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Abstract—We consider the problem of estimating and detecting
sparse signals over a large area of an image or other medium. We
introduce a novel cost function that captures the tradeoff between
allocating energy to signal regions, called regions of interest (ROI),
versus exploration of other regions. We show that minimizing our
cost guarantees reduction of both the error probability over the
unknown ROI and the mean square error (MSE) in estimating the
ROI content. Two solutions to the resource allocation problem, sub-
ject to a total resource constraint, are derived. Asymptotic analysis
shows that the estimated ROI converges to the true ROI. We show
that our adaptive sampling method outperforms exhaustive search
and are nearly optimal in terms of MSE performance. An illustra-
tive example of our method in radar imaging is given.

Index Terms—Adaptive sampling, adaptive sensing, energy allo-
cation, search methods, sparse signals.

I. INTRODUCTION

T HIS paper considers the problem of detecting and esti-
mating signals in an unknown region of interest (ROI),

under resource constraints. We formulate this problem as a se-
quential decision problem: at each iteration, information ac-
quired is used to estimate and refine the ROI.

This problem arises in many applications including: target
detection and classification, computer-aided diagnosis, and
screening. For example, in a radar reconnaissance mission, ac-
tive radar may be used to image a given scene. A typical system
is designed to detect targets exceeding a minimal profile. This
minimal target profile dictates the scan parameters such as the
energy level the radar transmits and the scan time duration.
Moreover, targets usually occupy a small section of the scanned
area, called the ROI. Most systems consider exhaustive search
with equal energy allocation, defined as a search policy, where
all cells are searched with equal effort allocated to each cell,
to spread sensitivity over all locations. As a result, a relatively
large portion of the energy is allocated outside the ROI. This
excess energy could be used to better illuminate the ROI.
Furthermore, in surveillance applications, by deploying energy

Manuscript received December 10, 2007; revised June 10, 2008. First pub-
lished August 1, 2008; current version published October 15, 2008. The asso-
ciate editor coordinating the review of this paper and approving it for publication
was Dr. Maria Hansson-Sandsten. This work was supported in part by AFOSR
MURI under Grant FA9550-06-1-0324.

E. Bashan and A. O. Hero are with the Department of Electrical Engineering
and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: bashan@umich.edu).

R. Raich is with the School of Electrical Engineering and Computer Sci-
ence, Oregon State University, Corvallis, OR 97331 USA (e-mail: raich@eecs.
oregonstate.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2008.929114

over an unknown area, the searcher risks exposure. Reducing
the scan energy outside the ROI reduces exposure risks.

As another application, consider the task of early detection
of tumors using medical imaging, e.g., X-ray computed tomog-
raphy. Early detection is concerned with detecting small tumors.
In many cases, little a priori knowledge about the tumor location
exists. Consider the area containing the tumor as an unknown
ROI. Lifetime radiation exposure constraints limit the total en-
ergy that can be used in a specific scan. There are two questions:
a) Where are tumors located? and b) What kind of tumors does
the ROI contain? This combined detection/estimation suggests
using adaptive sampling over the image to improve both detec-
tion and estimation performance.

The search problem considered in this paper bears some sim-
ilarity to Posner’s work on minimizing expected search time for
finding a satellite lost in the sky [1]. Posner suggests a two-step
procedure. First, briefly search the entire domain to generate a
likelihood function of possible satellite locations. Secondly, se-
quentially search the domain again in order of decreasing like-
lihood of satellite position. Posner’s model assumes that the
search is stopped as soon as the satellite has been found and
that detection probability is increasing with search time. There-
fore, sequentially searching the cells with the highest likelihood
reduces the overall expected search time. By minimizing ex-
pected search time Posner imposes a “soft” resource constraint
on the total time used to search each cell. In this paper, we adopt
a Bayesian framework for sequential search for multiple ob-
jects obscured by noise. Thus the posterior distribution of ob-
jects’ presence replaces the likelihood of object presence used
in [1]. The use of the posterior in place of the likelihood guar-
antees minimization of an average cost and a stronger sense of
optimality.

Although we search for multiple targets within a signal, we
focus on applications where the total support of the signal part
containing targets is small compared to the entire signal sup-
port. Such signals can be viewed as sparse, and we define the
sparsity parameter as the proportion of the signal support con-
taining targets. Johnstone and Silverman consider a Bayesian
framework for estimating sparse signals from a single measure-
ments vector in [2]. They consider thresholding the vector en-
tries and setting the estimated signal equal zero for all measure-
ments below the threshold. Thus, significant gains in estimation
mean-square error (MSE) are achieved for small . They utilize
a Bayesian framework to find an optimal threshold minimizing
the average squared error. We also use the Bayesian framework
to find an optimal threshold. However, we use this threshold
to generate additional measurements of all signal elements ex-
ceeding it. This adaptive sampling approach and added mea-
surements enables higher gains in reducing estimation MSE.
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Wipf and Rao use sparse Bayesian learning in the problem of
basis selection from an overcomplete dictionary [3]. They use
a parameterized prior on the basis weight coefficients to en-
courage sparse solution to an otherwise -norm minimization
problem. The parameters of the prior are estimated from the data
along with the basis weights using an expectation-maximization
(EM) algorithm. However, the EM algorithm uses a single mea-
surement of the underlying signal. In this paper, the posterior
distribution is used to partially remeasure the underlying signal.
By spatially focusing the measurement process onto the ROI,
we can better estimate the correct signal values.

