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Abstract— This work combines the physical, kinematic, and Moreover, since the background image does not change much

statistical properties of targets, clutter, and sensor calibration as from image to image, one would expect tawould be low-
manifested in multi-channel SAR imagery into a unified Bayesian dimensional

structure that simultaneously estimates (a) clutter distributions . . . . o

and nuisance parameters and (b) target signatures required for N [1]-{3], inference in this model is done by optimizing a
detection/inference. A Monte Carlo estimate of the posterior COst function of the form

distribution is provided that infers the model parameters directly

from the data with little tuning of algorithm parameters. Per- argmin ||L||, + v |[S|l, + Cu) ' [I-L—-8|, (2
formance is demonstrated on both measured/synthetic wide-area L,s

datasets. wherel||-||,, ||-|l;, and|-|| » denote the matrix nuclear norm

Index Terms—synthetic aperture radar, moving target detec- (sum of singular values), thé, norm, and the Frobenius
tion, low-rank, hierarchical Bayesian models norm, respectively. Sometimes, the last term is replaced by
the constraintl = L + S (i.e., the noiseless situation). In
|. INTRODUCTION this optimization objective, the nuclear norm promotes a low-
dimensional representation df, the /; norm promotes a

This work provides an algorithm for inference in multi- g d the Frobeni I f I del
antenna and multi-pass synthetic aperture radar (SAR) o ~>eo, an € Frobenius norm aflows for small mode

agery. Inference can mean many different things in this fram ismatch in th_e presence pf noise. On_e major drawback of
work, including detection of moving targets, estimation of th ese methods involves _f|nd|ng the algprlthm parameters (e.g.,
underlying clutter distribution, estimation of the target radieE Iera_nce Igvels or ch0|ces_oyf, #), which may depend on

velocity, and classification of pixels. To this end, the output(g € given signal. Moreover, it has been demonstrated that the

the proposed algorithm is an estimated posterior distributiéi)ls?ncormance of these algorithms can depend strongly on these

over the variables in our model. This posterior distributioHarameters'

is estimated through Markov Chain Monte Carlo (MCMC) . Bayesian methods by Ding etal. .[4]. have b_een proposed that
ultaneously learn the noise statistics and infer the low-rank

techniques. Subsequently, the inference tasks listed abovesé'% h h hat thei hod
performed by appropriately using the posterior distributiof? ¢ SParse components. Moreover, they show that their metho

For example, detection can be done by thresholding tfian be generalizeq to richer_ models, e.g. Markov_dependencies

posterior probability that a target exists at any given locatioR (€ targetlocations. Additionally, these Bayesian inferences
Recently, there has been great interest by Wright et al. [ 'OVIde a characterlzat_lon of the uncertainty of thg outputs

Lin et al. [2], Candes et al. [3] and Ding et al. [4] in the so! rough a Markov Chain Monte Carlo (MCMC) estimate of

called robust principal component analysis (RPCA) probleme posterior d'St”bL_’t'On' The work by Dlng et al. [4] is b‘f"s_ed
that decomposes high-dimensional signals as ona generall Bayesian framgwork [5] by T|pp|ng for obtaining
sparse solutions to regression and classification problems.
I=L+S+E, (1) Tipping's framework uses simple distributions (e.g., those
belonging to the exponential class) that can be described by
few parameters, known as hyperparameters. Moreover, Tipping
. o considers gierarchy where the hyperparameters themselves
S e R"*M is a sparse component, aiftlc R " is dense are assumed to have a known ‘hyperprior’ distribution. Of-

low-amplitude noise. This has clear connections to IMagén the prior and hyperprior distributions are chosen to be

processing wherd: can be used to model the stationary baCl?:'onjugate. Conjugate distributions have the property that the

ground andS' represents sparse (moving) targets of Interei?)tOSterior and prior distributions have the same form, which
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where I € RV*M js an observed high dimensional signal
L ¢ RV*M js a low-rank matrix with rankr < NM,



al. [6] provides an interpretation of the RVM as the applicatiocontaining the clutter, a sparse component containing the target
of a variational approximation to estimating the true posterisignatures, and additive noise.
distribution. Wipf et al. explains the sparsity properties of In general, SAR images are formed by focusing the response
the sparse Bayesian learning algorithms in a rigorous manrar. stationary objects to a single spatial location. Moving
Additionally, it also provides connections with other populatargets, however, will cause phase errors in the standard forma-
work in sparse problems, such as the FOCUSS and basi; of SAR images that cause displacement and defocusing
pursuit algorithms. effects. Most methods designed to detect the target depend
In this work, we develop a framework for inference iron either (a) exploiting the phase errors induced by the SAR
SAR imagery based on the algorithmic structure develop#dage formation process for a single phase center system or
by Ding et al [4]. Whereas Ding developed an algorithrtb) canceling the clutter background using a multiple phase
for inference in standard video imagery, this paper presesgnter system. In this work, we provide a rich model that can
the following non-trivial extensions in order to incorporat€ombine (and exploit) both sources of information in order to
SAR specific phenomena: (a) we consider complex-valugdprove on both methodologies.
data rather than real-valued intensity images; (b) we modelFienup [7] provides an analysis of SAR phase errors induced
correlated noise sources based on physical knowledge of SR translational motions for single-look SAR imagery. He
phase history collection and image formation; (c) we relax ttows that the major concerns are (a) azimuth translation
assumption of a low-rank background component by assumiggors from range-velocities, (b) azimuth smearing errors due
that the background component lies in a low-dimensiontdl accelerations in range, and (c) azimuth smearing due to ve-
subspace; and (d), we directly model SAR phenomenology Iggities in azimuth. Fienup also provides an algorithm for de-
including terms for glints, speckle contributions, antenna gaf@cting targets by their induced phase errors. The algorithm is
patterns, and target kinematics. Moreover, we demonstrate B@sed on estimating the moving target’s phase error, applying a
performance of the proposed algorithm on both simulated af¢using filter, and evaluating the sharpness ratio as a detection
measured datasets, showing competitive or better performagtaistic. Jao [13] shows that given both the radar trajectory and
in a variety of situations. the target trajectory, it is possible to geometrically determine
Inference in SAR imagery is more complicated than that §fe location of the target signature in a reconstructed SAR

standard electro-optical images. Examples of these compldRiage. Although the radar trajectory is usually known with
ties include some accuracy, the target trajectory is unknown. On the other

) h | lued rather th Lval ha?d, if the target is assumed to have no accelerations, Jao
° .SAR Images g\viCOénXRex-\éa ued rft ert an_reaf—va UEfovides an efficient FFT-based method for refocusing a SAR
Intensities, and the phase Information Is of gre age over a selection of range velocities. Khwaja and Ma [18]

importance for detection and estimation of target State;ﬁ‘ovide a algorithm to exploit the sparsity of moving targets
[7]_[9]‘ . . within SAR imagery; they propose a basis that is constructed

« SAR Images are corrupted by spauotemporally-varqugom trajectories formed from all possible combinations of a
antenna gain/phase patterns that often need to be €8t of velocities and positions. To combat the computational
mate(_j from homogenepus targe_t-free data [10], [11]. complexity of searching through this dictionary, the authors

* SAR Images have spatially-varying clutte_r that can maﬂge compressed sensing techniques. Instead of searching over
the target signature unless known a priori or propery dictionary of velocities, our work proposes to use a prior

esumgted [12]. . L . distribution on the target trajectory that can be provided a
o SAR images contain motion-induced displacement arbq5

o iori through road and traffic models or adaptively through
d|ffu3|_on of th_e target response [7], [13]. observations of the scene over time.

