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Abstract— This work combines the physical, kinematic, and
statistical properties of targets, clutter, and sensor calibration as
manifested in multi-channel SAR imagery into a unified Bayesian
structure that simultaneously estimates (a) clutter distributions
and nuisance parameters and (b) target signatures required for
detection/inference. A Monte Carlo estimate of the posterior
distribution is provided that infers the model parameters directly
from the data with little tuning of algorithm parameters. Per-
formance is demonstrated on both measured/synthetic wide-area
datasets.

Index Terms—synthetic aperture radar, moving target detec-
tion, low-rank, hierarchical Bayesian models

I. I NTRODUCTION

This work provides an algorithm for inference in multi-
antenna and multi-pass synthetic aperture radar (SAR) im-
agery. Inference can mean many different things in this frame-
work, including detection of moving targets, estimation of the
underlying clutter distribution, estimation of the target radial
velocity, and classification of pixels. To this end, the output of
the proposed algorithm is an estimated posterior distribution
over the variables in our model. This posterior distribution
is estimated through Markov Chain Monte Carlo (MCMC)
techniques. Subsequently, the inference tasks listed above are
performed by appropriately using the posterior distribution.
For example, detection can be done by thresholding the
posterior probability that a target exists at any given location.

Recently, there has been great interest by Wright et al. [1],
Lin et al. [2], Candes et al. [3] and Ding et al. [4] in the so-
called robust principal component analysis (RPCA) problem
that decomposes high-dimensional signals as

I = L+ S +E, (1)

where I ∈ RN×M is an observed high dimensional signal,
L ∈ R

N×M is a low-rank matrix with rankr ≪ NM ,
S ∈ RN×M is a sparse component, andE ∈ RN×M is dense
low-amplitude noise. This has clear connections to image
processing whereL can be used to model the stationary back-
ground andS represents sparse (moving) targets of interest.
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Moreover, since the background image does not change much
from image to image, one would expect thatL would be low-
dimensional.

In [1]–[3], inference in this model is done by optimizing a
cost function of the form

argmin
L,S
‖L‖∗ + γ ‖S‖1 + (2µ)−1 ‖I −L− S‖F (2)

where‖·‖∗, ‖·‖1, and ‖·‖F denote the matrix nuclear norm
(sum of singular values), thel1 norm, and the Frobenius
norm, respectively. Sometimes, the last term is replaced by
the constraintI = L + S (i.e., the noiseless situation). In
this optimization objective, the nuclear norm promotes a low-
dimensional representation ofL, the l1 norm promotes a
sparseS, and the Frobenius norm allows for small model
mismatch in the presence of noise. One major drawback of
these methods involves finding the algorithm parameters (e.g.,
tolerance levels or choices ofγ, µ), which may depend on
the given signal. Moreover, it has been demonstrated that the
performance of these algorithms can depend strongly on these
parameters.

Bayesian methods by Ding et al. [4] have been proposed that
simultaneously learn the noise statistics and infer the low-rank
and sparse components. Moreover, they show that their method
can be generalized to richer models, e.g. Markov dependencies
on the target locations. Additionally, these Bayesian inferences
provide a characterization of the uncertainty of the outputs
through a Markov Chain Monte Carlo (MCMC) estimate of
the posterior distribution. The work by Ding et al. [4] is based
on a general Bayesian framework [5] by Tipping for obtaining
sparse solutions to regression and classification problems.
Tipping’s framework uses simple distributions (e.g., those
belonging to the exponential class) that can be described by
few parameters, known as hyperparameters. Moreover, Tipping
considers ahierarchy where the hyperparameters themselves
are assumed to have a known ‘hyperprior’ distribution. Of-
ten the prior and hyperprior distributions are chosen to be
conjugate. Conjugate distributions have the property that the
posterior and prior distributions have the same form, which
makes inference/sampling from these distributions simple..
Tipping provides insight into choosing the hyperparameter
distributions so as to be non-informative with respect to
the prior. This latter property is important in making it
possible to implement inference algorithms with few tuning
parameters. Finally, Tipping provides a specialization to the
‘relevance vector machine’ (RVM), which can be thought of
as a Bayesian version of the support vector machine. Wipf et
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al. [6] provides an interpretation of the RVM as the application
of a variational approximation to estimating the true posterior
distribution. Wipf et al. explains the sparsity properties of
the sparse Bayesian learning algorithms in a rigorous manner.
Additionally, it also provides connections with other popular
work in sparse problems, such as the FOCUSS and basis
pursuit algorithms.

In this work, we develop a framework for inference in
SAR imagery based on the algorithmic structure developed
by Ding et al [4]. Whereas Ding developed an algorithm
for inference in standard video imagery, this paper presents
the following non-trivial extensions in order to incorporate
SAR specific phenomena: (a) we consider complex-valued
data rather than real-valued intensity images; (b) we model
correlated noise sources based on physical knowledge of SAR
phase history collection and image formation; (c) we relax the
assumption of a low-rank background component by assuming
that the background component lies in a low-dimensional
subspace; and (d), we directly model SAR phenomenology by
including terms for glints, speckle contributions, antenna gain
patterns, and target kinematics. Moreover, we demonstrate the
performance of the proposed algorithm on both simulated and
measured datasets, showing competitive or better performance
in a variety of situations.

Inference in SAR imagery is more complicated than that of
standard electro-optical images. Examples of these complexi-
ties include

• SAR images have complex-valued rather than real-valued
intensities, and the SAR phase information is of great
importance for detection and estimation of target states.
[7]–[9].

• SAR images are corrupted by spatiotemporally-varying
antenna gain/phase patterns that often need to be esti-
mated from homogeneous target-free data [10], [11].

• SAR images have spatially-varying clutter that can mask
the target signature unless known a priori or properly
estimated [12].

• SAR images contain motion-induced displacement and
diffusion of the target response [7], [13].

• SAR images include multiple error sources due to radar
collection and physical properties of the reflectors, such
as angular scintillation (a.k.a. glints) [14] and speckle
[15], [16].

Despite these complications, a great deal of structure exists in
SAR images that can be leveraged to provide stronger SAR
detection and tracking performance. This includes (a) using the
coherence between multiple channels of an along-track radar
in order to remove the stationary background (a.k.a, ‘clutter’),
(b) assuming that pixels within the image can be described
by one (or a mixture) of a small number of object classes
(e.g., buildings, vegetation, etc.), and (c) considering kinematic
models for the target motion such as Markov smoothness
priors. From this structure in SAR imagery, one might consider
models that assume that the clutter lies in a low-dimensional
subspace that can be estimated directly from the data. Indeed,
recent work Borcea et al. [17] has shown that SAR signals
can be represented as a composition of a low-rank component

containing the clutter, a sparse component containing the target
signatures, and additive noise.