Adaptive sampling or active learning for the purpose of es-
timating functions in noise has been considered in [4]. Castro
et al. show that for piecewise constant functions, active learning
methods can capitalize on the highly localized nature of the
boundary by focusing the sampling process in the estimated
vicinity of the boundary. Thus, estimation error converges at
higher rates than with passive sampling. A two-step approach is
proposed where first a rough estimate of the underlying signal is
generated and second the signal is resampled in the vicinity of
the estimated boundaries. We use a similar two-stage approach
where previous measurements are used to determine where to
sample next. However, our work differs in two aspects, as we
do not limit the discussion to a class of spatially inhomogeneous
signals and we consider the additional aspect of resource allo-
cation. While [4] assumes identical sampling procedure for all
samples, e.g., similar measurement noise variance, we consider
different sampling procedures between stages and among dif-
ferent spatial locations within a particular stage.

Resource allocation in the context of adaptive waveform am-
plitude design for estimating parameters of an unknown medium
under average energy constraints is discussed in [5]. Rangarajan
et al. derive an optimal amplitude allocation for the second stage
in a two-stage problem as a function of the first stage mea-
surements. In this paper, we consider the more general problem
of waveform design under a total energy constraint. Therefore,
measurements at the first stage are used to select the optimal
waveform among all possible waveforms with some bounded
total energy. Thus we are able to focus the sampling process
onto the ROI.

The cost function considered here is similar in nature to a
terminal/total reward utility function. This formulation is used
in some multiarm bandit (MAB) problems (see [6, pp. 123]).
The difference between MAB and our formulation of the search
problem is that each action we take affects the posterior proba-
bility distribution of target locations, and our method is greedy.

In this paper, we focus on adaptively determining the ROI that
contains targets of interest. Two main contributions in this paper
are: 1) we introduce a novel convex cost function for optimizing
the ROI search and 2) we provide two-stage optimal and subop-
timal adaptive search policies with respect to our cost function.
Remarkably, this leads to solutions that minimize both the Cher-
noff bound on error probability and the Cramér–Rao bound on
estimating the parameter values within the ROI. The optimal
and suboptimal policies are greedy search algorithms with com-
plexity order proportional to the discrete signal support . The
optimal policy rank orders the posterior distribution values and
then finds an optimal threshold and assigns additional effort to

Fig. 1. Gain in MSE for the CME in (46) based on an adaptive search compared
to the MSE (variance) of the CME for an exhaustive search policy (45). Curves
with crosses correspond to adaptive resource allocation policy, while curves with
circles represent the suboptimal adaptive policy, for p values of 1/100 and 1/10.
The MSE gain for adaptive resource allocation policy is slightly higher than that
of the suboptimal mapping. Note that using our methods results in about 6 dB
gain in MSE at SNR value of 13 dB for sparsity level of 1%. In addition, MSE
gain is inversely proportional to the sparsity; hence higher gains can be expected
for application where j	j � Q.

all cells with posterior values exceeding the threshold. On the
other hand, the suboptimal policy uses the posterior distribu-
tion values to assign additional effort to all cells, thus requiring
an order fewer computations. Both policies outper-
form an exhaustive search scheme in terms of postprocessing
tasks such as target detection and ROI estimation. Moreover,
an asymptotic performance analysis at high signal-to-noise ratio
(SNR) is given and shows that the estimated ROI converges to
the true ROI and the performance gain approaches a theoret-
ical limit, which is inversely proportional to the sparsity of the
signal.

Our optimal resource allocation policies are derived for a
two-stage resource allocation problem, based on a Gaussian ob-
servation model, and assume statistically independent targets.
Our methods result in 6 dB performance gain estimating the pa-
rameters value within the ROI, at SNR of 13 dB and
(see Fig. 1). In addition, the radar imaging example in Section V
uses a non-Gaussian model but still results in significant perfor-
mance gain.

The rest of this paper is organized as follows. Section II for-
mally states the problem and introduces our cost function. In
Section III, we present optimal and suboptimal solutions for the
resource allocation problem. Section IV includes thorough per-
formance evaluation of the two policies as compared to an ex-
haustive policy for both detection and estimation. An illustra-
tive example of our methods for a radar imaging system is given
in Section V. Finally, we conclude and point to future work in
Section VI. For lack of space, highly technical proofs are abbre-
viated or omitted. They can be found in [7].

II. PROBLEM FORMULATION

Consider a discrete space containing
cells and equipped with a probability measure . We use to
denote an ROI in , i.e., . In the sequel, will be a
randomly selected sparse subset of . We assume ,
where equals the number of elements in and is the
relative complement of . Exact definition of the ROI
is application-dependent. In radar target localization, the ROI
is the collection of all cells containing targets and related phe-
nomena, e.g., target shadows. In a medical imaging application,
such as early detection of breast cancer, where tumor boundaries
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are poorly defined, the ROI may contain all cells containing tar-
gets (a tumor) plus some neighboring cells.