* SAR Images mclud_e multiple error sources due to radarThe process of removing the stationary background in order
collection and _physpal propert|es_ of the reflectors, SUQB detect moving targets is known in the literature as 'change
as angular scintillation (ak.a. glints) [14] and SpeCkIaetection’ or 'clutter suppression.” Generally, these methods
[15], [16]. require multiple views of the scene from either multiple

Despite these complications, a great deal of structure existgétceive channels or multiple passes of the radar. Moreover,
SAR images that can be leveraged to provide stronger SAlfiey are based on the assumption that stationary targets will
detection and tracking performance. This includes (a) using thave nearly identical response when viewed at different times
coherence between multiple channels of an along-track raflam the same viewpoint. In contrast, moving targets will
in order to remove the stationary background (a.k.a, ‘clutter@xhibit a phase difference (namely the ‘interferometric’ phase)
(b) assuming that pixels within the image can be describadd thus can be detected as outliers. Another interpretation is
by one (or a mixture) of a small number of object classdhat the stationary component (i.e., the clutter) lies in a low-
(e.g., buildings, vegetation, etc.), and (c) considering kinematanensional subspace. Thus, the moving components can be
models for the target motion such as Markov smoothnedstected by projecting the image into the null space of the
priors. From this structure in SAR imagery, one might considelutter and appropriately thresholding the output.

models that assume that the clutter lies in a low-dimensionalThere are several common methods for change detection
subspace that can be estimated directly from the data. Indesdh multiple looks, including displaced phase center array
recent work Borcea et al. [17] has shown that SAR sighal®PCA) processing, space-time adaptive processing (STAP),
can be represented as a composition of a low-rank componant! along-track interferometry (ATI). In DPCA, one thresholds



the difference image between two looks of the radar #drget signature and the nuisance parameters, such as clutter
slightly different times. However, the performance of DPCAlistributions and antenna calibrations.
(as well as STAP discussed shortly) suffers in the presencelhe framework that is proposed in this paper contains a
of heterogeneous clutter, such as strong returns from buildidetailed statistical model of SAR imagery with many model
edges. Whereas DPCA is a linear filter, ATl thresholds difariables that are jointly estimated through MCMC methods. It
ferences in the interferometric phase between the two imagssatural to ask why such machinery is required for SAR infer-
Moreover, the phase responses of heterogeneous clutter tenehte when there are already (a) methods for MCMC inference
be insensitive to clutter amplitude and can thus be effectivaly standard electro-optical imagery, and (b) simpler methods
removed by using ATI. Deming [8] analyzes both DPCA antbr SAR inference. As mentioned above, it is the authors’
ATI, showing that ATI performs well when canceling brightargument that there are sufficient complications with SAR
clutter, while DPCA performs well for canceling dim clutterimagery that make it difficult to use the former algorithms.
Moreover, he provides a joint algorithm that uses ATl to canchloreover, while there are indeed many simpler methods for
strong discretes in the image and subsequently uses DPSAR inference, these algorithms generally (a) are not robust
to remove small-amplitude clutter. In this paper, we compate operating conditions and (b) do not provide estimates of
our detection results to this joint DPCA-ATI algorithm andheir uncertainty. For example, thresholds in displaced phase
demonstrate competitive results, though our algorithm doesnter array (DPCA) processing will often need to be changed
not require setting thresholds on the phase/amplitude and alsastically depending on the radar conditions. Additionally,
provides the probability of detection (as opposed to a binachange detection algorithms such as DPCA provide a 0-1
output.) output (i.e., either the target is detected or not). In contrast, the
STAP, like DPCA, is a linear filter for detecting movingoutput in our framework is the probability of target existence.
targets from multiple looks that has been applied successfullyAnother key motivation for using a Bayesian formulation
to SAR [12]. However, STAP considers the case whEre- 2 is the capability to readily impose additional structure when
receive channels are available. The algorithm uses a singtiditional information sources are available. In particular, we
channel to estimate the stationary background, while tkensider the following two important information sources for
remaining(XN — 1) channels are used to estimate the movirlgcalizing targets in SAR imagery: (a) multiple passes of
component. Moreover, STAP is a matched filtering techniqulee radar and (b) images formed from frame to frame (i.e.,
that adaptively chooses weights in order to project the dataquentially in time). In the former case, multiple passes of
onto the null space of the clutter. Under ideal circumstancébke radar are used to determine what the "normal” background
STAP has the maximum signal-to-inference-and-noise-ragbould look like in order to detect anomalies in other passes.
(SINR) among linear filters [12]. However, STAP relies ohis is particularly useful in detectingtationary outliers,
estimating the complex-valued covariance matrix of fie which cannot be detected by standard GMTI methods. In the
channel system, which in turn depends on the availabilitytter case, it is desirable to account for the correlation of
of homogeneous target-free secondary data. In this work, teEgets who occupy similar locations in subsequent images
simultaneously estimate the clutter covariance matrices as wadl well as spatially within a single frame. We impose this
as the target contributions. Thus, we demonstrate the capasifucture through spatial and temporal Markov properties on
ity to detect targets even in the presence of heterogeneths sparse component.
measurements. The goal of this work is two-fold. First, we present a
Ranney and Soumekh [10], [11] develop methods for changeifying Bayesian formulation that incorporates SAR-specific
detection from SAR images collected at two distinct times thahenomena such as glints, speckle noise, and calibration
are robust to errors in the SAR imaging process. They addresgors, and is additionally able to include information from
error sources including inaccurate position information, varyaultiple passes of the radar and multiple receive channels.
ing antenna gains, and autofocus errors. They propose that$eeond, we offer an inference algorithm through MCMC
stationary components of multi-temporal SAR images can beethods in order to estimate the posterior distribution given
related by a spatially-varying 2-dimensional filter. To make thi&ie observed SAR images. This posterior distribution can then
change detection algorithm numerically practical, the authdse used for the desired inference task, such as target detection
propose that this filter can be well-approximated by a spatiakyd/or estimation of the underlying clutter distribution.
invariant response within small subregions about any pixel in The rest of the paper is organized as follows: The algorith-
the image. This work adopts this model for the case whemic structure is given in Section Il. Notation is presented in
there are no registration errors. Under a Gaussian assumpf@gtion Il and the image model is provided in IV. Markov,
for the measurement errors, it can be shown that the maximgpatial, and/or target kinematic extensions are discussed in
likelihood estimate for the filter coefficients can be computegection V. The inference algorithm is given in Section VI.
easily through simple least squares. Performance is analyzed over both simulated and measured
Ground Moving Target Indication (GMTI) methods involvedatasets in Section VII. We conclude and point to future work
the processing of SAR imagery to detect and estimate moviifigSection VIII.
targets. Often clutter cancellation and change detection play a
preprocessing role in these algorithms [19]-[22]. This work Il. ALGORITHMIC STRUCTURE
aims to combine properties of many of these algorithms For clarity, in this section we provide the basic structure of
into a unifying framework that simultaneously estimates the algorithm described by this paper. The algorithm works as



AN over distinct azimuth angle ranges that can be indexed by the
frame number,f. Table | provides the indexing scheme used
5 'mﬂgéswi'ecte;ﬂtZ'U'Fip'eth throughout this paper in order to distinguish between images
o assesi = 1,.. 0V andazimu . .
Z P angles F 12, F from various antennas, frames, and/or passes. Table Il provides
a list of indexing conventions used to denote collections of
e variables.
?‘ec@ \s“ﬁL
o TABLE |

