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ABSTRACT

This paper is concerned with a joint Bayesian formulation for de-

termining the endmembers and abundances of hyperspectral images

along with sparse outliers which can lead to estimation errors unless

accounted for. We present an inference method that generalizes pre-

vious work and provides a MCMC estimate of the posterior distribu-

tion. The proposed method is compared empirically to state-of-the-

art algorithms, showing lower reconstruction and detection errors.

1. INTRODUCTION

A large amount of recent research has focused on the spectral un-

mixing problem, wherein images collected at multiple frequencies

are decomposed into a product form of so-called endmembers and

abundances. The endmembers represent the basic spectra building

blocks from which any pixel is constructed, while the abundances

represent the mixing proportions. There are methods for estimating

the endmembers first, such as with N-FINDER [1], followed by es-

timating the abundances using least squares or Bayesian methods.

Fully Bayesian methods have been proposed as well [2].

There has also been great interest in the so-called robust prin-

cipal component analysis (RPCA) problem [3–5] that decomposes

high-dimensional signals into low-rank, sparse, and noise compo-

nents. The sparse component can generally not be represented eas-

ily by the low-rank model and thus contributes to estimation errors

when unaccounted for. In [3, 4], inference in this model is done by

maximizing an objective function that promotes a sparse number of

factors (i.e. endmembers) through the nuclear norm, a sparse num-

ber of outliers through the l1 norm, and robustness to noise through

the Frobenius norm. However, one drawback of these methods in-

volves finding the tradeoff parameters between these three objec-

tives, which in general may depend on the given signal. Bayesian

methods by Ding et al. [5] have been proposed that simultaneously

learn the noise statistics and infer the low-rank and sparse compo-

nents. Moreover, they show that their method can be generalized to

richer models, e.g. Markov dependencies on the target locations.

This work provides a generalization of [5] to the case where

the low-rank component can be given either by a singular value

decomposition (SVD) or a non-negative matrix factorization (as in

[2]). Moreover, we consider spectral learning simultaneously with

anomaly detection by including a sparse component. Additionally,

we extend the previous work by explicitly allowing for correlated

and group sparse anomalies over local pixels (spatial) and local fre-

quency bins. We provide an inference algorithm based on MCMC

methods which provides an estimate of the posterior distribution. Fi-

nally, we compare this algorithm on a simulated dataset to [2,5], and

achieve lower reconstruction and detection errors.

The Bayesian spectral unmixing algorithm proposed here has

been applied to anomaly detection in energy-dispersive X-ray spec-

troscopy (EDS) images for the purpose of detecting defects in ma-

terials. The authors of [6, 7] demonstrate the benefits of using spec-

tral unmixing to decompose EDS images into a few characteristic

spectra. Our anomaly-driven algorithm was developed to improve

on previous EDS unmixing methods by: (a) simultaneously learning

both the endmembers and the anomalies and (b) providing uncer-

tainty characterization through the posterior distribution. Due to lack

of space, we have not included the real-data EDS application in this

paper. The application to EDS is reported in an extended paper [8].

2. BAYESIAN MODEL

Similar to [5], we propose a decomposition of the observed high-

dimensional signal Y = L + S + N , where L is a low-rank ma-

trix, S is a sparse component, and N is dense low-amplitude noise.

Each of these components belongs to the space R
F×P , where P is

the number of pixels and F is the number of frequencies. Note that

many signals can be decomposed this way. This includes (a) video

processing where L represents the stationary background and S rep-

resents sparse moving targets, and (b) material analysis where L are

the basic constituents of a material while S are defects.

2.1. Low-rank component, L

The low-rank component can be modeled in many ways, depend-

ing on the application. In this work, we consider two basic models

for L: (a) singular value decomposition and (b) non-negative ma-

trix factorization. In (a), we can state the model as L = DΛW T

where D = [d1d2 · · · dR] ∈ R
F×R and W = [w1w2 · · ·wR] ∈

R
P×R are matrices of the left- and right-singular vectors, respec-

tively, and Λ = diag {λr}
R

r=1
is a diagonal matrix consisting of

the singular values. We follow the model proposed by [5] so that

λr = zrδr, r = 1, 2, . . . , R, where zi ∈ {0, 1} δi ∈ R, and Z,

∆ are the vector quantities. As in [5], this decouples learning the

rank structure (i.e., ‖Z‖0) from the learning of the singular vectors.