In general, SAR images are formed by focusing the response
of stationary objects to a single spatial location. Moving
targets, however, will cause phase errors in the standard forma-
tion of SAR images that cause displacement and defocusing
effects. Most methods designed to detect the target depend
on either (a) exploiting the phase errors induced by the SAR
image formation process for a single phase center system or
(b) canceling the clutter background using a multiple phase
center system. In this work, we provide a rich model that can
combine (and exploit) both sources of information in order to
improve on both methodologies.

Fienup [7] provides an analysis of SAR phase errors induced
by translational motions for single-look SAR imagery. He
shows that the major concerns are (a) azimuth translation
errors from range-velocities, (b) azimuth smearing errors due
to accelerations in range, and (c) azimuth smearing due to ve-
locities in azimuth. Fienup also provides an algorithm for de-
tecting targets by their induced phase errors. The algorithm is
based on estimating the moving target’s phase error, applying a
focusing filter, and evaluating the sharpness ratio as a detection
statistic. Jao [13] shows that given both the radar trajectory and
the target trajectory, it is possible to geometrically determine
the location of the target signature in a reconstructed SAR
image. Although the radar trajectory is usually known with
some accuracy, the target trajectory is unknown. On the other
hand, if the target is assumed to have no accelerations, Jao
provides an efficient FFT-based method for refocusing a SAR
image over a selection of range velocities. Khwaja and Ma [18]
provide a algorithm to exploit the sparsity of moving targets
within SAR imagery; they propose a basis that is constructed
from trajectories formed from all possible combinations of a
set of velocities and positions. To combat the computational
complexity of searching through this dictionary, the authors
use compressed sensing techniques. Instead of searching over
a dictionary of velocities, our work proposes to use a prior
distribution on the target trajectory that can be provided a
priori through road and traffic models or adaptively through
observations of the scene over time.

The process of removing the stationary background in order
to detect moving targets is known in the literature as ’change
detection’ or ’clutter suppression.’ Generally, these methods
require multiple views of the scene from either multiple
receive channels or multiple passes of the radar. Moreover,
they are based on the assumption that stationary targets will
have nearly identical response when viewed at different times
from the same viewpoint. In contrast, moving targets will
exhibit a phase difference (namely the ‘interferometric’ phase)
and thus can be detected as outliers. Another interpretation is
that the stationary component (i.e., the clutter) lies in a low-
dimensional subspace. Thus, the moving components can be
detected by projecting the image into the null space of the
clutter and appropriately thresholding the output.

There are several common methods for change detection
with multiple looks, including displaced phase center array
(DPCA) processing, space-time adaptive processing (STAP),
and along-track interferometry (ATI). In DPCA, one thresholds
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the difference image between two looks of the radar at
slightly different times. However, the performance of DPCA
(as well as STAP discussed shortly) suffers in the presence
of heterogeneous clutter, such as strong returns from building
edges. Whereas DPCA is a linear filter, ATI thresholds dif-
ferences in the interferometric phase between the two images.
Moreover, the phase responses of heterogeneous clutter tend to
be insensitive to clutter amplitude and can thus be effectively
removed by using ATI. Deming [8] analyzes both DPCA and
ATI, showing that ATI performs well when canceling bright
clutter, while DPCA performs well for canceling dim clutter.
Moreover, he provides a joint algorithm that uses ATI to cancel
strong discretes in the image and subsequently uses DPCA
to remove small-amplitude clutter. In this paper, we compare
our detection results to this joint DPCA-ATI algorithm and
demonstrate competitive results, though our algorithm does
not require setting thresholds on the phase/amplitude and also
provides the probability of detection (as opposed to a binary
output.)

STAP, like DPCA, is a linear filter for detecting moving
targets from multiple looks that has been applied successfully
to SAR [12]. However, STAP considers the case whereN > 2
receive channels are available. The algorithm uses a single
channel to estimate the stationary background, while the
remaining(N − 1) channels are used to estimate the moving
component. Moreover, STAP is a matched filtering technique
that adaptively chooses weights in order to project the data
onto the null space of the clutter. Under ideal circumstances,
STAP has the maximum signal-to-inference-and-noise-ratio
(SINR) among linear filters [12]. However, STAP relies on
estimating the complex-valued covariance matrix of theN -
channel system, which in turn depends on the availability
of homogeneous target-free secondary data. In this work, we
simultaneously estimate the clutter covariance matrices as well
as the target contributions. Thus, we demonstrate the capabil-
ity to detect targets even in the presence of heterogeneous
measurements.

Ranney and Soumekh [10], [11] develop methods for change
detection from SAR images collected at two distinct times that
are robust to errors in the SAR imaging process. They address
error sources including inaccurate position information, vary-
ing antenna gains, and autofocus errors. They propose that the
stationary components of multi-temporal SAR images can be
related by a spatially-varying 2-dimensional filter. To make the
change detection algorithm numerically practical, the authors
propose that this filter can be well-approximated by a spatially
invariant response within small subregions about any pixel in
the image. This work adopts this model for the case where
there are no registration errors. Under a Gaussian assumption
for the measurement errors, it can be shown that the maximum
likelihood estimate for the filter coefficients can be computed
easily through simple least squares.

Ground Moving Target Indication (GMTI) methods involve
the processing of SAR imagery to detect and estimate moving
targets. Often clutter cancellation and change detection play a
preprocessing role in these algorithms [19]–[22]. This work
aims to combine properties of many of these algorithms
into a unifying framework that simultaneously estimates the

target signature and the nuisance parameters, such as clutter
distributions and antenna calibrations.

The framework that is proposed in this paper contains a
detailed statistical model of SAR imagery with many model
variables that are jointly estimated through MCMC methods. It
is natural to ask why such machinery is required for SAR infer-
ence when there are already (a) methods for MCMC inference
in standard electro-optical imagery, and (b) simpler methods
for SAR inference. As mentioned above, it is the authors’
argument that there are sufficient complications with SAR
imagery that make it difficult to use the former algorithms.
Moreover, while there are indeed many simpler methods for
SAR inference, these algorithms generally (a) are not robust
to operating conditions and (b) do not provide estimates of
their uncertainty. For example, thresholds in displaced phase
center array (DPCA) processing will often need to be changed
drastically depending on the radar conditions. Additionally,
change detection algorithms such as DPCA provide a 0-1
output (i.e., either the target is detected or not). In contrast, the
output in our framework is the probability of target existence.