&
INDEX VARIABLE NAMES USED IN PAPER

Fig. 1. SAR image setd;; from ¢ = 1,2,...,N passes andf = | Index Description | Index Variab|e| Range
1,2,. .‘.,F azimuth angles are collected in a multidimensional array. Each Antenna (channel) % 12 K
SAR image set consists ok images (each withP pixels) collected at Lk
different receive channels. Frame (azimuth angle f 1,2,...,F
Pass 7 1,2,...,N
Pixel P 1,2,...,P
follows
1) SAR images sets are collected froM independent TABLE Il
passes of the radar and frof azimuth ranges (i.e., OUR DATA INDEXING CONVENTIONS
with different azimuth angles). Each image set consists
of K images (each withP pixels) collected from one | Variable Convention Description |
of K receive channels (or antennas). Subsequently, the Standard Value at pixelp, antennak,
images {;;) are arranged in a multidimensional array | %/ and framef, passi
indexed by their pas$ and frame (azimuth rangej. ) Underline Values at pixelp, frame f,
This multidimensional array is shown in Figure 1. B and passg over all antennas
2) A generic model is proposed that decomposes the SAR () Lower-case, Values at pixelp and framef
imagesI;; into low-rank, sparse, noise, and calibration| /' Boldface over all antennas and passes
components. Moreover, the low-rank and sparse comr- Ip Upper-case Values over all pixels and
ponents are decomposed into SAR-specific components__" Boldface antennas at fram¢ and pass
that include speckle, glints, and moving targets. I Upper-case, Values over all pixels, antennas,
3) A prior probability distribution is proposed for each Boldface, No Indices frames, and passes
type of pixel class (speckle, glints, etc.). Note that any
individual pixel may be a mixture of these classes. EachWe model the complex pixel values in SAR images with
probability distribution depends on various distributiothe complex-normal distribution, where we use the notation
parameters_(e.g. the mean parameter of a Gaussian w ~CN (0,T) 3)
random variable). We propose a model where these
parameters are also estimated from the data using ¥éereCN (i, T') represents the complex-Normal distribution
called conjugate priors. These priors can be specifiedWith mean, and complex covariance matrlx, and« is ran-
a standard way [5] in order to be non-informative anelom vector of K’ complex-values (from each df antennas.)
to not require tuning. Specifically, we directly model the correlations of pixel values
4) Given the prior distributions in the previous step, thamong thei’ antennas (receive channels) through the complex
posterior distribution for the model parameters is de&ovariance matrix'.
rived, given the image$; ;. This posterior distribution
is then estimated through a Markov Chain Monte Carlo IV. SAR IMAGE MODEL
(MCMC) method, namely the Gibbs Sampler. We propose a decomposition of SAR images at each frame
5) Finally, the posterior distribution is provided which cary and pass as follows

be used for various tasks such as
: . o : Iy;=Hy;0(Lyp;+ Spi+ Vi), 4)
« Detection of moving targets and estimation of their . . o
radial velocity. where H; ; is a spatiotemporally-varying filter that accounts
« Determination of the clutter distribution (which canfor antenna calibration error; ; is a low-dimensional repre-
subsequently be used for STAP, even in the preserg@ntation of the background cluttét; ; is a sparse component

of heterogeneous noise). that contains the targets of intere$f; ; is zero-mean additive
« Sensor fusion and/or efficient allocation of sensing0ise, ando denotes the Hadamard (element-wise) product.
resources. Each of these components belongs to the sgaice’.

As discussed earlier, this decomposition may be appropri-
ate for SAR imagery where stationary (clutter) features in

. N OTATION the scene don't change much from frame-to-frame, pass-to-

Available is a set of SAR images of a region formed frorpass, and antenna-to-antenna. The remainder of this section
multiple passes of an along-track radar platform with multipldiscusses the model in detail. Figure 2 shows a graphical
antennas (i.e., phase centers.) Moreover, images are formguresentation of the model.



that reflects that neighboring pixels are likely to have the
same class. The clags?) defines the distribution of the pixel

p, where we specifically model the background and speckle
components respectively as complex-normal distributed:

W ~en(01g”), 2l ~en (01g”) @

Note that the class type specifies the distribution of the
pixels and each vector ok values (e.g. backgrouri_nif’) or

speckleg(z’g) is drawn independently from that distribution.

i These pribr distributions are constructed so that the pixels

i paselayer i are conditionally independent given the pixel classes. This
independence assumption allows for numerical efficiency in

the inference algorithm. Moreover, pixels still maintain a cor-

Fig. 2. This figure provides a simplified graphical model associated wi : . . . P
proposed SAR image model. The shaded shape represents the obse%égtmn through (a) the determination of the pixel classification

random variable. The circles represent the basic parameters of the mofle€., through the hidden Markov model) and (b) the definition

while the dashed lines represent hyperparameters that are also modelegfathe class distribution (i.e., the covariance matrices.)
random variables.

B. Sparse componenS$;; ;

A. Low-dimensional componer,; ; The sparse component contains two components: a specular
We propose a decomposition of the low-rank component ggise (glint) component and a ta}rget_ component. We consider
a shared sparsity model, wherein glint/target components are
Ly;=DB;+ Xy, (5) present in one antenna if and only if they are present in the
. . - . other antennas. Moreover, glints are known to have a large
vv"here By ,')S(the. |ntfrl]erent blillckgrqund that is 'd?rt]kt:c‘?l qveermgular dependence, in the sense that the intensity of the glint
all passes, Ly, 1S e speckie noise component hat anseg, ;465 in only a few azimuth angles. Thus, the indicators
from coherent imaging in SAR. Posner [15] and Raney [1 . :
) ) : . r glints are assumed to persist across all passes. The sparse
describe speckle noise, which tends to be spatially correlatced .
) . ) omponent is modeled as
depending on the texture of the surrounding pixels.

Gierull [23] shows that the quadrature components of SARS;.; = (AY .y ® 1%) 0 Gy + (A}, ® 1%) o My, (8)

radar channels are often modeled as zero-mean Gaus%@reGﬂ € CP*K s the specular noise (glints) component
rocesses. However, in the presence of heterogeneous clutt . — . P
b P 9 With associated indicator vanablﬁ?l:N € {0,1}", My, €

(such as in urban scenes), one must consider spatially-varyng, x is the (moving) target component with associated
models where the clutter variance changes across radar cells. . M P .
o - T indicator variableA}!. € {0,1}", 1k is the all ones vector of
Additionally, speckle noise is usually multiplicative in nature. -
S . . . Size K x 1, and® is the Kronecker product. The Kronecker
wherein higher amplitude clutter produces higher variance . . .
. ) . ) L product is used to denote the shared sparsity across receive
noise. In this work, we approximate this multiplicative prop* ) .
. o channels. Once again, we assume that the glints and target
erty by allowing the speckle/background distributions to var

spatially. This additive formulation lessens the computationa?mp.Onents are zero-mean co_mplex-normal distributed with
covarianced’ andT',;, respectively.

Iqurd_en, while empirical evidence suggests that the approxXima= o dicator variablé> ® at pixelp, wherez is represen-
tion is reasonable.