Let be an indicator function of the ROI such that

otherwise
(1)

and is an associated set of prior proba-
bilities. Let be a vector corresponding to the
set of all indicators and denote the transpose operator. We
say that the presence of a target affects cell if . Define
the random vector and consider the conditional
probability , where is defined below.

Consider a sequential experiment where cell may be sam-
pled times. By sampling, we mean that , a realization of

, is observed at time . Let the distribution denote
the search effort allocated to cell at time , with

(2)

and is a mapping from past observations
to the probability simplex and is called an effort allocation
policy, or, equivalently, a search policy. We focus here on a
deterministic mappings , although a more general random
mapping can also be incorporated into our framework but is not
presented here. We assume that the “quality” of the samples is
an increasing function of the allocated effort to the associated
cell, e.g., measured in terms of Fisher information or inverse
variance. In general, effort might be time, computing power,
complexity, cost, or energy that is allocated to acquiring a
particular cell location. Define the cumulative search effort
allotted to cell as

(3)

Consider the following cost function:

(4)

where and are decreasing functions that may depend
on additional parameters. This restriction ensures that allocating
more effort to cells reduces the overall cost. Note that our cost
function (4) depends directly on the ROI via the summand of the
first sum on the right-hand side (RHS) of (4). Choosing

emphasizes focusing efforts on the ROI.
and , with , simplifies to

(5)

which has some intuitive and appealing properties. Minimizing
this cost function concentrates of the total effort over the ROI

and (1 ) to its complement , with being the dividing
factor. Setting focuses all the effort at the ROI, while

results in an exhaustive resource allocation policy, i.e.,

equal effort allocated to all cells inside and outside the ROI.
Furthermore, the choice connects (5) to known criteria
such as the Cramér–Rao and Chernoff bounds. For example,
in the context of estimating a deterministic signal in additive
Gaussian noise, minimizing (5) is equivalent to minimizing the
Cramér–Rao lower bound on ; see [7] for
details. In a sense, controls the tradeoff between exploitation
of signal in the ROI and exploration of the entire signal

.
In addition, consider a binary Gaussian hypothesis testing

problem. Define the null hypothesis as and the al-
ternative as with a prior probability .
Consider the task of deciding between the two hypotheses

. The probability of error, i.e., making the wrong decision, de-
fined as

, can be broken into two parts: misdetect probability over
and false alarm probability over . With , we

show in [7] that minimizing (5) is equivalent to uniformly min-
imizing the Chernoff bound on the probability of error over
the ROI. Setting , most of the energy is spread over
due to the assumed sparsity . This leads to a lower
Chernoff bound on or, correspondingly, fewer false alarms.
If , we trade the two cases, either relaxing the upper
bound on or on . In Section IV, we corroborate this intu-
ition with simulation results, where adaptive measurement poli-
cies derived from minimization of (5) are used to generate data
that is used for both estimation and detection tasks.

Next, we provide an achievable lower bound on our cost
function (5).

Lemma 1: The cost function (5) is lower bounded by

(6)

This lower bound is achievable with a two-level effort allocation
scheme , equal over the ROI and equal over its complement,
defined as

(7)

Proof: For a nonnegative series , Cauchy–Schwarz in-
equality provides

(8)

Since , (8) simplifies to

(9)

Substituting , i.e.,
and , into the RHS of (9) yields

(10)
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Noting that on the left-hand side (LHS) of (9) we have
proves the validity of (6). To prove the second

part of the lemma, note that

(11)

and algebra yields

(12)

which is exactly the RHS of (6). This completes the proof.
1) Discussion: We would like to point out the potential per-

formance gains using our cost function (5). Let denote an
exhaustive search policy with . If , then
(7) results in , i.e., is optimal. For a general , the
cost (5) associated with is

(13)

with the two special cases of

(14)

Since does not offer any adaptivity, any good adaptive re-
source allocation policy should result in .
Therefore, we define the performance gain for (5) in decibels
as

(15)

For , and the optimal gain
is achieved by the omniscient resource alloca-

tion policy that knows the ROI and consequently concentrates
all efforts in the ROI. Define ; then forces

. Consequently, a good sampling method should
yield large gains in a sparse setting, i.e., when is small, the
ROI is small. In the following, we will develop a sampling
method that exploits these gains. Taking the derivative of
the RHS in (6) with respect to , it can be shown [7] that

for all and . In other
words, if , the optimal gain is achieved by for

. Unfortunately, the omniscient search policy is not
feasible since the ROI location is a priori unknown. Our goal is
to derive a feasible policy with performance gain approaching

for unknown ROI.
In this paper, we restrict our attention to minimizing the ex-

pected value of (5). This probabilistic setting utilizes the condi-
tional distribution in our model. Assuming we ob-
serve realizations of , our goal is to find a search policy

(16)

where is given by (3). Next, we introduce a total energy
constraint.