Another key motivation for using a Bayesian formulation
is the capability to readily impose additional structure when
additional information sources are available. In particular, we
consider the following two important information sources for
localizing targets in SAR imagery: (a) multiple passes of
the radar and (b) images formed from frame to frame (i.e.,
sequentially in time). In the former case, multiple passes of
the radar are used to determine what the ”normal” background
should look like in order to detect anomalies in other passes.
This is particularly useful in detectingstationary outliers,
which cannot be detected by standard GMTI methods. In the
latter case, it is desirable to account for the correlation of
targets who occupy similar locations in subsequent images
as well as spatially within a single frame. We impose this
structure through spatial and temporal Markov properties on
the sparse component.

The goal of this work is two-fold. First, we present a
unifying Bayesian formulation that incorporates SAR-specific
phenomena such as glints, speckle noise, and calibration
errors, and is additionally able to include information from
multiple passes of the radar and multiple receive channels.
Second, we offer an inference algorithm through MCMC
methods in order to estimate the posterior distribution given
the observed SAR images. This posterior distribution can then
be used for the desired inference task, such as target detection
and/or estimation of the underlying clutter distribution.

The rest of the paper is organized as follows: The algorith-
mic structure is given in Section II. Notation is presented in
Section III and the image model is provided in IV. Markov,
spatial, and/or target kinematic extensions are discussed in
Section V. The inference algorithm is given in Section VI.
Performance is analyzed over both simulated and measured
datasets in Section VII. We conclude and point to future work
in Section VIII.

II. A LGORITHMIC STRUCTURE

For clarity, in this section we provide the basic structure of
the algorithm described by this paper. The algorithm works as
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Fig. 1. SAR image setsIf,i from i = 1, 2, . . . , N passes andf =
1, 2, . . . , F azimuth angles are collected in a multidimensional array. Each
SAR image set consists ofK images (each withP pixels) collected at
different receive channels.

follows

1) SAR images sets are collected fromN independent
passes of the radar and fromF azimuth ranges (i.e.,
with different azimuth angles). Each image set consists
of K images (each withP pixels) collected from one
of K receive channels (or antennas). Subsequently, the
images (If,i) are arranged in a multidimensional array
indexed by their passi and frame (azimuth range)f .
This multidimensional array is shown in Figure 1.

2) A generic model is proposed that decomposes the SAR
imagesIf,i into low-rank, sparse, noise, and calibration
components. Moreover, the low-rank and sparse com-
ponents are decomposed into SAR-specific components
that include speckle, glints, and moving targets.

3) A prior probability distribution is proposed for each
type of pixel class (speckle, glints, etc.). Note that any
individual pixel may be a mixture of these classes. Each
probability distribution depends on various distribution
parameters (e.g. the mean parameter of a Gaussian
random variable). We propose a model where these
parameters are also estimated from the data using so-
called conjugate priors. These priors can be specified in
a standard way [5] in order to be non-informative and
to not require tuning.

4) Given the prior distributions in the previous step, the
posterior distribution for the model parameters is de-
rived, given the imagesIf,i. This posterior distribution
is then estimated through a Markov Chain Monte Carlo
(MCMC) method, namely the Gibbs Sampler.

5) Finally, the posterior distribution is provided which can
be used for various tasks such as

• Detection of moving targets and estimation of their
radial velocity.

• Determination of the clutter distribution (which can
subsequently be used for STAP, even in the presence
of heterogeneous noise).

• Sensor fusion and/or efficient allocation of sensing
resources.

III. N OTATION

Available is a set of SAR images of a region formed from
multiple passes of an along-track radar platform with multiple
antennas (i.e., phase centers.) Moreover, images are formed

over distinct azimuth angle ranges that can be indexed by the
frame number,f . Table I provides the indexing scheme used
throughout this paper in order to distinguish between images
from various antennas, frames, and/or passes. Table II provides
a list of indexing conventions used to denote collections of
variables.

TABLE I
INDEX VARIABLE NAMES USED IN PAPER

Index Description Index Variable Range

Antenna (channel) k 1, 2, . . . , K

Frame (azimuth angle) f 1, 2, . . . , F

Pass i 1, 2, . . . , N

Pixel p 1, 2, . . . , P

TABLE II
OUR DATA INDEXING CONVENTIONS

Variable Convention Description

i
(p)
k,f,i

Standard
Value at pixelp, antennak,

and framef , passi

i
(p)
f,i

Underline
Values at pixelp, framef ,

and passi over all antennas

i
(p)
f,1:N

Lower-case, Values at pixelp and framef

Boldface over all antennas and passes

If,i
Upper-case Values over all pixels and

Boldface antennas at framef and passi

I
Upper-case, Values over all pixels, antennas,

Boldface, No Indices frames, and passes

We model the complex pixel values in SAR images with
the complex-normal distribution, where we use the notation

w ∼ CN (0,Γ) (3)

whereCN (µ,Γ) represents the complex-Normal distribution
with meanµ and complex covariance matrixΓ, and ~w is ran-
dom vector ofK complex-values (from each ofK antennas.)
Specifically, we directly model the correlations of pixel values
among theK antennas (receive channels) through the complex
covariance matrixΓ.

IV. SAR IMAGE MODEL

We propose a decomposition of SAR images at each frame
f and passi as follows

If,i = Hf,i ◦ (Lf,i + Sf,i + Vf,i) , (4)

whereHf,i is a spatiotemporally-varying filter that accounts
for antenna calibration errors,Lf,i is a low-dimensional repre-
sentation of the background clutter,Sf,i is a sparse component
that contains the targets of interest,Vf,i is zero-mean additive
noise, and◦ denotes the Hadamard (element-wise) product.
Each of these components belongs to the spaceCP×K .

As discussed earlier, this decomposition may be appropri-
ate for SAR imagery where stationary (clutter) features in
the scene don’t change much from frame-to-frame, pass-to-
pass, and antenna-to-antenna. The remainder of this section
discusses the model in detail. Figure 2 shows a graphical
representation of the model.
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Fig. 2. This figure provides a simplified graphical model associated with
proposed SAR image model. The shaded shape represents the observed
random variable. The circles represent the basic parameters of the model,
while the dashed lines represent hyperparameters that are also modeled as
random variables.

A. Low-dimensional component,Lf,i

We propose a decomposition of the low-rank component as

Lf,i = Bf +Xf,i, (5)

whereBf is the inherent background that is identical over
all passes,Xf,i is the speckle noise component that arises
from coherent imaging in SAR. Posner [15] and Raney [16]
describe speckle noise, which tends to be spatially correlated
depending on the texture of the surrounding pixels.