To account for this spatial variation, this model assumé%tlve of eitherg (glints) orm (moving targets), is modeled

that each background pixel can be defined by ong ofasses

that may be representative of roads, vegetation, or buildings 65 Bernoulli(wz’(p)), (9)
within the scene. Th_esg cl_asses_ are Iearn_ed directly _from the 7@ Beta(ar, by (10)
data so that their distributions (i.e., covariance matrices) do

not need to specified a priori. Moreover, while there may pgihereas the Gaussian distribution is a natural choice for
many different pixel classes, one can reasonably model gNtinuous random variables, the Bernoulli distribution with
data with.J < P, where P is the number of pixels in the Parameterr is a natural choice for indicator variables, where
measured images. In other words, one generally only requii@.genotes the probability that the random variable is equal
a relatively small number of classes (distributions) to descrifg One. Moreover, the Beta distribution is often used (as in
the clutter. To this end, we put a multinomial model on eadfl]) to account for uncertainty in. In sparse situations, we

object class wc_)ulq generglly expect that < 1. In this model, a sparseness
; prior is obtained by setting /[a, + b;] < 1. Alternatively,

cP) = {Cgl’)} ~ ~ Multinomial(1; ¢, g2,...,¢s) (6) We can introduce additional structure in our model by letting

T la=l ar and b, depend on previous frames (temporally) and/or

whereg; is the prior probability of thej-th object class. Then neighboring pixels (spatially). This is particularly useful for
the class assignme6it®) is the single location i with value detecting multi-pixel targets that move smoothly through a
equal to one. We use a hidden Markov model dependersgene. Section V discusses this modification in greater detail.



C. Distribution of quadrature components wherea, = b, = 107% as suggested by Tipping [5] to
JPromote non-informative priorsia,,b,) are chosen so that

separate the target from the background clutter by assumih ~ 1o fnsure a high C(t)hetrre]n;:e artnolnghthe tiackglrotmd
that the clutter lies in a low-dimensional subspace of gfgmponentsyr IS a parameter that controls how strongly o

data. Consider a random vector of complex variables- weight the prior covariance matrix, ang: is chosen so that

CN (0,T) where w is representative ob (background),» E[L,] = (1 - pixx +plili. In this work, vy is chosen
(speckle),g (glints) or m (targets.) Under the assumptionéo be large in prder to reflect our belief thatT", should be
that (a) the quadrature components of each antenna are thgge to equation (12).
mean normal with variance? and (b) the correlation among

componentss,, andw, is given bype~7¢=» thenT can be D. Calibration filter, Hy ;

Many SAR detection algorithms rely on the ability t

shown to have the form The calibration constants are assumed to be constant within
1 pe=its L. pemitix smalll spatial regiony € Z,, though they may vary as a
peitr> 1 . peita function of antenna, frame, or pass. In particular, we let
I =o2 , 11
T - W), = 2r4(0), 0 € Z,, )
pel®iK  peida ... 1 2. 1.i(9) ~ CN (1, (6™)?) (18)

where o2 is the channel variancep is the coherence Where we note that if the number of pixels in clasgZ,|, is
between antennas, a'ﬁdnm}n_m are the interferometric phase|arge, then maximum likelihood inference in this case ylelds
differences between the antenhds an idealized model with the least-squares solution.
a single point target, the interferometric phaggs, can be
shown to be proportional to the target radial velocity [8]. In V. MARKOV/SPATIAL/KINEMATIC MODELS FOR THE

images containing only stationary targets (i.e., the background SPARSE COMPONENT
components where,,, = 0), the covariance matrix has aA. Indicator probability models
simpler form:

This model contains multiple indicator variables with prior
(12) probabilities distributed aBeta(ar,b,). Moreover, sparsity
is obtained whenu,/[ar + b;] < 1. Alternatively, we can
whereIx . x is the K x K identity matrix andl ¢ is the all- introduce additional structure in our model by lettiag and
ones vector of lengtti. When there is no correlation amongb~ depend on previous frames (temporally) and/or neighboring
the antennasp(= 0), this reduces to a scaled identity matrixpixels (spatially). This is especially useful for detecting multi-
In other cases, this covariance matrix provides a way to capt@i¥el targets that move smoothly through a scene.
direct correlations among the antennas. Define W (p, A}Y;) to be a function that maps the indica-
When the covariance matrK of a multivariate Gaussian tor variablesA}’; to a real number. For example, this may be
distribution is not known a priori, a common choice for 4he average number of non-zero indicators in the neighborhood
prior distribution is its conjugate prior, the Inverse-Wisha®@f pixel p, or a weighted version that puts higher value on
distribution. This distribution is characterized by the meafgeighboring pixels. Fof = 1, we let

covariance and its prior weight (i.e., how strongly to weight , ,
prior weight ( aly to welaht a1 p) |- {fe bal?, WM (p, AMY > M
1 (p) [ar  br]T, else,

Fbackground = 02 ((1 - p)IKXK + le]-][ﬂ()

the prior). In this paper, we use a modification to the standard

model where (a) the channel variance is estimated separately “1 p
from the structure of the correlation matrix, and (b) the corre- (19)
lation matrix mean depends on another random parameter, 8 for.f > 1

cqrrelatior_n coefficienp. Thi; additional structure a}ligns well u g bulT, WM(p, A%.) > aé\gaml and
with the literature that relies on strong correlations amon[g G}\«,i(P) ] _ WM(p, AM )5 oM
antennas (specifically for clutter and speckle). Moreover, thjs b (p) P 2w temporal’
model separates the learning of the channel variaicerhich lar br]",  else.

we have no a priori knowledge about, from the learning of tf]e
correlation structure, denotdd,. The specific model is given n

]T
(20)

this paper, we choos@:y,, by, an,by) so thatay/(ar, +

b+ L)< 1landay/(ag +b+ H) > 0. A similar model can

b ; S .
y be introduced for the probabilities of the glints.
w~CN (0,0°T,) (13)
T, ~ InvWishart (ar((1 — p)Ixxx +plrlk),vr) (14) B. Target kinematic model
0% ~ InvGammal(a,, by) (15) In some applications, such as target tracking or sequential
detection, we may have access to an estimate of the kinematic
p ~ Beta(a,,b,) (a6)

state of the target(s) of interest, such as position, velocity and
N _ _ acceleration. This could be provided separately, or one might
A more general model could account for different channel variance and id . . . bl h i b
coherence values, but since we use the calibration constiptsto equalize consider a joint estimation problem where target kinematics

the channels, the effect was seen to be relatively insignificant. are being simultaneously estimated with the image model. The



Procedure 1Gibbs Sampling Pseudocode thresholding the probability of the target indicators. In the
procedure {®}._, — SARGibbg®,, I) latter task, the posterior distribution could specify a confidence
®« 0, samples interval (or region) for the parameters of interest (such as the
for iteration = 1 10 Nyurnin + Neampies dO covariance matrices and the pixel classification probabilities).
Sample~ f (B, X,G, M, A%, AM|T,~)  //Base Generally, estimating the posterior distribution on this
Sample~ f (H|T,-) /ICalibration filter | Model would be a very difficult task due to the large number
of variables and the dependence among them. In particular,
Sample~ f (n|I, ) /IHyper-parameters| W€ useé a Markov Chain Monte Carlo (MCMC) algorithm in
Oiteration—Ny,.... — O if iteration > Nyurnin the form of a Gibbs sampler to iteratively estimate the full
end for joint posterior. In MCMC, this distribution is approximated by
end procedure drawing samples iteratively from the conditional distribution of
each (random) model variable given the most recent estimate
of the rest of the variables (which we denote by [25]. Let
, _ , © ={B,X,G,M,A% AM H, C,n} represent a current
target state estimate at any particular time could also be useél:f{imate of all of the model variables wherg represents
for predicting the location of the target at sequential frameﬁie set of all hyper-parameters. Given measureménthe
For simplicity, 9°”Si‘?‘ef a single _target at timewhose state jhtorence algorithm is given in Procedure 1. Note that MCMC
§(r) = (r(r),7(7)) is known with standard errork (7). algorithms require a burn-in period, after which the Markov
N(_)te that the uncertainty m(_)del f()r’,T> may be (a) known a cpain has become stable. The duration of the burn-in period
prlorf_rom roa_d maps or t_rafflc behawo_r pattern_s, or (b) leam%%pends on the problem and is discussed in more detail
adaptively using some signal processing algorithm such as g, after the Markov chain has become stable, we collect
Kalman or particle filters. Naampies Samples that represent the full joint distribution. Full

In stan_dard SAR image formation, mOYing targ(_ats tend Wurails of the sampling procedures are given in the technical
appear displaced and defocused as described by Fienup [7] ?ém)rt [24].