We also consider the case where the underlying structure has

non-negativity constraints, and sum-to-one constraints on the factor

loadings. Consider the linear mixing model (LMM) for the observed

spectrum of the p-th pixel, lp [2]:

lp =
R
∑

r=1

mrap,r, p = 1, 2, . . . , P, (1)

ap,r ≥ 0,

R
∑

r=1

ap,r = 1, ∀r = 1, 2, . . . , R, (2)



mr,f ≥ 0, ∀r = 1, 2, . . . , R,∀f = 1, 2, . . . , F (3)

where ap,r are the factor loadings and mr are the factors. For either

of these models, it is possible to propose a fully Bayesian model

from which we can derive a MCMC sampling strategy. Details are

given for both models in [5] and [2], respectively. For simplicity,

we will provide details only for the former case and refer the reader

to [2] for the other. In particular, we assume Bayesian priors on the

variables in the following way for r = 1, 2, . . . , R:

zr ∼ Bernoulli (πz
r ) , dr ∼ Normal (0, IF×F/F ) , (4)

δr ∼ Normal (0, 1/τ z) wr ∼ Normal (0, IP×P /P ) (5)

In this model, we assume that the parameters {πz
r}r and τ z are also

random (and hence estimated from the observed data). We assume

priors of the form for {πz
r}

R

r=1
and τ z :

πz
r ∼ Beta (a0, b0) , τ

z ∼ Gamma (c0, d0) (6)

Note that these parameters form conjugate pairs with the distri-

butions in equations (4)-(5). Thus, the posterior distributions are

known in closed-form, which leads to efficient sampling strategies.

The parameters {a0, b0, c0, d0} are chosen in accordance with [5].

In particular, we choose a0/(a0 + b0) ≪ 1 to promote sparsity

in the number of factors, and let c0 = d0 = 10−6 to yield a

non-informative prior on the precision τ z.

2.2. Sparse component, S

We consider two models for the sparse component S. In partic-

ular, we begin with the model in [5], where S = B ◦ X with

B ∈ {0, 1}F×P
and X ∈ R

F×P , and ◦ represents the element-

wise product of two-matrices. This separates the learning of the lo-

cations of the sparse components from their values. Moreover, we

consider a Bayesian model wherein the elements bf,p and xf,p have

conjugate distributions for f = 1, . . . , F and p = 1, . . . , P .

bf,p ∼ Bernoulli (πf,p) , πf,p ∼ Beta (a1, b1) (7)

xf,p ∼ Normal (0, 1/τx) , τx ∼ Gamma (c1, d1) . (8)

As in [5], it is easy to impose additional structure on πf,p such as in-

cluding a Markov property to account for the fact that pixels near de-

tected anomalies are more likely to be anomalous as well. We extend

this idea in two ways: (a) we include group sparsity directly (both in

the space and frequency domains), and (b) we include the ability to

model correlated anomalies across that group. Figure 1 illustrates the

group sparsity model compared to the independent anomaly model.

For clarity, assume that we can partition the pixel set {1, 2, . . . , P}
into κP disjoint sets of size L, and the frequency set {1, 2, . . . , F}
into κF disjoint sets of size M . Then we have

S =







S1,1 · · · S1,κP

.

..
. . .

.

..

SκF ,1 · · · SκF ,κP






(9)

where for each i = 1, . . . , κF , j = 1, . . . , κP , we have

bi,j ∼ Bernoulli
(

πb
i,j

)

, πb
i,j ∼ Beta (a1, b1) (10)

X̃i,j ∼ Normal
(

0,ΣX
)

, Si,j = bi,jXi,j (11)

where X̃i,j is a vectorized version of Xi,j and

Σ
X =

[

(1− ρx)ILM×LM + ρx1LM1
T
LM

]

/τx
(12)

(a) Independent

(b) Group sparse

Fig. 1. This figure displays the group sparsity model for anomalies

in (b), compared to the standard independent model in (a).

procedure {Θ}
i=1:Nsamples

= RSU(Θ0,Y )

Θ← Θ0

for iteration = 1 to Nburnin +Nsamples do

Sample ∼ f (D,Z,∆,W |Y ,S,η) //L = D(Z∆)W
Sample ∼ f (X ,B|Y ,L,η) //S = B ◦X
Sample ∼ f

(

{πz
r}r |Y ,L, τn

)

//SVD factor probs.

Sample ∼ f (τ z|Y ,L, τn) //SVD precision

Sample ∼ f
(

{

πb
i,j

}

i,j
|Y ,S

)

//Anom. probs.