A. Energy Allocation With Energy Constraint

Consider a fixed-target radar measurements in the presence of
noise. We assume that a radar transmits energy in some known
beam pattern to probe a collection of cells. We further assume
that the radar is subject to an energy constraint and that obser-
vations obey the following model:

(17)
where are known weights corresponding to the beam pat-
tern, is the energy allocated for measuring cell , is
a random return from cell , and is an additive observa-
tion noise, all at time . Note that since the indicator of the ROI

is independent of , this model corresponds to a static target
scenario. We assume that the additive noise is indepen-
dent for different and . Also, assume that the positive
follow a prior distribution and are independent for dif-
ferent but may be dependent for different . The model in (17)
can be written in vector form

diag (18)

where ,
, ,

, , and
. The notation de-

notes a 1 vector with , while the
operator diag corresponds to a (square) diagonal
matrix with as its th element. Qualitatively, our objective
is to specify a resource allocation policy that improves
the “quality” of the measurements, where is subject to a total
energy constraint

(19)

At time , the energy allocated to cell may depend on
past observations, i.e., is a function of , ,

. For brevity, we use the notation to
denote . Following (3),
define the cumulative energy distributed to cell as

. Our cost function is , de-
fined in (5), and our goal is to minimize the expected cost in
the RHS of (16) over all possible energy allocations ,
subject to (19). Consider and let be a
uniform prior distribution on the location of targets, where
represents the sparsity of the vector , i.e., is a binomial
random variable (RV) with . Define ;
then and . To find an upper
bound on possible performance gains, we use ,
for any , and thus

(20)

In [7], we use (20) and Bernstein’s inequality to prove, for
, that

(21)

In the radar imaging example from Section V, this yields
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III. SEARCH POLICY

In the following section, we solve the optimization problem
for . The idea is to expend a portion of the total energy
at to learn about the data domain and obtain a posterior
distribution. Then use it at stage to refine the posterior
and estimate the ROI. We solve

(22)

subject to a total energy constraint .
Initially, the prior distribution on targets location is uniform,

for all . This could be modified if there were prior
knowledge on targets location. Let be the total energy spent
at search stage with , . Our goal is
to optimize the energy distribution between the two stages and
among cells in each stage. See [7] for a discussion of the case
of .

A. Optimal Two-Stage Search Policy

With and a uniform prior, we show in the Appendix
that the minimizer of the cost (22) is an equal energy allocation

(23)

Let be the set of all search policies with . For
, we find the optimal search policy minimizing

(22). Since , optimizing the total energy al-
located for each stage is equivalent to finding an optimal pair

, which involves minimizing over a single vari-
able. Hence the cost function (22) simplifies to

(24)

where expectation is taken with respect to and . Note
that does not depend on ; thus can be omitted
from the expectation in (24). In addition, (24) is constant in ,
and therefore we omit it from the expectation as well. Rewriting
(24) using iterated expectation yields

(25)

Note that is a binary RV. In addition, given , is
deterministic. Hence (25) becomes (26) and (27) as shown at
the bottom of the page. Using Bayes rule, we obtain

(28)

where is the given conditional
probability model describing the measurement dependency on
the target. Finally, we rewrite our cost function on the RHS of
(24) and solve

(29)

Let be the energy allocated to each cell at the first step,
with . Define the RV

(30)

with vector of corresponding realizations
. Let be a permutation

operator that corresponds to the rank ordering of the s

(31)
with . Whenever the RHS of (31) is not unique, we se-
lect an arbitrary satisfying . The
solution , of (29) will depend on an integer threshold

that is equal to the number of cells that are not searched at
. Assuming , define , the threshold parameter,

as if

(32)

otherwise is the integer, satisfying

(33)

An optimal solution for the second step is given in the
Appendix, and the special case where , for all , is

(26)

(27)
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treated there. Its properties are summarized below. Given
and , it is shown that the optimal energy allocation
minimizing the cost (29) is of the form

(34)

Substituting (34) into (29), the optimization problem is equiv-
alent to finding minimizing (35) and (36) as shown at the
bottom of the page, where if , then the first summation in
(36) equals zero. We can find via a one-dimensional search.
In summary, the optimal policy minimizing (29) is as follows.

Algorithm 1: Two-stage adaptive resource allocation policy
(ARAP)

Step 1: Allocate to each cell and measure .

Step 2: Given compute posteriors defined in (28),
then sort the s defined in (30).

Step 3: Use and the ordered statistic to find using
(32) and (33).

Step 4: Given , apply , the energy allocation to cell
, as

(37)

and measure .

Note that ARAP is a water-filling algorithm. This is a direct
consequence of the fact that the cost function minimized in (29)
is convex, is positive, and our constraint is linear of the
form (see [8, pp. 245]).

B. Properties of the Optimal Energy Allocation

Theorem 1: For some and , let be the
search policy obtained using ARAP. Then, for a uniform prior
distribution, we have

(38)

with equality achieved if , .
Proof: Note that an equal effort allocation policy can be

broken into any arbitrarily number of consecutive search
steps, as long as, for all

(39)

Without loss of generality, let and let denote the family
of all effort allocation policies with (equal effort
allocation) at the first stage, as shown in (40) at the bottom of the
page. Since ARAP yields the optimal effort allocation for any
set of posterior distribution , we have

. If for all , then , , for which
ARAP yields . Thus, from (37), we obtain

or, equivalently, . This
completes the proof.

ARAP is optimal over all policies that allocate energy uni-
formly at the first step. In [7], we give the optimal (ARAP)
strategy for a general case of a nonuniform prior. However, in
this general case, depends on the specific prior and is
a function of . Therefore, the optimization problem involves
searching a -dimensional space and is computationally
exhaustive.