Jao.[13]. Moreover, Jao s_howed thgtgiven the radar_trajectory-l-hiS model requires estimation of a base layer (i.e. the
(¢:q) and the target trajectoryr, =), one can predict the yirect random variables given in equations (4), (5), and (8)),

location of the target signature within the imagdy soVing e narameters of the distributions of the base layer (i.e. the
a system of equations that equate Doppler shifts and ranges;ariance matrices and probabilities), and the global param-

Sample~ f (C|I,—) /IClass assignment

respectively, at each pulse: eters (i.e., the clutter class assignments and the calibration
d filter coefficients.) To combat this numerical intractability, this
ar llp = a(@)ll; = lIr(7) = a(7) 2], =0 (21) model was constructed in a specific way such that (a) the
lp* —q(m)|ly = |Ir(r) — q(7)|,, (22) hyper-parameters of the base layer were chosen to be conjugate

) ) . to the base layer, and (b) the posterior distribution of the base
which can be reduced to the simpler system of equations: ayer is conditionally independent across pixels/frames given
q(r) - [p* — q(r)] = [#(7) — q(7)] - [r(7) — q(7)]  (23) the other parameters. The .for.mer_ prqperty allows for efficient
sampling of the posterior distribution in the sense that we can

Ip* = (™)l = lir(r) — a(7)ll, (24) sample exactly from these distributions. The latter property
The probable locations of the target can be predicted by oakows for simple parallelization of the sampling procedure
of several methods, including: over the largest dimensions of the state.

« Monte Carlo estimation of the target posterior density. Moreover, the sampling procedures for the hyper-parameters
. Gaussian approximation using linearization or the utend to require sufficient statistics that are of significantly

scented transformation to approximate the posterior deffnaller dimension and thus more desirable from a compu-
sity tational viewpoint. For example, sampling of the covariance

« Analytical approximation. matrix ' depends only on & x K sample covariance

. . . . .matrix. It should be noted that sampling of the covariance ma-
Given an estimate of the posterior density, we can mOdlﬁ}ices requires additional effort in order to constrain its shape
the functioni? described in the previous section to includ d P

dependence on this kinematic information. Details of t?o that of equation (11). In particular, we use a Metropolis-

posterior density estimation are provided in the technical"jlsun.gs step., Wh'ﬁvh c‘;a[\/n b‘;" sVaS|Iy QOne by Qotlng that the
report [24] posterior densityf (T, p"", (6#)" |W) is proportional to an

Inverse-Wishart distribution. Details specific to inference in

this model are provided in the technical report [24]. For a
VI. INFERENCE formal presentation of Monte Carlo methods, including Gibbs

In this section, we provide details on estimating the postsamplers and Metropolis-Hastings, the authors suggest reading

rior distribution of the model parameters given the observgas].
SAR images. Given the estimate of the posterior distribution, The computational complexity of this MCMC method is
one can then perform that appropriate desired task, suchcharacterized both by the computational burden of a single
detection of moving targets and/or estimation of the clutt@eration in the sampling process as well as the number of
distribution. In the former task, this can be done simply bsequired iterations for burn-in and subsequent sampling. The



TABLE Il TABLE IV
PARAMETERS OF SIMULATED DATASET COMPARISON OF PROPOSED METHOPBAYES SAR) TO RPCA METHODS
WITH N =20, FF =1, K = 3. NOTE THAT THE BAYES SARMETHOD
Parameter value PERFORMS ABOUT TWICE AS WELL AS EITHER OF THRPCAMETHODS
FOR ALL CRITERIA. THE BAYES SARMETHOD ALSO PRODUCES A SPARSE

Pixels in image,P P =100 x 100 RESULT. STANDARD ERRORS ARE PROVIDED IN PARENTHESES
Number of frames per pas$; F=1
# of antennasK K=3 (a) Bayes SAR
# of passes]‘\f ‘ N € {5,10, 20} ‘ SCNR ‘ Coh. ‘ L], [s-51, IEREIIN
# of target pixels/imageNiargets Niargets = 20 LI, I [T

639 (.134) | .664 (234

Clutter of backgroundp € {0.9,0.99,0.999, 0.9999} 10% | .900 | .058 (.001)
. - > 10% | 0999 | .048 (.005) | .414 (.036) | .365 (.042
Variance of targetsyy, . g Tiarget =1 100% | 900 | .056 (.001) | .155 (.015) | .152 (.009

) )
i
Variance of background Either o2, = 02,110/ 100 100% | 9999 | .053 (.003) | .121 (.008) | .097 (.017)
) )
) )

200% .900 .057 (.001) | .122 (.011 .145 (.043
200% 19999 | .053 (.005 117 (.016 .094 (.009
SCNR, é 5 Ttarget ( ) ( (

o 1+20}ioise (b) Opt. RPCA

2 —
or o—b'riqht = Oclutter
2

Signal-to-noise-plus clutter (SCNR

clutter

IL-L[, ‘ [s—5[l, ‘ Is—sll,
ENEE" IEIP IESIF
0.075 0.075 10% .900 .113 (.006) | 3.22 (.19) | 110.9 (1.5)
10% | .9999 | .113 (:006) | 3.20 (.16) | 108.8 (2.4)
100% | .900 | .112 (.006) | 1.20 (.07) | 109.7 (1.9)
100% | .9999 | .113 (.008) | 1.20 (.08) | 107.9 (2.3)
200% | 900 | .116 (.010) | 1.08 (:09) | 110.3 (2.6)
200% | 9999 | .110 (.003) | 1.04 (:03) | 108.7 (2.6)
(c) Bayes RPCA
0 0 ‘ SCNR ‘ Coh ‘ lz—L, [s-sl, ‘ Is-sl, ‘
(@L+s (b) L : LI, 1P [[S1lo
10% | .900 | .119 (.018) | 1.04 (.08) | 3.96 (.49)
0.075 10% | 9999 | .116 (.022) | 1.08 (:22) | 3.91 (.54)
100% | .900 | .126 (.029) | .768 (.082) | 3.72 (.88)
100% | 9999 | .125 (.023) | .754 (.061) | 3.68 (.63)
200% | .900 | .135 (.030) | .735 (.146) | 3.93 (.95)
200% | 9999 | .134 (.028) | .703 (.067) | 3.86 (.82)
0
© S model given in Section IV with parameters given in Table

[ll. The low-dimensional component was divided into one of

Fig. 3. This figure provides a sample image used in the simulated dataggsy classes (‘dim’ or ‘bright’). Pixels were deterministically
for comparisons to RPCA methods, as well as its decomposition into low-

dimensional background and sparse target components. This low SCNR imagsigned to one of these classes to resemble a natural SAR im-

is typical of measured SAR images. Note that the target is randomly placade (see Figure 3). The sparse component included a randomly

within the image for each oV passes. In some of these passes, the target i ; inlamni ;
placed over low-amplitude clutter and can be easily detected. In other pas?ggced target with multlple plxel extent. A spatlotemporally

the target is placed over high-amplitude clutter, which reduces the capabilé@!Ying antenna gain filter was uniformly drawn at random on
to detect the target. the rang€0, 27) for groups of pixels of siz&5 x 25. Lastly,
zero-mean 11D noise was added with variancg, ., .