Gierull [23] shows that the quadrature components of SAR
radar channels are often modeled as zero-mean Gaussian
processes. However, in the presence of heterogeneous clutter
(such as in urban scenes), one must consider spatially-varying
models where the clutter variance changes across radar cells.
Additionally, speckle noise is usually multiplicative in nature
wherein higher amplitude clutter produces higher variance
noise. In this work, we approximate this multiplicative prop-
erty by allowing the speckle/background distributions to vary
spatially. This additive formulation lessens the computational
burden, while empirical evidence suggests that the approxima-
tion is reasonable.

To account for this spatial variation, this model assumes
that each background pixel can be defined by one ofJ classes
that may be representative of roads, vegetation, or buildings
within the scene. These classes are learned directly from the
data so that their distributions (i.e., covariance matrices) do
not need to specified a priori. Moreover, while there may be
many different pixel classes, one can reasonably model the
data withJ ≪ P , whereP is the number of pixels in the
measured images. In other words, one generally only requires
a relatively small number of classes (distributions) to describe
the clutter. To this end, we put a multinomial model on each
object class

c(p) =
{

c
(p)
j

}J

j=1
∼ Multinomial(1; q1, q2, . . . , qJ) (6)

whereqj is the prior probability of thej-th object class. Then
the class assignmentC(p) is the single location inc with value
equal to one. We use a hidden Markov model dependency

that reflects that neighboring pixels are likely to have the
same class. The classC(p) defines the distribution of the pixel
p, where we specifically model the background and speckle
components respectively as complex-normal distributed:

b
(p)
f ∼ CN

(

0,ΓC(p)

B

)

, x
(p)
f,i ∼ CN

(

0,ΓC(p)

X

)

(7)

Note that the class type specifies the distribution of the
pixels and each vector ofK values (e.g. backgroundb(p)f or

specklex(p)
f,i ) is drawn independently from that distribution.

These prior distributions are constructed so that the pixels
are conditionally independent given the pixel classes. This
independence assumption allows for numerical efficiency in
the inference algorithm. Moreover, pixels still maintain a cor-
relation through (a) the determination of the pixel classification
(i.e., through the hidden Markov model) and (b) the definition
of the class distribution (i.e., the covariance matrices.)

B. Sparse component,Sf,i

The sparse component contains two components: a specular
noise (glint) component and a target component. We consider
a shared sparsity model, wherein glint/target components are
present in one antenna if and only if they are present in the
other antennas. Moreover, glints are known to have a large
angular dependence, in the sense that the intensity of the glint
dominates in only a few azimuth angles. Thus, the indicators
for glints are assumed to persist across all passes. The sparse
component is modeled as

Sf,i =
(

∆
G
f,1:N ⊗ 1

T
K

)

◦Gf,i +
(

∆
M
f,i ⊗ 1

T
K

)

◦Mf,i, (8)

whereGf,i ∈ CP×K is the specular noise (glints) component
with associated indicator variables∆G

f,1:N ∈ {0, 1}
P , Mf,i ∈

CP×K is the (moving) target component with associated
indicator variables∆M

f,i ∈ {0, 1}
P , 1K is the all ones vector of

sizeK × 1, and⊗ is the Kronecker product. The Kronecker
product is used to denote the shared sparsity across receive
channels. Once again, we assume that the glints and target
components are zero-mean complex-normal distributed with
covariancesΓG andΓM , respectively.

The indicator variableδz,(p) at pixelp, wherez is represen-
tative of eitherg (glints) or m (moving targets), is modeled
as

δz,(p) ∼ Bernoulli(πz,(p)), (9)

πz,(p) ∼ Beta(aπ , bπ) (10)

Whereas the Gaussian distribution is a natural choice for
continuous random variables, the Bernoulli distribution with
parameterπ is a natural choice for indicator variables, where
π denotes the probability that the random variable is equal
to one. Moreover, the Beta distribution is often used (as in
[4]) to account for uncertainty inπ. In sparse situations, we
would generally expect thatπ ≪ 1. In this model, a sparseness
prior is obtained by settingaπ/[aπ + bπ] ≪ 1. Alternatively,
we can introduce additional structure in our model by letting
aπ and bπ depend on previous frames (temporally) and/or
neighboring pixels (spatially). This is particularly useful for
detecting multi-pixel targets that move smoothly through a
scene. Section V discusses this modification in greater detail.
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C. Distribution of quadrature components

Many SAR detection algorithms rely on the ability to
separate the target from the background clutter by assuming
that the clutter lies in a low-dimensional subspace of the
data. Consider a random vector of complex variablesw ∼
CN (0,Γ) where w is representative ofb (background),x
(speckle),g (glints) or m (targets.) Under the assumptions
that (a) the quadrature components of each antenna are zero-
mean normal with varianceσ2 and (b) the correlation among
componentswm andwn is given byρe−jφmn , thenΓ can be
shown to have the form

Γ = σ2











1 ρe−jφ12 · · · ρe−jφ1K

ρejφ12 1 · · · ρe−jφ2K

...
...

. . .
...

ρejφ1K ρejφ2K · · · 1











, (11)

where σ2 is the channel variance,ρ is the coherence
between antennas, and{φnm}n,m are the interferometric phase
differences between the antennas1. In an idealized model with
a single point target, the interferometric phasesφmn can be
shown to be proportional to the target radial velocity [8]. In
images containing only stationary targets (i.e., the background
components whereφmn = 0), the covariance matrix has a
simpler form:

Γbackground = σ2
(

(1− ρ)IK×K + ρ1K1
T
K

)

(12)

whereIK×K is theK ×K identity matrix and1K is the all-
ones vector of lengthK. When there is no correlation among
the antennas (ρ = 0), this reduces to a scaled identity matrix.
In other cases, this covariance matrix provides a way to capture
direct correlations among the antennas.

When the covariance matrixΓ of a multivariate Gaussian
distribution is not known a priori, a common choice for a
prior distribution is its conjugate prior, the Inverse-Wishart
distribution. This distribution is characterized by the mean
covariance and its prior weight (i.e., how strongly to weight
the prior). In this paper, we use a modification to the standard
model where (a) the channel variance is estimated separately
from the structure of the correlation matrix, and (b) the corre-
lation matrix mean depends on another random parameter, the
correlation coefficientρ. This additional structure aligns well
with the literature that relies on strong correlations among
antennas (specifically for clutter and speckle). Moreover, this
model separates the learning of the channel varianceσ2, which
we have no a priori knowledge about, from the learning of the
correlation structure, denotedΓρ. The specific model is given
by

w ∼ CN
(

0, σ2
Γρ

)

(13)

Γρ ∼ InvWishart
(

aΓ((1 − ρ)IK×K + ρ1K1
T
K), νΓ

)

(14)

σ2 ∼ InvGamma(aσ, bσ) (15)

ρ ∼ Beta(aρ, bρ) (16)

1A more general model could account for different channel variance and
coherence values, but since we use the calibration constantsHf,i to equalize
the channels, the effect was seen to be relatively insignificant.

where aσ = bσ = 10−6 as suggested by Tipping [5] to
promote non-informative priors,(aρ, bρ) are chosen so that
ρ ≈ 1 to ensure a high coherence among the background
components,νΓ is a parameter that controls how strongly to
weight the prior covariance matrix, andaΓ is chosen so that
E[Γρ] = (1− ρ)IK×K + ρ1K1

T
K . In this work,νΓ is chosen

to be large in order to reflect our belief thatσ2
Γρ should be

close to equation (12).