1) Asymptotic (High SNR) Properties of ARAP: The fol-
lowing properties are proved in [7], when . By asymptotic
conditions we mean in the limit of high SNR. We define SNR as
the signal-to-noise ratio per cell for an equal energy allocation,
i.e., SNR . We show the following:

(35)

(36)

(40)
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i) the average energy allocation threshold goes to a limit
;

ii) the per cell energy assignment at stage one goes to zero
;

iii) the performance gain goes to the limit
.

These asymptotic properties are proved under the asymptotic
consistency condition

(41)

in probability. In [7], we prove the validity of (41) for
the Gaussian case, where , and
we speculate that (41) holds for other cases as well. Let

denote the second stage allocation
set. Note that provides and thus together
(41) and i) suggest that converges to in the sense that

. In addition, ii) implies that the
energy allocated by ARAP to the first stage ,
therefore increasing the available energy for stage two. Thus,
asymptotically ARAP achieves the gain of the omniscient allo-
cation policy , and therefore is asymptotically optimal.
For large , we have in probability. Hence, in this ,
the asymptotic gain is proportional to and we conclude
that higher gains are achieved for sparser signals.

C. Suboptimal Two-Stage Search Policy

Note that ARAP requires sorting the s and solving in-
equalities to find the threshold . These operations require an
order computations. As a simple alternative to ARAP,
we consider a search policy where and

leading to a corresponding cumulative energy allocation policy
. Substituting in (29) yields a single variable optimization

problem requiring simple search over to
find minimizing the expected cost (24). Finally, we define

and

(42)

with its equivalent cumulative energy allocation . The
simple allocation policy (42) is optimal, i.e., minimizing
(29) when , for two extreme cases: i) uniform
posterior distribution and ii) posterior distribution vector

with elements for which
and elements for which . For i), we get an
equal energy allocation, while for ii), (42) reduces to

otherwise
(43)

both equivalent to the optimal mapping (37). Although (42) does
not make the analytical evaluation of the expectation in (24)
tractable, it is less computational demanding than the optimal
solution. In fact, since is a function of SNR and the sparsity

, it can be computed offline. Thus, is a direct mapping from
the observation space to the search space. Next, we compare the
two policies and show that is nearly optimal in terms of (24).

IV. COMPARISON OF SEARCH ALGORITHMS

Assume either or were used to generate data vectors
, . A natural question is whether or not this adap-

tive data acquisition is better in some sense than the nonadap-
tive acquisition obtained using the standard exhaustive search
policy with equal energy constraint. In this section, we compare
performance of both the optimal and suboptimal effort alloca-
tion policies to those achieved by exhaustive search. We start
by showing performance gains in both estimation and detection
due to our adaptive measuring schemes. Next, we compare the
performance (24) achieved by and to show that is
nearly optimal. In Section IV, we assume are in-
dependent and identically distributed (i.i.d.) truncated Gaussian
random variables with mean and standard deviation

, for all .

A. Estimation Postprocessing

Consider the problem of estimating the true value of a target
return from given by

(44)

where , represent an exhaustive search
with and are due to either
the optimal or suboptimal measurement policies or .
For estimation, the choice of seems natural. Recall that
in Section II, we claimed that minimizing our cost is entirely
equivalent, in the Gaussian case, to minimizing the estima-
tion MSE. Assuming , we use a Bayesian
framework for estimating based on its prior distribution.
The optimal estimator minimizing the MSE is the conditional
mean estimator (CME). We compare the performance of the
CME for an exhaustive search policy to the CME

for either ARAP or the suboptimal search
policy. The MSE of the CME for the exhaustive search policy
is given by

(45)

The competing estimator is a naive Bayes estimator [9] of
, which is derived under the assumption that

are independent. The naive Bayes estimator is

(46)
In Fig. 1, we plot the MSE performance gain , defined as

(47)

as a function of SNR, where Monte Carlo simulations were
used to estimate the MSE of (46). We chose ,

, and each point on the figure represents an av-
erage over based on 2000 realizations. Curves with crosses
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and circles represent the optimal policy (ARAP) and the sub-
optimal policy , respectively. Note that ARAP yields better
estimation performance compared to the suboptimal policy. The
high gains in Fig. 1 reinforce the connection between our cost
function (5) and estimation MSE.

B. Detection Postprocessing

1) Nonadaptive Detection: Consider the problem of cor-
rectly detecting whether cell contains a target based on a
sample . As before, we assume the samples follow the
model (44) and that are i.i.d. Thus, for an
exhaustive search policy , where

. Given , the measurement of pixel , our
goal is to decide between

(48)

For a known , the uniformly most powerful test for this binary
hypothesis testing problem is a likelihood ratio test (LRT). The
performance of this nonadaptive LRT in terms of its receiver
operating characteristic (ROC) curve is easily calculated. The
power of this level LRT is

(49)

where is the normal cumulative distribution function [10].
2) Adaptive Detection: Using Bayes rule, the likelihood

function equals

(50)

but, given , the measurements at the second step are inde-
pendent for different cells and thus

(51)

Therefore, the LRT statistic is

(52)

For our model, we have and,
given , the second step measurements are also Gaussian

. Substituting these
distributions into (52) provides the LRT shown in the equation
at the bottom of the page, which simplifies to

(53)

where . Note that for all cells where , this
test is a function of alone.