The Bayes SAR model is applied to infer the low-
former step is highly parallelizable and can be accomplishg@nensional componeidi; ; and sparse target componeyt;
efficiently even for large images and multiple passes. In oyjiith estimates denoteﬂfﬂ» and S'fﬂ,’ respectively. Hyperpa-
experience, the required computation time was on the safagheters of the model are chosen according to the Section
order as the time required to form the images from the ray. Results are given by the mean of MCMC inference with
phase histories (which generally scales$>* log P), where 500 burn-in iterations followed by 100 collection samples. We

P is the number of pixels in the image.) Moreover, simil onsjﬂer ﬂwee meﬂ’icsﬁo evaluate the reconstruction errors:
to related work [4], our experience has shown that the meaf—L[, [S—5||

—-S .
R i " TET = 8T, 7T, — Where the norm is taken over
of the posterior distribution converges quickly with just a few, "2 0 izeq 2quant¥tie§
iterations of the MCMC algorithm. Due to the parallelizability |, comparison to the éayes SAR model, results are given
of the problem, this algorithm could potentially benefit greatly, . gt4te.of.the-art algorithms for Robust Principal Component

by computation on GPU’s where parallelization is built-in. Analysis (RCPA): an optimization-based approach proposed
by Wright et al. [1] and Candes et al. [3] and a Bayesian-based
VIl. PERFORMANCE ANALYSIS approach proposed by Ding et al. }4]The optimization-based

A. Simulation

2For the optimization-based approach, we used the eatatrpca package
We first demonstrate the performance of the propos@ﬂﬁTLAB) by Lin et al. [2], downloaded from http://watt.csl.illinois.edu/

. . . erceive/matrix-rank/home.html. For the Bayesian-based approach, we used
algorlthm, which we refer to as the Bayes SAR algorlth e Bayesian robust PCA package, downloaded from http://www.ece.duke.

on a simulated dataset. Images were created according to dthe-lihan/brpcacode/BRPCA zip.
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Fig. 4. This figure compares the relative reconstruction error of the target comp 6, - as a function of algorithm, number of pasg€s coherence

of antennas, and signal-to-clutter-plus-noise ratio (SCNR). From top-to-bottom, the rows contains the output of the Bayes SAR algorithm (proposed), the
optimization-based RPCA algorithm [1], [3], and the Bayes RPCA algorithm [4]. From left-to-right, the columns show the oufgutfér N = 10, and

N = 20 passes (with? = 1 frames per pass). The output is given by the median error over 20 trials on a simulated dataset. It is seen that in all cases, the
Bayes SAR method outperforms the RPCA algorithms. Moreover, the Bayes SAR algorithm performs better if either coherence increases (i.e., better clutter
cancellation) or the SCNR increases. On the other hand, the performance of the RPCA algorithms does not improve with increased coherence, since these
algorithms do not directly model this relationship.

approach requires a tolerance parameter which is relatedsémmples in the Monte Carlo distribution. This would provide
the noise level, as suggested by Ding et al. [4]. We chose thipredicted uncertainty in any one instantiation of the problem
parameter in order to have the smallest reconstruction errdie., one trial), but would not be comparable to the non-
The Bayesian method did not require tuning parameteBayesian methods (such as the optimization-based RPCA).

except for choosing the maximum rank &f;; which was

set to 20. B. Measured data

Figure 4 compares the relative reconstruction error of the|n this section, we compare performance of the Bayes SAR
sparse (target) compone ’H;H Hz, across all algorithms, approach using a set of measured data from the 2006 X-band
number of passes, coherence of antennas and SCNR. Gotcha SAR sensor collectidnin particular, images were
In all cases, the Bayes SAR method outperforms the RPd@rmed from phase histories collected over a scene of size
algorithms with improving performance if either coherencd/5m by 1200m forN = 3 passes and< = 3 antennas.
or SCNR increases. Table IV provides additional numericBech image was created with a coherent processing time of
results for the cas&V = 20. The RCPA algorithms perform 0.5 seconds with the addition of a Blackman-Harris window in
poorly in reconstructing the sparse component with relatifge azimuth dire_ctiqn to reduce sidelobes._lmages were created
errors near or greater than 1. This reflects the fact that @f)0.5m resolution in both the x- and y-directions. Thus each
these algorithms miss significant sources of information, sutRage consisted aP = 750 x 2400 = 1.8 x 10° pixels. Images
as the correlations among antennas and among quadraw@ée created at overlapping intervals spaced 0.25 seconds apart
components, and (b} = 20 may be too few samples foratotal of 18 seconds. Note that the ability to take advantage
to reliably estimate the principal components in these noff correlated images (as in this case) is one of the benefits of
parametric models. In measured SAR imagery, it might B&sing the proposed model/inference algorithm.
unreasonable to expedf > 20 passes of the radar, which We consider three alternative approaches in comparison to
suggests that these RPCA algorithms will likely perforriie Bayes SAR approach: (1) displaced-phase center array
poorly on such signals. In contrast, it is seen that the BayddPCA) processing, (2) along-track interferometry (ATI), and
SAR method obtains low reconstruction errors for both low3) & mixture of DPCA/ATI as described by Deming [8]. Note
dimensional and sparse Components as either Coherencéh@t' all variants of ATI/DPCA depend on the chosen thresholds
SCNR increase. for phase/magnitude, respectively.

Table IV also provides standard errors on the metrics 1) Comparisons to DPCA/ATIWe begin by comparing
provided (i.e., thé-norms on the foreground and backgrounif!® output of the proposed algorithm across the entire 375m

components) as a measure of statistical confidence in thQ¥e1200m scene. Figure 5 shows the output of the Bayes

guantities. Note that this standard error is calculated over RER algorithm, the DPCA output, and the ATI output. It is

20 trials where the ground truth is known. It would also pgeen that there are significant performance gains by using
possible tQ determine the prediCt?d uncertainty of the error inye gataset is a superset of the data given by the Air Force Research Lab,
the Bayesian methods by computing the standard error over Hva division as described in [26].
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Fig. 5. This figure compares the output of the proposed algorithm as a function of magnitude and phase for a scene of size 375m by 1200m and coherent
processing interval of 0.5s. The Bayes SAR algorithm takes the original SAR images in (a) and (b), estimates the nuisance parameters such as antenna
miscalibrations and clutter covariances, and yields a sparse output for the target component in (c) and (d). In contrast, the DPCA and ATI algorithms are very
sensitive to the nuisance parameters, which make finding detection thresholds difficult. In particular, consider the original interferometric phase image shown
in (b). It can be seen that without proper calibration between antennas, there is strong spatially-varying antenna gain pattern that makes cancellation of clutter
difficult. Calibration is generally not a trivial process, but to make fair comparisons to the DPCA and ATI algorithms, calibration in (f) and (g) is done by
using the estimated coefficiend ; ; from the Bayes SAR algorithm. In (e) and (f), the outputs of the DPCA algorithm are applied to the original images