D. Calibration filter,Hf,i

The calibration constants are assumed to be constant within
small spatial regionsp ∈ Zg, though they may vary as a
function of antenna, frame, or pass. In particular, we let

h
(p)
k,f,i = zk,f,i(g), ∀p ∈ Zg, (17)

zk,f,i(g) ∼ CN (1, (σH)2) (18)

where we note that if the number of pixels in classg, |Zg|, is
large, then maximum likelihood inference in this case yields
the least-squares solution.

V. M ARKOV /SPATIAL/KINEMATIC MODELS FOR THE

SPARSE COMPONENT

A. Indicator probability models

This model contains multiple indicator variables with prior
probabilities distributed asBeta(aπ, bπ). Moreover, sparsity
is obtained whenaπ/[aπ + bπ] ≪ 1. Alternatively, we can
introduce additional structure in our model by lettingaπ and
bπ depend on previous frames (temporally) and/or neighboring
pixels (spatially). This is especially useful for detecting multi-
pixel targets that move smoothly through a scene.

DefineWM (p,∆M
f,i) to be a function that maps the indica-

tor variables∆M
f,i to a real number. For example, this may be

the average number of non-zero indicators in the neighborhood
of pixel p, or a weighted version that puts higher value on
neighboring pixels. Forf = 1, we let
[

aM1,i(p)
bM1,i(p)

]

=

{

[aH bH ]T , WM (p,∆M
1,i) > εMspatial,

[aL bL]
T , else,

(19)
and forf > 1

[

aMf,i(p)

bMf,i(p)

]

=











[aH bH ]T , WM (p,∆M
f,i) > εMspatial and

WM (p,∆M
f−1,i) > εMtemporal,

[aL bL]
T , else.

(20)
In this paper, we choose(aL, bL, aH , bH) so thataL/(aL +
b+L)≪ 1 andaH/(aH + b+H)≫ 0. A similar model can
be introduced for the probabilities of the glints.

B. Target kinematic model

In some applications, such as target tracking or sequential
detection, we may have access to an estimate of the kinematic
state of the target(s) of interest, such as position, velocity and
acceleration. This could be provided separately, or one might
consider a joint estimation problem where target kinematics
are being simultaneously estimated with the image model. The
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Procedure 1Gibbs Sampling Pseudocode

procedure {Θ}i=1:Nsamples
= SARGibbs(Θ0, I)

Θ← Θ0

for iteration = 1 to Nburnin +Nsamples do
Sample∼ f

(

B,X,G,M ,∆G,∆M |I,−
)

//Base
Sample∼ f (H |I,−) //Calibration filter
Sample∼ f (C|I,−) //Class assignment
Sample∼ f (η|I,−) //Hyper-parameters
Θiteration−Nburnin

← Θ if iteration > Nburnin

end for
end procedure

target state estimate at any particular time could also be useful
for predicting the location of the target at sequential frames.
For simplicity, consider a single target at timeτ whose state
ξ(τ) = (r(τ), ṙ(τ)) is known with standard errorsΣξ(τ).
Note that the uncertainty model for(r, ṙ) may be (a) known a
prior from road maps or traffic behavior patterns, or (b) learned
adaptively using some signal processing algorithm such as the
Kalman or particle filters.

In standard SAR image formation, moving targets tend to
appear displaced and defocused as described by Fienup [7] and
Jao [13]. Moreover, Jao showed that given the radar trajectory
(q, q̇) and the target trajectory(r, ṙ), one can predict the
location of the target signature within the imagep by solving
a system of equations that equate Doppler shifts and ranges,
respectively, at each pulse:

d

dτ
[‖p− q(τ)‖2 − ‖r(τ)− q(τ)‖2]p=p∗

= 0 (21)

‖p∗ − q(τ)‖2 = ‖r(τ)− q(τ)‖2 , (22)

which can be reduced to the simpler system of equations:

q̇(τ) · [p∗ − q(τ)] = [ṙ(τ) − q̇(τ)] · [r(τ) − q(τ)] (23)

‖p∗ − q(τ)‖2 = ‖r(τ)− q(τ)‖2 (24)

The probable locations of the target can be predicted by one
of several methods, including:

• Monte Carlo estimation of the target posterior density.
• Gaussian approximation using linearization or the un-

scented transformation to approximate the posterior den-
sity

• Analytical approximation.

Given an estimate of the posterior density, we can modify
the functionWM described in the previous section to include
dependence on this kinematic information. Details of the
posterior density estimation are provided in the technical
report [24].

VI. I NFERENCE

In this section, we provide details on estimating the poste-
rior distribution of the model parameters given the observed
SAR images. Given the estimate of the posterior distribution,
one can then perform that appropriate desired task, such as
detection of moving targets and/or estimation of the clutter
distribution. In the former task, this can be done simply by

thresholding the probability of the target indicators. In the
latter task, the posterior distribution could specify a confidence
interval (or region) for the parameters of interest (such as the
covariance matrices and the pixel classification probabilities).

Generally, estimating the posterior distribution on this
model would be a very difficult task due to the large number
of variables and the dependence among them. In particular,
we use a Markov Chain Monte Carlo (MCMC) algorithm in
the form of a Gibbs sampler to iteratively estimate the full
joint posterior. In MCMC, this distribution is approximated by
drawing samples iteratively from the conditional distribution of
each (random) model variable given the most recent estimate
of the rest of the variables (which we denote by−) [25]. Let
Θ =

{

B,X,G,M ,∆G,∆M ,H ,C,η
}

represent a current
estimate of all of the model variables whereη represents
the set of all hyper-parameters. Given measurementsI, the
inference algorithm is given in Procedure 1. Note that MCMC
algorithms require a burn-in period, after which the Markov
chain has become stable. The duration of the burn-in period
depends on the problem and is discussed in more detail
below. After the Markov chain has become stable, we collect
Nsamples samples that represent the full joint distribution. Full
details of the sampling procedures are given in the technical
report [24].