Sample ∼ f (τx|Y ,S, τn) //Anom. precision

Sample ∼ f (ρx|Y ,S, τn, τx) //Anom. correlation

Sample ∼ f (τn|Y ,S,L) //Noise precision

Θiteration−Nburnin
← Θ if iteration > Nburnin

end for

end procedure

Fig. 2. Gibbs Sampling Pseudocode using SVD model for L

where ρx ∼ Beta (a2, b2) is the correlation coefficient, which may

be application-specific. Note that ρX = 0 represents an IID model,

while ρX ≈ 1 promotes highly correlated anomalies. It is assumed

that a2 and b2 are chosen to reflect the application, and τx is given by

(8). By including group structure over the indicator and/or amplitude

variables, we improve the power of detecting the anomalies.

2.3. Noise component, N

We model the noise N as being IID zero-mean noise, with each

element nf,p distributed as

nf,p ∼ Normal (0, 1/τn) , τn ∼ Gamma (c2, d2) (13)

3. INFERENCE ALGORITHM

In this section, we provide details on estimating the posterior dis-

tribution of the model parameters given the observations. It should

be noted that given the posterior distribution, one can perform many

appropriate inference tasks, such as providing the maximum a pos-

teriori (MAP) estimate, confidence regions, and probabilities for the

existence of the anomaly. These are in contrast to point estimates

that are available from standard maximum likelihood estimates, and

this is one of the primary reasons for using the Bayesian method.

For example, in Fig. 3(d) and (e), we show the estimated mean and

standard deviations of the sparse component.
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Fig. 3. We show the observed signal (a) (RMS over frequency) for the simulations in Section 4, the true low dimensional component (b), and

the true sparse component in (c). The mean estimate from RSU-LMM is given in (d), and its associated standard deviation in (e). Note that

the standard deviation can be used to quantify a confidence on the estimates in (d), which is one key benefit to using the Bayesian method.
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(b) Loadings

Fig. 4. We show the factors (a) and loadings (b) used to construct

the low dimensional component for Section 4. There are very few

loadings near 1, which indicates that this is a highly mixed model.

Generally, estimating the posterior distribution on this model

would be a very difficult task due to the large number of variables

and the dependence among them. In particular, we use a Markov

Chain Monte Carlo (MCMC) algorithm in the form of a Gibbs

sampler to iteratively estimate the full joint posterior. In MCMC,

this distribution is approximated by drawing samples iteratively

from the conditional distribution of each (random) model variable

given the most recent estimate of the rest of the variables. Let Θ =
{D,Z,∆,W ,B,X ,η} represent a current estimate of all of the

model variables, where η =
{

{πz
r}r , τ

z,
{

πb
i,j

}

i,j
, ρx, τx, τn

}

is

the set of all hyperparameters1. Given measurements Y , the robust

spectral unmixing (RSU) inference algorithm is given in Figure

2. We denote RSU-LMM and RSU-SVD for the LMM and SVD

models for L, respectively. Note that MCMC algorithms require

a burn-in period, after which the Markov chain has become stable.

The duration of the burn-in period depends on the problem. After

the Markov chain has become stable, we collect Nsamples samples

that represent the full joint distribution.

We refer the reader to [5] and [2] for the full sampling details for

the low-dimensional component. For the sparse component, we note

1Note that this definition would be slightly different if we used the non-
negative matrix factorization instead of the SVD formulation.

the following decomposition:

f (X ,B|Y ,L,η) =
∏

i,j

f (Xi,j , bi,j |Y ,L,η)

=
∏

i,j

f (Xi,j |bi,j ,Y ,L,η) f (bi,j |Y ,L,η)
(14)

The latter part is just a Bernoulli distribution, which can be computed

by noting the f(Yi,j |L,η, bi,j) is normally-distributed. Moreover,

the former component conditioned on bi,j is either zero (if bi,j = 0)

or normally distributed with known covariance (since we condition

on η). By jointly sampling B and X , we accelerate convergence

(and reduce the number of burn-in samples needed).