(all antennas) and the calibrated images (all antennas), respectively. It should be noted that even with calibration, the DPCA outputs contain a huge number
of false detections in high clutter regions. Nevertheless, proper calibration enables detection of moving targets that are not easily detected without calibration,
as highlighted by the red boxes. Note that the Bayes SAR algorithm provides an output that is sparse, yet does not require tuning of thresholds as required
by DPCA and/or ATI.

calibrated images as shown in (f) and (g) as compared targets with high fidelity regardless of the scene/image and
their original versions, (e) and (b), respectively. Furthermordpes not require tuning of thresholds for detection.
the proposed approach also provides a sparse output withow) Target motion modelsFigure 7 shows the output of
choosing thresholds as required by DPCA and ATI. Note thtkte proposed approach when prior information on the location
in this figure, calibration is accomplished by using the outputs the targets might be available. For example, in the shown
H;, from the Bayes SAR approach. scene, targets are likely to be stopped at an intersection. The
Figure 6 display the detection performance over two smallperformance improvement is given for a mission scene that
scenes of size 125m by 125m as a function of magnitudentains target in this high probability region. On the other
and phase. For each scene, images are provided for sequeh#ad, there are no significant performance decreases in the
scenes separated by 0.5 seconds. Scene 1 contains strefgyence scene that does not contain targets in the intersection
clutter in the upper left region, while Scene 2 has relativelggion. This type of processing could be extended to a tracking
little clutter. It is seen that the proposed approach (2nd ardvironment, where targets are projected to likely be in a given
3rd columns) provides a sparse solution containing the targksation within the formed SAR image as discussed in Section
of interest in each of the 4 images. Moreover, the 2nd colunvh
provides the estimated probability that a target occupies a3) Estimation of radial velocity:The dataset used in this
given pixel, in comparison to the (0,1) output of DPCA andection contained a few GPS-truthed vehicles from which we
ATI. Although most estimated probabilities are near 1, thean derive (a) the ‘true’ location of the target within the formed
are a few cases where this is not the situation: in scene 2@@AR image, and (b) the target’s radial velocity which is known
a low-magnitude target is detected with low probability in thio be proportional to the measured interferometric phase of
lower-right; in scene 1(b) a few target pixels from the cluttehe target pixels in an along-track system. To account for
region are detected with low probability. In contrast, the peuncertainty in target location from the GPS sensor, we consider
formance of DPCA and ATl depend strongly on the threshold. ‘confidence region’ for pixels that have high probability of
In (a-c), the DPCA-only output provides a large number afontaining a target. Within these regions, each algorithm (e.g.,
false alarms. It is seen that the ATI/DPCA combination with 1Bayes SAR or ATI/DPCA) (a) detects pixels containing targets
dB magnitude threshold over-sparsifies the solution, missiagd (b) subsequently estimates the interferometric phase of
targets in (b), (c), and (d). On the other hand, the ATI/DPCthose pixels. Note that the radial velocity is proportional to the
combination with 30 dB magnitude threshold detects thesgerferometric phase up to an ambiguity factor (i.e. between
targets, but also includes numerous false alarms in (a) and ()and 2r) which corresponds to about 7m/s. To avoid this
On the other hand, the proposed approach is able to detectahwiguity, each algorithm provides the radial velocity that
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Fig. 6. This figure shows detection performance based on the magnitude/phase of the target response with comparisons between the proposed algorithm ani
displaced phase center array (DPCA) processing, and a mixture algorithm between DPCA and along-track interferometry (ATI). Note that DCPA and ATI
declare detections if the test statistic (magnitude for DPCA and phase for ATI) are than some threshold. Results are given for two scenes of size 125m x
125m; within each scene, images were formed for two sequential 0.5 second intervals. Scene 1 contains strong clutter in the upper left region, while Scene
2 has relatively little clutter. The columns of the figure provide from left-to-right: the magnitude of the original image, the estimated probability of the target
occupying a particular pixel (Bayes SAR), the estimated phase of the targets (Bayes SAR), the output of DPCA with a relative threshold of 30 dB, the output
of ATI/DPCA with (25 deg, 15 dB) thresholds, and the output of ATI/DPCA with (25 deg, 30 dB) thresholds. It is seen that without phase information to
cancel clutter, DPCA (30 dB) contains an overwhelming number of false alarms for scenes (a-c), although the performance is reasonable for scene (d). The
ATI/DPCA algorithms provide sparser solutions by canceling the strong clutter. It is seen that the ATI/DPCA combination with 15 dB magnitude threshold
over-sparsifies the solution, missing targets in (b), (c), and (d). On the other hand, the ATI/DPCA combination with 30 dB magnitude threshold detects these
targets, but also includes numerous false alarms in (a) and (b). On the other hand, the proposed algorithm provides a sparse solution that detects all of these
targets, while simultaneously providing a estimate of the probability of detection rather than an indicator output.
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Fig. 7. This figure compares the performance of our proposed method with and without priors on target signature locations. In this scene, targets are likely
to be stopped at an intersection as shown by the region in (a). A mission image containing targets is shown in (b) and a reference image without targets is
shown in (d). The estimated target probabilities are shown in (c) for the mission scene where inference was done both with/without a target motion model
(TMM). It can be seen that by including the prior information, we are able to detect stationary targets that cannot be detected from standard SAR moving
target indication algorithms. The estimated target probabilities in the reference scene are shown in (e), showing little performance differences when prior
information is included in the inference.
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VIIl. DISCUSSION AND FUTURE WORK

Recent work [1]-[3] has shown that it is possible to suc-

Radial Velocity (m/s)
b

4 . s cessfully decompose natural high-dimensional signals/images
] e mages into low-rank and sparse components in the presence of noise,
5 > _AlibRCAT leading to the so-called robust principal component analysis

o0 ) . : . o & 4 16 18 algorithms. [4] introduced a Bayesian formulation of the
Time (5) problem that built on the success of these algorithms with the

Fig. 8. This figure plots the estimated radial velocities (m/s) for a single targ%Eid'“O”m Pe”ef'ts Of_ (@) ropus_t”ess to unkn(_)wn densely dis-
from measured SAR imagery over 18 seconds at 0.25 second incremetithuted noise with noise statistics that can be inferred from the
Radial velocity, which is proportional to the interferometric phase of thgata, (b) convergence speeds in real applications of the mean

pixels from multiple antennas in an along-track SAR system, is estimated b . - R
computing the average phase of pixels within a region specified by the GF":é-lu'[Ion that are similar to those of the optlmlzatlon—based

given target state (position, velocity). We compare the estimation of radfarocedures, and (c) characterization of the uncertainty (i.e.,
velocity from the output of the Bayes SAR algorithm, from the raw imagegstimates of the posterior distribution) that could lead to im-

from the calibrated images (i.e, using the estimated calibration coefficientf)r ts i b t inf M the B .
and from two DPCA/ATI joint algorithms as described by Deming [8] ovements In subsequent interence. Vioreover, the bayesian

with phase/magnitude thresholds of (25 deg, 15 dB) and (25 deg, 30 d®rmulation is shown to be capable of generalization to cases
respectively. For fair comparisons, the DPCA/ATI thresholds are applied {phere additional information is available, e.g. spatial/Markov
the calibrated imagery, though this is a non-trivial step in general. The bIa8< d .
line provides the GPS-truth. ependencies.