This model requires estimation of a base layer (i.e. the
direct random variables given in equations (4), (5), and (8)),
the parameters of the distributions of the base layer (i.e. the
covariance matrices and probabilities), and the global param-
eters (i.e., the clutter class assignments and the calibration
filter coefficients.) To combat this numerical intractability, this
model was constructed in a specific way such that (a) the
hyper-parameters of the base layer were chosen to be conjugate
to the base layer, and (b) the posterior distribution of the base
layer is conditionally independent across pixels/frames given
the other parameters. The former property allows for efficient
sampling of the posterior distribution in the sense that we can
sample exactly from these distributions. The latter property
allows for simple parallelization of the sampling procedure
over the largest dimensions of the state.

Moreover, the sampling procedures for the hyper-parameters
tend to require sufficient statistics that are of significantly
smaller dimension and thus more desirable from a compu-
tational viewpoint. For example, sampling of the covariance
matrix Γ

M depends only on aK × K sample covariance
matrix. It should be noted that sampling of the covariance ma-
trices requires additional effort in order to constrain its shape
to that of equation (11). In particular, we use a Metropolis-
Hastings step , which can be easily done by noting that the
posterior densityf(ΓW , ρW , (σ2)W |W ) is proportional to an
Inverse-Wishart distribution. Details specific to inference in
this model are provided in the technical report [24]. For a
formal presentation of Monte Carlo methods, including Gibbs
samplers and Metropolis-Hastings, the authors suggest reading
[25].

The computational complexity of this MCMC method is
characterized both by the computational burden of a single
iteration in the sampling process as well as the number of
required iterations for burn-in and subsequent sampling. The
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TABLE III
PARAMETERS OF SIMULATED DATASET

Parameter Value

Pixels in image,P P = 100 × 100

Number of frames per pass,F F = 1

# of antennas,K K = 3

# of passes,N N ∈ {5, 10, 20}

# of target pixels/image,Ntargets Ntargets = 20

Clutter of background,ρ ρ ∈ {0.9, 0.99, 0.999, 0.9999}

Variance of targets,σ2
target σ2

target = 1

Variance of background
Either σ2

dim
= σ2

clutter
/100

or σ2
bright

= σ2
clutter

Signal-to-noise-plus clutter (SCNR)
SCNR

△
=

σ2
target

σ2
clutter

+σ2
noise

∈ {0.1, 0.5, 1, 2}

0.075

0

(a) L+ S

0.075

0

(b) L

0.075

0

(c) S

Fig. 3. This figure provides a sample image used in the simulated dataset
for comparisons to RPCA methods, as well as its decomposition into low-
dimensional background and sparse target components. This low SCNR image
is typical of measured SAR images. Note that the target is randomly placed
within the image for each ofN passes. In some of these passes, the target is
placed over low-amplitude clutter and can be easily detected. In other passes,
the target is placed over high-amplitude clutter, which reduces the capability
to detect the target.

former step is highly parallelizable and can be accomplished
efficiently even for large images and multiple passes. In our
experience, the required computation time was on the same
order as the time required to form the images from the raw
phase histories (which generally scales asO(P 2 logP ), where
P is the number of pixels in the image.) Moreover, similar
to related work [4], our experience has shown that the mean
of the posterior distribution converges quickly with just a few
iterations of the MCMC algorithm. Due to the parallelizability
of the problem, this algorithm could potentially benefit greatly
by computation on GPU’s where parallelization is built-in.

VII. PERFORMANCE ANALYSIS

A. Simulation

We first demonstrate the performance of the proposed
algorithm, which we refer to as the Bayes SAR algorithm,
on a simulated dataset. Images were created according to the

TABLE IV
COMPARISON OF PROPOSED METHOD(BAYES SAR) TO RPCA METHODS

WITH N = 20, F = 1, K = 3. NOTE THAT THE BAYES SAR METHOD
PERFORMS ABOUT TWICE AS WELL AS EITHER OF THERPCAMETHODS

FOR ALL CRITERIA. THE BAYES SAR METHOD ALSO PRODUCES A SPARSE

RESULT. STANDARD ERRORS ARE PROVIDED IN PARENTHESES.

(a) Bayes SAR

SCNR Coh.
‖L−L̂‖

2
‖L‖2

‖S−Ŝ‖
2

‖S‖2

‖S−Ŝ‖
0

‖S‖0

10% .900 .058 (.001) .639 (.134) .664 (.234)
10% .9999 .048 (.005) .414 (.036) .365 (.042)
100% .900 .056 (.001) .155 (.015) .152 (.009)
100% .9999 .053 (.003) .121 (.008) .097 (.017)
200% .900 .057 (.001) .122 (.011) .145 (.043)
200% .9999 .053 (.005) .117 (.016) .094 (.009)

(b) Opt. RPCA

SCNR Coh.
‖L−L̂‖

2
‖L‖2

‖S−Ŝ‖
2

‖S‖2

‖S−Ŝ‖
0

‖S‖0

10% .900 .113 (.006) 3.22 (.19) 110.9 (1.5)
10% .9999 .113 (.006) 3.20 (.16) 108.8 (2.4)
100% .900 .112 (.006) 1.20 (.07) 109.7 (1.9)
100% .9999 .113 (.008) 1.20 (.08) 107.9 (2.3)
200% .900 .116 (.010) 1.08 (.09) 110.3 (2.6)
200% .9999 .110 (.003) 1.04 (.03) 108.7 (2.6)

(c) Bayes RPCA

SCNR Coh.
‖L−L̂‖

2
‖L‖2

‖S−Ŝ‖
2

‖S‖2

‖S−Ŝ‖
0

‖S‖0

10% .900 .119 (.018) 1.04 (.08) 3.96 (.49)
10% .9999 .116 (.022) 1.08 (.22) 3.91 (.54)
100% .900 .126 (.029) .768 (.082) 3.72 (.88)
100% .9999 .125 (.023) .754 (.061) 3.68 (.63)
200% .900 .135 (.030) .735 (.146) 3.93 (.95)
200% .9999 .134 (.028) .703 (.067) 3.86 (.82)

model given in Section IV with parameters given in Table
III. The low-dimensional component was divided into one of
two classes (‘dim’ or ‘bright’). Pixels were deterministically
assigned to one of these classes to resemble a natural SAR im-
age (see Figure 3). The sparse component included a randomly
placed target with multiple-pixel extent. A spatiotemporally
varying antenna gain filter was uniformly drawn at random on
the range[0, 2π) for groups of pixels of size25× 25. Lastly,
zero-mean IID noise was added with varianceσ2

noise.
The Bayes SAR model is applied to infer the low-

dimensional componentLf,i and sparse target componentSf,i

with estimates denoted̂Lf,i and Ŝf,i, respectively. Hyperpa-
rameters of the model are chosen according to the Section
VI. Results are given by the mean of MCMC inference with
500 burn-in iterations followed by 100 collection samples. We
consider three metrics to evaluate the reconstruction errors:
‖L−L̂‖

