown
in Figure 1(b). In this case, Theorem 1 suggests thatF\L should grow as

√
n. Figure 2(b) shows the

sample means versus number of dyads and a best fit curve of the form y = αnβ . A linear regression
on ln y versus lnn gave α = 1.1642 and β = 0.5007. Although this example may not be practical,
it is simply meant to illustrate the applicability of Theorem 1 for non-independent samples. In each
experiment, we varied the number of dyads between 106 to 109 in increments of 106 and computed
the size of F \ L after each increment. We ran each experiment 1, 000 times to compute the sample
means shown in Figure 2.

3 Implementation of PDA anomaly detector

Pseudocode for the PDA anomaly detector was presented as Algorithm 1 in Section 4.2 of the main
paper. The training phase involves creating

(
N
2

)
dyads corresponding to all pairs of training sam-

ples. Computing all pairwise dissimilarities in each criterion requires O(mKN2) floating-point
operations (flops), where m denotes the number of dimensions involved in computing a dissimilar-
ity. The Pareto fronts are constructed by non-dominated sorting. In Section 3.1 we present a fast
algorithm for non-dominated sorting in two criteria; for more than two criteria, we use the non-
dominated sort of Deb et al. [1] that constructs all of the Pareto fronts using O(KN4) comparisons
in the worst case.

The testing phase involves creating dyads between the test sample and the kl nearest training samples
in criterion l, which requires O(mKN) flops. For each dyad Dnew

i , we need to calculate the depth
ei. This involves comparing the test dyad with training dyads on multiple fronts until we find a
training dyad that is dominated by the test dyad. ei is the front that this training dyad is a part of.
Using a binary search to select the front and another binary search to select the training dyads within
the front to compare to, we need to make O(K log2N) comparisons (in the worst case) to compute
ei. The anomaly score is computed by taking the mean of the s ei’s corresponding to the test sample;
the score is then compared against a threshold σ to determine whether the sample is anomalous. As
mentioned in the main paper, both the training and testing phases scale linearly with the number of
criteria K.

3.1 Fast non-dominated sorting for two criteria

We present here a fast algorithm for non-dominated sorting in two criteria. The standard algorithm
of Deb et al. [1] takes O(n2) time and requires O(n2) memory, where n =

(
N
2

)
is the number of

dyads. In our experience, the memory requirement is the largest obstacle to applying Pareto methods
to large data sets. Our algorithm runs in O(n3/2) time on average and requires O(n) memory. It is
based on the following observation: if the data set is sorted in ascending order in the first criterion,
then the first point is Pareto-optimal, and each subsequent Pareto-optimal point can be found by
searching for the next point in the sorted list that is not dominated by the most recent addition
to the Pareto front. For two criteria, there are on average O(

√
n) Pareto fronts, and finding each

front with this algorithm requires visiting at most n points, hence the O(n3/2) average complexity.
The worst case complexity is O(n2) occurring when each Pareto front consists of a single point.
Pseudocode for the algorithm is shown in Algorithm 1. It has recently come to our attention that an
O(n lnn) algorithm exists for the canonical anti-chain partition problem [3], which is equivalent to
non-dominated sorting in two criteria, and can also be used to quickly construct the Pareto fronts.

3.2 Selection of parameters

The parameters to be selected in PDA are k1, . . . , kK , which denote the number of nearest neighbors
in each criterion. We connect each test sample X to a training sample Xj if Xj is one of the ki
nearest neighbors of X in terms of the dissimilarity measure defined by criterion i. We now discuss
how these parameters k1, . . . , kK can be selected. For simplicity, first assume that there is only
one criterion, so that a single parameter k is to be selected. PDA is able to detect an anomaly if
the distribution of its dyads with respect to the Pareto fronts differs from that of a nominal sample.
Specifically the mean of the depths of the dyads (the ei’s) corresponding to an anomalous sample
must be higher than that of a nominal sample. If k is chosen too small, this may not be the case,
especially if there are training samples present near an anomalous sample, in which case, the dyads
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Algorithm 1 Fast non-dominated sorting.
Require: Arrays X and Y of length n (the values of the two criteria)