Next, we compare the theoretical ROC curve (49) to the
empirical ROC curve calculated for the adaptive LRT (53) per-
formed on the data pair using the optimal and
the suboptimal . We conducted multiple runs for varying
SNR levels and observed that with , (53) provides higher
detection probability than the nonadaptive LRT having per-
formance (49) for false alarm levels lower than 30%. At SNR
values close to 0 dB, the difference between the two tests is
negligible but increases with SNR. Note that, for very low false
alarm levels, performs better than in terms of detection
probability. However, for higher test levels, the suboptimal
search policy yields better detection performances.

Results are presented in Fig. 2(a) and (b) for SNR 10 dB,
, and either or . Monte Carlo

simulations were conducted with , and each point on the
figures represents an average over 2000 realizations. Detection
probability was averaged over the entire ensemble and over all
pixels inside and outside the ROI. At 10 dB, the ROC curves
are very sharp and hence are plotted on a logarithmic scale. The
solid curve represents [(49)] the nonadaptive LRT with equal en-
ergy allocation. Curves with crosses represent , while curves
with circles represent . It is evident that the ROC curves of
different tests have different slopes for low false-alarm values.
Moreover, for high false-alarm values, no adaptive policy out-
performs the exhaustive search policy. Fig. 2(b) zooms in to
better illustrate the differences for . One can
see that the optimal search policy has the best performances up
to , at which point the suboptimal policy yields higher
detection probability. The exhaustive search policy outperforms
both the adaptive methods for .

Finally, we compare detection probability values, for a fixed
false alarm rate, and estimation MSE gain in (47) as a func-
tion of . Results are shown in Fig. 3. The curve with triangle
markers represents estimation MSE gain, and its corresponding
values are indexed on the right axis of the figure. The other
curves represent detection probability for a given test level, with
the detection values indexed at the left axis. All curves are a
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Fig. 2. ROC curves for the LRT tests based on an exhaustive search scheme
and the two adaptive policy measurements scheme, for p = 0:1 and p = 0:01
and SNR of 10 dB. (a) shows the entire ROC curve while (b) zooms in on false
alarm probability values less than 0.5. The simulation suggests that our adaptive
search policies outperform an exhaustive search policy in terms of detection
probability for any false alarm lower than 30%.

Fig. 3. Detection probability, for a fixed test level, and estimation MSE gain
g(�) in (47) as a function of � when SNR is 10 dB and p = 0:01. Note that the
MSE gain values (curve with triangular markers) are given on the RHS of the
figure. Since MSE gain is defined over the true ROI, it increases with � . For this
particular operating point, selecting � = 1 provides optimal performance for
both detection and estimation tasks.

function of . For the selected operating point, it is clear that it
is best to choose , since it maximizes both detection and
estimation performance. In [7], we compare (53) to a test using a
detection optimized measurement and show that with
is nearly optimal for detection.

C. Achievable Cost

As a final comparison between our two policies, we com-
pare the average performance gain , defined as the expected
value of (15), achieved by the two search policies for . We
chose as the total number of cells and the sparsity
values of , i.e., a mean of roughly
800, 80, and 8 targets per realization, respectively. Results are
shown in Fig. 4(a) and (b), where the curves with crosses and
circles describe the expected gain with optimal and
with suboptimal allocation, respectively. Fig. 4(a)
shows the behavior of the gain for the two policies for SNR
values of 0–40 dB. Fig. 4(b) zooms in on SNR values of 0 to
13 dB. Each point on a graph represents 500 runs in a Monte
Carlo simulation. As can be seen from Fig. 4(a), at extreme high
or low SNR values, the performance gains of the two policies

Fig. 4. The cost gain (15) compared to an exhaustive search for both our op-
timal and suboptimal energy allocation schemes. (a) shows that both algorithms
converges to the asymptotic predicted gain, at �10 log p. (b) enhances the dif-
ference between our two policies for SNR values in the range of 0–13 dB.

Fig. 5. The proportion of energy allocated at the first step for the two algorithms
� and � . Curves correspond to prior probability values of 0.001, 0.01, and
0.1. As seen, the optimal search policy allocates more energy at the first step.
However, for SNR > 25 dB, the two are essentially equivalent.

coincide. Fig. 4(a) indicates that the gain converges to its theo-
retical limit given by iii). The largest gap in gain between the two
algorithms is near the transition zone: SNR between 5–15 dB,
and the gap is less than 2 [dB]. Evidently, the simpler subop-
timal mapping rule does not significantly degrade performance
gain.

Fig. 5 compares the percentage of effort allocated
in the first step for both policies. While for SNR values greater
than 25 dB the curves overlap, this is not the case for low SNR
values. As measurement quality decreases, ARAP invests more
energy at the first step. Considering the difference between the
two policies, this result makes sense: after the first step, ARAP
ignores all cells with posterior probability values lower than
some threshold. Decision errors at that stage can no longer be
compensated by increasing energy allocation at the next stage.
Hence, more effort has to be allocated to the first step to reduce
decision errors, i.e., improve the agreement between and .
On the other hand, the suboptimal mapping invests energy in all

cells at the second step. Thus, it has a chance to compensate
for poor estimated posterior probability values. As a general re-
mark, we note that the incentive to use our methods increases
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with SNR (e.g., Fig. 1). Therefore, differences between the two
policies in the low SNR regime are of lesser importance.