2

‖L‖2
,
‖S−Ŝ‖

2

‖S‖2
,
‖S−Ŝ‖

2

‖S‖0
, where the norm is taken over

the vectorized quantities.
In comparison to the Bayes SAR model, results are given

for state-of-the-art algorithms for Robust Principal Component
Analysis (RCPA): an optimization-based approach proposed
by Wright et al. [1] and Candes et al. [3] and a Bayesian-based
approach proposed by Ding et al. [4]2. The optimization-based

2For the optimization-based approach, we used the exactalm rpca package
(MATLAB) by Lin et al. [2], downloaded from http://watt.csl.illinois.edu/
perceive/matrix-rank/home.html. For the Bayesian-based approach, we used
the Bayesian robust PCA package, downloaded from http://www.ece.duke.
edu/∼lihan/brpca code/BRPCA.zip.



9

Fig. 4. This figure compares the relative reconstruction error of the target component,
‖S−Ŝ‖

2
‖S‖2

, as a function of algorithm, number of passesN , coherence
of antennasρ, and signal-to-clutter-plus-noise ratio (SCNR). From top-to-bottom, the rows contains the output of the Bayes SAR algorithm (proposed), the
optimization-based RPCA algorithm [1], [3], and the Bayes RPCA algorithm [4]. From left-to-right, the columns show the output forN = 5, N = 10, and
N = 20 passes (withF = 1 frames per pass). The output is given by the median error over 20 trials on a simulated dataset. It is seen that in all cases, the
Bayes SAR method outperforms the RPCA algorithms. Moreover, the Bayes SAR algorithm performs better if either coherence increases (i.e., better clutter
cancellation) or the SCNR increases. On the other hand, the performance of the RPCA algorithms does not improve with increased coherence, since these
algorithms do not directly model this relationship.

approach requires a tolerance parameter which is related to
the noise level, as suggested by Ding et al. [4]. We chose this
parameter in order to have the smallest reconstruction errors.
The Bayesian method did not require tuning parameters,
except for choosing the maximum rank ofLf,i which was
set to 20.

Figure 4 compares the relative reconstruction error of the

sparse (target) component,
‖S−Ŝ‖

2

‖S‖2
, across all algorithms,

number of passesN , coherence of antennasρ, and SCNR.
In all cases, the Bayes SAR method outperforms the RPCA
algorithms with improving performance if either coherence
or SCNR increases. Table IV provides additional numerical
results for the caseN = 20. The RCPA algorithms perform
poorly in reconstructing the sparse component with relative
errors near or greater than 1. This reflects the fact that (a)
these algorithms miss significant sources of information, such
as the correlations among antennas and among quadrature
components, and (b)N = 20 may be too few samples
to reliably estimate the principal components in these non-
parametric models. In measured SAR imagery, it might be
unreasonable to expectN ≫ 20 passes of the radar, which
suggests that these RPCA algorithms will likely perform
poorly on such signals. In contrast, it is seen that the Bayes
SAR method obtains low reconstruction errors for both low-
dimensional and sparse components as either coherence or
SCNR increase.

Table IV also provides standard errors on the metrics
provided (i.e., thel-norms on the foreground and background
components) as a measure of statistical confidence in these
quantities. Note that this standard error is calculated over the
20 trials where the ground truth is known. It would also be
possible to determine the predicted uncertainty of the error in
the Bayesian methods by computing the standard error over the

samples in the Monte Carlo distribution. This would provide
a predicted uncertainty in any one instantiation of the problem
(i.e., one trial), but would not be comparable to the non-
Bayesian methods (such as the optimization-based RPCA).

B. Measured data

In this section, we compare performance of the Bayes SAR
approach using a set of measured data from the 2006 X-band
Gotcha SAR sensor collection.3 In particular, images were
formed from phase histories collected over a scene of size
375m by 1200m forN = 3 passes andK = 3 antennas.
Each image was created with a coherent processing time of
0.5 seconds with the addition of a Blackman-Harris window in
the azimuth direction to reduce sidelobes. Images were created
at 0.5m resolution in both the x- and y-directions. Thus each
image consisted ofP = 750×2400 = 1.8×106 pixels. Images
were created at overlapping intervals spaced 0.25 seconds apart
for a total of 18 seconds. Note that the ability to take advantage
of correlated images (as in this case) is one of the benefits of
using the proposed model/inference algorithm.

We consider three alternative approaches in comparison to
the Bayes SAR approach: (1) displaced-phase center array
(DPCA) processing, (2) along-track interferometry (ATI), and
(3) a mixture of DPCA/ATI as described by Deming [8]. Note
that all variants of ATI/DPCA depend on the chosen thresholds
for phase/magnitude, respectively.

1) Comparisons to DPCA/ATI:We begin by comparing
the output of the proposed algorithm across the entire 375m
by 1200m scene. Figure 5 shows the output of the Bayes
SAR algorithm, the DPCA output, and the ATI output. It is
seen that there are significant performance gains by using

3The dataset is a superset of the data given by the Air Force Research Lab,
RYA division as described in [26].
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Fig. 5. This figure compares the output of the proposed algorithm as a function of magnitude and phase for a scene of size 375m by 1200m and coherent
processing interval of 0.5s. The Bayes SAR algorithm takes the original SAR images in (a) and (b), estimates the nuisance parameters such as antenna
miscalibrations and clutter covariances, and yields a sparse output for the target component in (c) and (d). In contrast, the DPCA and ATI algorithms are very
sensitive to the nuisance parameters, which make finding detection thresholds difficult. In particular, consider the original interferometric phase image shown
in (b). It can be seen that without proper calibration between antennas, there is strong spatially-varying antenna gain pattern that makes cancellation of clutter
difficult. Calibration is generally not a trivial process, but to make fair comparisons to the DPCA and ATI algorithms, calibration in (f) and (g) is done by
using the estimated coefficientsHf,i from the Bayes SAR algorithm. In (e) and (f), the outputs of the DPCA algorithm are applied to the original images
(all antennas) and the calibrated images (all antennas), respectively. It should be noted that even with calibration, the DPCA outputs contain a huge number
of false detections in high clutter regions. Nevertheless, proper calibration enables detection of moving targets that are not easily detected without calibration,
as highlighted by the red boxes. Note that the Bayes SAR algorithm provides an output that is sparse, yet does not require tuning of thresholds as required
by DPCA and/or ATI.

calibrated images as shown in (f) and (g) as compared to
their original versions, (e) and (b), respectively. Furthermore,
the proposed approach also provides a sparse output without
choosing thresholds as required by DPCA and ATI. Note that
in this figure, calibration is accomplished by using the outputs
Hf,i from the Bayes SAR approach.