For space considerations, we do not provide full sampling pro-

cedures for the hyperparameters, but note that each sampling step

can be described by one of three tasks: (1) sampling from a Beta

distribution (for probabilities); (2) sampling from a Gamma distribu-

tion (for precisions); and (3) sampling from a Metropolis-Hastings

step (for the correlation coefficient). The first two follow simply

from using conjugate distribution pairs, where the posterior distri-

bution has a closed-form expression. However, there is no closed-

form expression for the posterior distribution of ρx, though it can

be shown that the distribution of Σx follows a Inverse-Wishart dis-

tribution when conditioned on ρx,Y and τx. Thus, we can use a

Metropolis-Hastings step using a random walk proposal distribution

in order to update ρx. Since this is an update of a single scalar, the

additional computational load is minimal.

4. APPLICATION: SIMULATED DATASET

We compare the performance of the proposed inference algorithms

to BLU [2] and BRPCA [5] over a simulated dataset. In partic-

ular, the dataset consisted of multiple samples of size 64x64 spa-

tial locations and 200 frequencies. Each sample (as shown in Fig.

3) had an identical low-dimensional component, which was con-

structed using a LMM with factors/loadings given in Fig. 4. The

sparse component was constructed with Xi,j ∼ Normal(µx, σ
2

x)
and bi,j ∼ Bernoulli(0.1), where group sparsity was imposed with

L = 25 and M = 4. Moreover, we considered three cases where

µx = {0.1, 0.3, 0.6} and σ2

x = 0.0025. Note that increasing µx

leads to higher detectability, which eases inference in models that

include an sparse component. We also generated samples without

any anomalies. Finally, all samples were corrupted with zero-mean

noise with variance 0.004.
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Fig. 5. These figures show the reconstructive error (in dB) while varying the number of samples (1 to 5) and the type of anomaly (none, low,

med., high). In (a), results are given for BLU which does not account for anomalies. (b) compares to BRPCA, while (c) and (d) provide

results for RSU-SVD and RSU-LMM, respectively. Lighter colors indicate better performance.

Samples
Anom. BRPCA RSU-SVD RSU-LMM

Type e(Ŝ) e(B̂) e(Ŝ) e(B̂) e(Ŝ) e(B̂)

1
Low 1.96 0.99 0.97 0.96 0.59 0.55
Med 1.15 0.95 0.88 0.87 0.31 0.22
Low 1.02 0.96 0.90 0.89 0.33 0.28

3
Low 1.88 0.99 0.46 0.42 0.42 0.33
Med 1.14 0.95 0.41 0.30 0.21 0.02
Low 0.50 0.61 0.37 0.26 0.17 0.07

5
Low 1.92 0.99 0.43 0.38 0.41 0.29
Med 1.12 0.95 0.22 0.07 0.21 0.02
Low 0.31 0.08 0.14 0.01 0.11 0.00

Table 1. Sparse reconstruction errors (red: error less than 10%)

In Figure 5, we show the reconstruction error in the low-

dimensional component ‖L − L̂‖2/‖L‖2 for the inference al-

gorithms described above. We show performance for various sparse

component amplitudes (Y-axes) and number of samples (X-axes).

Note that using more samples just increased the number of total

pixels, but we did not include any additional information between

samples. The plots indicate that BLU (a) suffered greatly in perfor-

mance when large anomalies were present. Moreover, comparing

BRPCA (b) and RSU-SVD (c), we see that using the group-sparse

model in (c) improves the ability to estimate S which in turns pro-

vides additional fidelity in estimating L. Finally, RSU-LMM, which

matches the simulated data the best, provides the best results in (d).

In Table 1, we show the reconstruction error in the sparse com-

ponent e(Ŝ) = ‖S − Ŝ‖2/‖S‖2, and the detection error e(B̂) =

‖B − B̂‖2/‖B‖2 for the three algorithms that include the sparse

component. It is seen that RSU-LMM performs the best in both

metrics over all anomaly types and number of samples. Since this

algorithm is best matched to the simulated data, it is the most capa-

ble of detecting the anomalies either when there are fewer samples

or the anomalies have lower means (i.e., medium vs. high types).

Moreover, the RSU-SVD algorithm outperforms BRPCA because

of its ability to detect group sparse anomalies which improves its

detection power.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we generalize previous work [2, 5] by providing a

formulation for robust spectral unmixing. In particular, we directly

estimate sparse outliers in spectral data simultaneously with the

endmembers/abundances of the low-rank component. We provide

a fully Bayesian model, along with a MCMC inference method

that provides an estimate of the posterior distribution. Finally, we

demonstrated the validity of the algorithm on a simulated dataset

and showed that it performs better in terms of reconstruction and

detection errors in comparison to state-of-art algorithms.
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