SAR imagery collected from a staring sensor across multi-

. T(AE;'-)E v AR . ple passes, frames, and receive channels contains significant

ADIAL VELOCITY ESTIMATION (M/S) IN MEASURED DATASET. HE H . H

PROPOSED ALGORITHMBAYES SAR) HAS LOWER BIAS AND MSE, AS a_mount_s of redundant mformauon, which suggests that a I_ow—
WELL AS FEWER MISSED TARGETS AS COMPARED TO ALL OTHER dimensional representation for the clutter could be exploited

ALTERNATIVES. MOREOVER ALL ALGORITHMS EXCEPT'RAW’ REQUIRE  to jmprove GMTI algorithms. Indeed, algorithms such as
ADDITIONAL CALIBRATIONS BETWEEN ANTENNAS, EXCEPT THE .
PROPOSED ALGORITHM WHICH ESTIMATES CALIBRATION ConsTanTs S 1A alréady use a low-rank assumption in order to cancel
SIMULTANEOUSLY WITH THE TARGET RADIAL VELOCITY. ALSO, THE clutter. On the other hand, these algorithms depend on the
PROPOSED ALGORITHM HAS NEARLY APPROXIMATELY HALF THE ERROR ava_||ab|||ty of homogeneous target_free data, thresholds for

OF THEATI/DPCA ALGORITHMS WITHOUT REQUIRING TUNING OF phase/magnitude-based detection which may vary across the

THRESHOLDS
scene, and appropriate calibration across receive channels.
Algorithm | Bias | MSE | No. Missed Moreover, SAR-specific phenomena such as complex-valued
Raw 0.56 | 0.6 7 images, glints and speckle noise make it difficult to apply the
Calibrated | 060 | 091 0 previously developed RPCA methods for SAR GMTI.
Bayes SAR | 0.11 | 0.16 0 This work provides a Bayesian formulation similar to [4]
ATI/DPCA* | -0.06 | 0.32 57 that (a) directly accounts for SAR-specific phenomena, (b) in-
ATI/DPCA** | 0.17 | 0.24 5 cludes information available from staring SAR sensors (multi-

pass, multi-frame, and multi-antenna), and (c) characterizes
uncertainty by yielding a posterior distribution on the variables
is closest to the true radial velocity (among all ambiguows interest given the observed SAR images. Similar to Ding
choices). Note that given the region of test pixels, detecti@t al. [4], this algorithm requires few tuning parameters since
of target pixels and estimation of the interferometric phase ar®st quantities of interest are inferred directly from the data -
done independently of knowledge of the true state. this allows the algorithm to be robust to a large collection of
Figure 8 shows the estimated radial velocities for a singtgerating conditions. Moreover, the performance of the pro-
target over 18 seconds at 0.25 second increments. We compenged approach is analyzed over both simulated and measured
the estimation of radial velocity from the output of the Bayegatasets, demonstrating competing or better performance than
SAR algorithm, from the raw images, from the calibratethe RPCA algorithms and ATI/DPCA.
images, and from two DPCAV/ATI joint algorithms as described There are several research directions which could be used
by Deming [8] with phase/magnitude thresholds of (25 deg, 1% order to improve the methods described in this paper.
dB) and (25 deg, 30 dB) respectively. For fair comparisons, tiérst, the statistical model presented in this paper chose prior
DPCAJ/ATI thresholds are applied to the calibrated imagersgljstributions, such as the Multivariate-Normal-Inverse-Wishart
though this is a non-trivial step in general. Numerical resultsd Bernoulli-Beta distributions, for numerical efficiency.
are summarized in Table V. It is seen that the Bayes SAR practice, this worked reasonably well on the measured
algorithm outperforms the others in terms of MSE for botHataset. Moreover, these distributions have been applied to
targets. Moreover, the Bayes SAR algorithm never missesther Bayesian modeling problems [4], [5]. Nevertheless, one
target detection in this dataset, which is not the case for thray wish to understand the sensitivity to model mismatch
DPCA/ATI algorithms. Moreover, while the calibrated imageby analyzing performance over larger datasets. Additionally,
also never miss the target, there was significant bias and M&#ire work could explore the tradeoff between model fidelity
due to the inclusion of pixels that are ignored by the Bayesd computational burden. This could include generalizations
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to the model, such as complex target maneuvers, multiple] R. K. Raney and G. J. Wessels, “Spatial considerations in SAR speckle
target classes, and explicit tracking of the target phase, as well consideration,lEEE Transactions on Geoscience and Remote Sensing

hvsical del h ltiolicati ther th dditi vol. 26, no. 5, pp. 666-672, 1988.
as physical models such as multuplicatve, rather than addi 'Y?i] L. Borcea, T. Callaghan, and G. Papanicolaou, “Synthetic aperture radar

speckle noise. imaging and motion estimation via robust principle component analysis,”
This method provides a rich model that can combine spati@l arXiv preprint arxiv:1208.37002012.

. o . . . 8] A. S. Khwaja and J. Ma, “Applications of compressed sensing for
temporal, and kinematic information as well as infer nuisanCe” sar moving-target velocity estimation and image compressitEEE

parameters such as clutter distributions and antenna calibration Transactions on Instrumentation and Measurement. 60, no. 8, pp.

i 2848-2860, 2011.
errors. Nevertheless, this framework comes at the expens%g{ R. P. Perry, R. C. Dipietro, and R. L. Fante, “SAR imaging of moving

significant computational burden, especiglly as compargd 10 targets,” IEEE Transactions on Aerospace and Electronic Systems
methods such as DPCA and ATI. The inference algorithm vol. 35, no. 1, pp. 188-200, 1999.

is designed explicitly to be highly parallelizable and futur&9 S: Zhu. G. Liao, Y. Qu, Z. Zhou, and X. Liu, “Ground moving targets
9 P y ghly p imaging algorithm for synthetic aperture raddEEE Transactions on

WO_I’If should _explore ways to _Ut"iz_e this property in order t0  Geoscience and Remote Sensig. 49, no. 1, pp. 462-477, 2011.
efficiently estimate the posterior distribution. [21] B. Guo, D. Vu, L. Xu, M. Xue, and J. Li, “Ground moving target indica-

; g _ tion via multichannel airborne SARIEEE Transactions on Geoscience
Finally, future work will include the development of algo and Remote Sensingol. 49, no. 10, pp. 3753 -3764. Oct, 2011,

rithms that exploit the use of a posterior distribution for img2] J. Guo, z. F. Li, and Z. Bao, “Adaptive clutter suppression and resolving
proved performance in a signal processing task, e.g. detection, of velocity ambiguities for an experimental three-channel airborne

; et ; ; ; synthetic aperture radar-ground moving target indication systeadar,
tracking or classification. In particular, we are interested in Sonar & Navigation. IETvol. 5, no. 4, pp. 426-435, 2011,

using algorithms for simultaneously detecting and estimating) c. H. Gierull, “Statistical analysis of multilook SAR interferograms
targets over a sparse scene with resource constraints, as wellfor CFAR detection of ground moving targetdEEE Transactions on

s . Geoscience and Remote Sensiwg. 42, no. 4, pp. 691-701, 2004.
determining the fundamental performance limits of a SA§4] G. E. Newstadt, E. G. Zelnio’""gnd Ao, H;‘;’ I, “Moving target

target tracking system. inference with hierarchical Bayesian models in synthetic aperture radar
imagery,” Arxiv preprint arXiv:1302.4680Feb. 2013.
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