V. APPLICATION—DETECTING AND ESTIMATING AN ROI IN

A RADAR IMAGING SYSTEM

Consider the task of imaging a large area using radar. Such
a task is routinely performed by air traffic control (ATC) radar,
early warning radar (EWR), and surface movement radar
(SMR), where the different systems are looking for small
targets (aircrafts, missiles, people, etc.) over a large domain. A
radar beam is either steered mechanically (ATC, SMR) or elec-
tronically (EWR) using a predefined grid pattern designed to
detect a minimal target profile. The target profile dictates scan
parameters such as beam pattern, grid spacing, and dwell time
or the number of pulses transmitted at each grid point. Such
applications are particularly suitable for ARAP since no a priori
knowledge is required and resulting images are sparse with
respect to targets. The following is motivated by wide-band
SMR imaging system for ground movement monitoring in
airports [11].

The fixed budget at hand is the overall scan time. Assume
that an image is to be formed, i.e., scan the entire domain, every

seconds. The scan time , where is the total
number of grid points and is dwell time at each point, de-
termined by the minimal target profile or minimal SNR. We as-
sume that measurement quality improves as the dwell time in-
creases. Therefore, we address the question of how to best utilize
the resource available to us, i.e., where to dwell and for how long
to dwell the radar beam. Problems concerning where to point a
sensor are discussed in [12] and [13]. However, by allowing an
additional continuous degree of freedom for the varying dwell
time, we consider a different set of feasible policies. We propose
the following two-stage search policy based on ARAP: at the
first stage, perform an exhaustive search with equal dwell time

over all cells yielding a preliminary image
and an allocation set . In the second stage, let ARAP allocate
the remaining seconds in a nonuniform manner to the
different cells in via (37), yielding a nonuniform number of
pulses transmitted at each cell. Finally, we combine both mea-
surements to form an image on which we detect the ROI and
estimate its content. The competing strategy performs an ex-
haustive search with equal dwell time at each cell
to form the estimated image. Our goal was not to simulate a
w-band imaging system but rather to show the applicability of
ARAP to such systems. Therefore, we used a SAR image, taken
from the Sandia National Laboratories website, as an example
of a “sparse” image. The image displays two columns of tanks
in a field, and its sparsity ratio is . We simulated sev-
eral noise models to evaluate the performance of ARAP. The
tested noise models included: Speckle, Rayleigh, Swerling II,
and Gaussian. Here we only present simulation results using
the Swerling model II (see [14, pp. 57]) as they are represen-
tative of all other models tested. Note that the Swerling II is a
non-Gaussian model that is mismatched to the model assumed
in the ARAP derivation, and therefore it represents a good test
of robustness to model mismatch.

1http://www.sandia.gov/RADAR/images/rtv_tanks_9in.jpg.

Fig. 6. The above (13� 13) tank template was used as a matched filter to filter
the noisy data X and generate yyy(1).

Let denote the original image and let be a lexicographic
ordering of . The image after the first stage ( pulses at all
pixels) is modeled as

(54)

where is an exponential random variable, i.e.,
, denoted ,

and is the th element in the lexicographic or-
dering of the original image . A tank template shown
in Fig. 6 was applied as a matched filter to the noisy
image yielding . The input to the ARAP algorithm

was the variance
normalized version of , where .
ARAP was used to generate a search policy for the second step

via (37). All indexes with were set
to zero, and their cumulative search effort was redistributed
among the rest of the cells in a proportional manner. The radar
return was modeled as

(55)

This resulted in a nonuniform variance for different cells in
with . Note that for all

, i.e., plays the role of the energy allocation indicator.
We considered several suboptimal linear estimators of

based on that performed comparably. The estimator
presented here was defined via as

(56)
where

and represent an element by element multiplication. The esti-
mator (56) is compared to an image reconstructed from a single
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Fig. 7. Radar imaging example, � = 3. (a) Original image. (b) Image re-
constructed using an exhaustive search. (c) Effort allocation using ARAP at the
second stage (� = 2). (d) Image resulted from (56) using ARAP.

exhaustive scan using pulses at each cell via (54) re-
placing with .

Results are presented in Figs. 7 and 8 for values of three
and two pulses, respectively. Fig. 7(a) shows the original image,
and Fig. 7(b) and (d) shows a single realization of images re-
constructed using exhaustive search and ARAP via (56), re-
spectively. Fig. 7(c) shows the effort allocated by ARAP at the
second stage for that specific realization. The bright area over
the true ROI corresponds to more than 40 pulses per pixel. Al-
though all targets are identifiable in Fig. 7(b), they appear more
clearly in Fig. 7(d). Fig. 8 focuses on the ROI to demonstrate the
superiority of ARAP compared to the exhaustive search policy.
Fig. 8(a) and (b) shows a single realization of the two search
methods, exhaustive and ARAP, for ( for ARAP),
respectively, while Fig. 8(c) and (d) displays a one-dimensional
(1-D) profile, going through the left columns of tanks, of 100
different realizations of each policy, respectively. Clear differ-
ence in variations of image profiles reconstructed using ARAP
compared to the images reconstructed from an exhaustive search
is evident. This difference corresponds to more than 10 dB re-
duction in variance in the ROI.