1: Sort X and Y according to X in ascending order
2: while X and Y are nonempty do
3: Add (X(1), Y (1)) to current Pareto front
4: y ← Y (1)
5: for i = 2→ length(X) do
6: if Y (i) ≤ y then
7: Add (X(i), Y (i)) to current Pareto front
8: y ← Y (i)
9: Remove current Pareto front from X ,Y

corresponding to the anomalous sample may reside near shallow fronts much like a nominal sample.
On the other hand, if k is chosen too large, many dyads may correspond to connections to training
samples that are far away, even if the test sample is nominal, which also makes the mean depths of
nominal and anomalous samples more similar.

We propose to use the properties of k-nearest neighbor graphs (k-NNGs) constructed on the training
samples to select the number of training samples to connect to each test sample. We construct
symmetric k-NNGs, i.e. we connect samples i and j if i is one of the k nearest neighbors of j or
j is one of the k nearest neighbors of i. We begin with k = 1 and increase k until the k-NNG
of the training samples is connected, i.e. there is only a single connected component. By forcing
the k-NNG to be connected, we ensure that there are no isolated regions of training samples. Such
isolated regions could possibly lead to dyads corresponding to anomalous samples residing near
shallow fronts like nominal samples, which is undesirable. By keeping k small while retaining a
connected k-NNG, we are trying to avoid the problem of having too many dyads so that even a
nominal sample may have many dyads located near deep fronts. This method of choosing k to retain
connectivity has been used as a heuristic in other unsupervised learning problems, such as spectral
clustering [2]. Note that by requiring the k-NNG to be connected, we are implicitly assuming that
the training samples consist of a single class or multiple classes that are in close proximity. If the
training samples contain multiple well-separated classes, such an approach may not work well.

Now let’s return to the situation PDA was designed for, with K different criteria. For each criterion
i, we construct a ki-NNG using the corresponding dissimilarity measure and increase ki until the
ki-NNG is connected. We then connect each test sample to s =

∑K
i=1 ki training samples. Note

that we are choosing each ki independent of the other criteria, which is probably not an optimal
approach. In principle, an approach that chooses the ki’s jointly could perform better; however,
such an approach would add to the complexity. We choose separate ki’s for each criterion, which
we find is necessary to obtain good performance when different dissimilarities have varying scales
and properties. There are, however, pathological examples where the independent approach could
choose ki’s poorly, such as the well-known example of two moons. These examples typically involve
multiple well-separated classes, which may be problematic as previously mentioned. How to choose
the ki’s when the training samples contain multiple well-separated classes is beyond the scope of
this paper and is an area for future work. We find the proposed heuristic to work well in practice,
including for both examples presented in the main paper.

4 Additional discussion on pedestrian trajectories experiment

Figure 3 shows some abnormal trajectories and nominal trajectories detected using PDA. Recall that
the two criteria used are walking speed and trajectory shape. Anomalous trajectories could have
anomalous speeds or shapes (or both), so some anomalous trajectories in Figure 3 may not look
anomalous by shape alone. We find that the heuristic proposed in Section 3.2 for choosing the ki’s
performs quite well in this experiment, as shown in Figure 4. Specifically, the AUC obtained when
using the parameters chosen by the proposed heuristic is very close to the AUC obtained when using
the optimal parameters, which are not known in advance. As discussed in Section 5.2 of the main
paper, it is also higher than the AUCs of all of the single-criterion anomaly detection methods, even
under the best choice of weights.
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Figure 3: Left: Some abnormal trajectories detected by PDA method. Right: Trajectories with
relatively low anomaly scores.
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Figure 4: AUCs for different choices of [k1, k2]. The automatically selected parameters [k1 =
3, k2 = 6] are very close to the optimal parameters [k1 = 4, k2 = 7].
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