This illustrative example demonstrates the potential utility
of our method in radar imaging. Note that energy allocation is
equivalent to dwell-time allocation in this example.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a novel convex cost function and showed
that its minimization relates to minimizing error probability or
estimation MSE over an unknown ROI. A closed-form solution
for the second stage in a two-stage optimal search policy was
provided, and numeric search for the first step was presented.
A closed-form approximation to the two-step minimization
problem was shown to perform comparably to the optimal
solution. In the limit of high SNR, the performance of the
optimal and approximated algorithms converges to the ideal

Fig. 8. Radar imaging example, � = 2. (a) Image reconstructed using an ex-
haustive search, targets are not easily identifiable. (b) Image resulted from (56)
using ARAP (� = 1). (c) and (d) compare a 1-D profile going through the
targets on the lower left column for 100 different realizations. (c) Profiles of
images reconstructed from an exhaustive search. (d) Profiles of images recon-
structed using ARAP. The bold bright line on both figures represent the mean
profile of the different realizations. Evidently, variations of profiles of images
due to ARAP are much smaller compared to variations of profiles of images
resulted from an exhaustive scan, with variance reduction exceeding 10 dB.

omniscient limit. For the detection task, the two search policies
introduced outperformed the one-step exhaustive measurement
scheme when the false alarm is less than 30%. For estimation,
comparing the MSE of estimated values within the ROI, our
adaptive search policies dominate the exhaustive search policy.
The search policy is parameterized by , which varies from
1/2 to 1 and controls the energy allocated within the ROI. An
offline lookup table can be generated for the optimal in terms
of the sparseness of the target in the data and SNR. Finally,
an illustrative example of our method for radar imaging was
presented.

This approach is applicable to tumor detection where a cluster
of calcification may appear around the lesion. In this case, multi-
scale hypothesis-testing methods presented in [15] may be rel-
evant. Frakt et al. deal with anomaly detection once measure-
ments, at a fine resolution, have been acquired. A goal would be
to generate fine-resolution measurements only where they are
most informative. Another interesting area of application is to
compressive sensing. Works such as [16] and [17] consider the
problem of sampling a sparse medium via an arbitrary affine
transformation. In cases of sparse signals, complete reconstruc-
tion of the underlying signal can be accomplished with only a
few samples. This exploitation of sparsity might benefit from
the Bayesian methods proposed in this paper.

APPENDIX

Let be a ( 1) RV with a probability den-
sity function (pdf) , for all and

, representing random observations. Let
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be an RV with . Let
be a collection of all observa-

tions up to time . Define ; then, for some
, our goal is to find with and
, such that

where expectation is taken with respect to and , subject
to .

A. The Case of

For , our cost function has the following form:

subject to , with the expectation taken with
respect to . Note that , so can be derived using
Lagrange multiplier, i.e., finding the minimizer of

Taking derivatives and setting them equal to zero yields

B. The Case of

Consider the following problem, let for all
; then . Our goal is minimize the cost, i.e.,

find

(57)

subject to

(58)

and . For brevity, let ,
and note that in (57) expectation is taken with respect to and

. Using iterated expectation, we obtain

(59)

Given , the denominator is deterministic and expectation
can be applied to the numerator; therefore (59) becomes

Defining and
, we use a Lagrange multiplier to minimize (60)

as shown at the bottom of the page, where is a
realization of the random variable . Since is strictly
positive, define ; then, , the minimizer
of (60) is also the minimizer of

Note that our problem has translated to minimizing a separable
sum of integrals of positive integrands. Hence, finding

suffice. Solving for given the Lagrange multiplier
yields

otherwise
(61)

(60)
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which can be also written as
, where is an indicator function.

Utilizing the constraint , we obtain

(62)

Note that

(63)

substituting (63) into (62) and rearranging yields

(64)

Next, use defined in (31) such that
.

1) Case : If , for all ,
then for all and .
For which case, the cost minimizer is achieved at

and, for all

(65)

2) Case : For the other extreme, we have
for all , which in turn forces , due to

(64). This can only hold if both and ,
for all . If this is the case, then for any choice of , the
overall cost is zero.

3) Case , for Some
: The interesting case is when has

some intermediate value, i.e.,

(66)

Since all the terms in (66) are positive, we rewrite the inequality
as

(67)

Define

(68)

To show that (67) makes sense, we need to show that for any
of interest, there exists a unique
such that . To do so, we show that
following: i) , ii) , and iii)

. Start with i)

(69)

since . Note that implies that
the interval is empty. To prove ii), we substitute

for in the expression for in (68). This yields

(70)

Combining i) and ii) provides ,
i.e., is decreasing in . Finally, we need to show

. First, note from (65) that
belongs to Case 1, for which a separate solution was provided.
Secondly, from (68), we obtain . If ,
then , for all , due to the constraint (58). Thus, for a
two-step problem, we must have .
Hence, as required. Together
i)–iii) prove the existence and uniqueness of the solution, since

To conclude this section, we note that , the minimizer
of (57), is given by (34), replacing for and for

. A general solution for the case of a nonuniform prior
distribution, which is also a water filling algorithm, is given
in [7].
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