Figure 6 display the detection performance over two smaller
scenes of size 125m by 125m as a function of magnitude
and phase. For each scene, images are provided for sequential
scenes separated by 0.5 seconds. Scene 1 contains strong
clutter in the upper left region, while Scene 2 has relatively
little clutter. It is seen that the proposed approach (2nd and
3rd columns) provides a sparse solution containing the targets
of interest in each of the 4 images. Moreover, the 2nd column
provides the estimated probability that a target occupies a
given pixel, in comparison to the (0,1) output of DPCA and
ATI. Although most estimated probabilities are near 1, there
are a few cases where this is not the situation: in scene 2(d),
a low-magnitude target is detected with low probability in the
lower-right; in scene 1(b) a few target pixels from the clutter
region are detected with low probability. In contrast, the per-
formance of DPCA and ATI depend strongly on the threshold.
In (a-c), the DPCA-only output provides a large number of
false alarms. It is seen that the ATI/DPCA combination with 15
dB magnitude threshold over-sparsifies the solution, missing
targets in (b), (c), and (d). On the other hand, the ATI/DPCA
combination with 30 dB magnitude threshold detects these
targets, but also includes numerous false alarms in (a) and (b).
On the other hand, the proposed approach is able to detect the

targets with high fidelity regardless of the scene/image and
does not require tuning of thresholds for detection.

2) Target motion models:Figure 7 shows the output of
the proposed approach when prior information on the location
of the targets might be available. For example, in the shown
scene, targets are likely to be stopped at an intersection. The
performance improvement is given for a mission scene that
contains target in this high probability region. On the other
hand, there are no significant performance decreases in the
reference scene that does not contain targets in the intersection
region. This type of processing could be extended to a tracking
environment, where targets are projected to likely be in a given
location within the formed SAR image as discussed in Section
V.

3) Estimation of radial velocity:The dataset used in this
section contained a few GPS-truthed vehicles from which we
can derive (a) the ‘true’ location of the target within the formed
SAR image, and (b) the target’s radial velocity which is known
to be proportional to the measured interferometric phase of
the target pixels in an along-track system. To account for
uncertainty in target location from the GPS sensor, we consider
a ‘confidence region’ for pixels that have high probability of
containing a target. Within these regions, each algorithm (e.g.,
Bayes SAR or ATI/DPCA) (a) detects pixels containing targets
and (b) subsequently estimates the interferometric phase of
those pixels. Note that the radial velocity is proportional to the
interferometric phase up to an ambiguity factor (i.e. between
0 and 2π) which corresponds to about 7m/s. To avoid this
ambiguity, each algorithm provides the radial velocity that
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Fig. 6. This figure shows detection performance based on the magnitude/phase of the target response with comparisons between the proposed algorithm and
displaced phase center array (DPCA) processing, and a mixture algorithm between DPCA and along-track interferometry (ATI). Note that DCPA and ATI
declare detections if the test statistic (magnitude for DPCA and phase for ATI) are than some threshold. Results are given for two scenes of size 125m x
125m; within each scene, images were formed for two sequential 0.5 second intervals. Scene 1 contains strong clutter in the upper left region, while Scene
2 has relatively little clutter. The columns of the figure provide from left-to-right: the magnitude of the original image, the estimated probability of the target
occupying a particular pixel (Bayes SAR), the estimated phase of the targets (Bayes SAR), the output of DPCA with a relative threshold of 30 dB, the output
of ATI/DPCA with (25 deg, 15 dB) thresholds, and the output of ATI/DPCA with (25 deg, 30 dB) thresholds. It is seen that without phase information to
cancel clutter, DPCA (30 dB) contains an overwhelming number of false alarms for scenes (a-c), although the performance is reasonable for scene (d). The
ATI/DPCA algorithms provide sparser solutions by canceling the strong clutter. It is seen that the ATI/DPCA combination with 15 dB magnitude threshold
over-sparsifies the solution, missing targets in (b), (c), and (d). On the other hand, the ATI/DPCA combination with 30 dB magnitude threshold detects these
targets, but also includes numerous false alarms in (a) and (b). On the other hand, the proposed algorithm provides a sparse solution that detects all of these
targets, while simultaneously providing a estimate of the probability of detection rather than an indicator output.
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Fig. 7. This figure compares the performance of our proposed method with and without priors on target signature locations. In this scene, targets are likely
to be stopped at an intersection as shown by the region in (a). A mission image containing targets is shown in (b) and a reference image without targets is
shown in (d). The estimated target probabilities are shown in (c) for the mission scene where inference was done both with/without a target motion model
(TMM). It can be seen that by including the prior information, we are able to detect stationary targets that cannot be detected from standard SAR moving
target indication algorithms. The estimated target probabilities in the reference scene are shown in (e), showing little performance differences when prior
information is included in the inference.
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Fig. 8. This figure plots the estimated radial velocities (m/s) for a single target
from measured SAR imagery over 18 seconds at 0.25 second increments.
Radial velocity, which is proportional to the interferometric phase of the
pixels from multiple antennas in an along-track SAR system, is estimated by
computing the average phase of pixels within a region specified by the GPS-
given target state (position, velocity). We compare the estimation of radial
velocity from the output of the Bayes SAR algorithm, from the raw images,
from the calibrated images (i.e, using the estimated calibration coefficients),
and from two DPCA/ATI joint algorithms as described by Deming [8]
with phase/magnitude thresholds of (25 deg, 15 dB) and (25 deg, 30 dB)
respectively. For fair comparisons, the DPCA/ATI thresholds are applied to
the calibrated imagery, though this is a non-trivial step in general. The black
line provides the GPS-truth.

TABLE V
RADIAL VELOCITY ESTIMATION (M /S) IN MEASURED SAR DATASET. THE

PROPOSED ALGORITHM(BAYES SAR) HAS LOWER BIAS AND MSE,AS
WELL AS FEWER MISSED TARGETS AS COMPARED TO ALL OTHER

ALTERNATIVES. MOREOVER, ALL ALGORITHMS EXCEPT ‘RAW ’ REQUIRE

ADDITIONAL CALIBRATIONS BETWEEN ANTENNAS, EXCEPT THE

PROPOSED ALGORITHM WHICH ESTIMATES CALIBRATION CONSTANTS
SIMULTANEOUSLY WITH THE TARGET RADIAL VELOCITY. ALSO, THE

PROPOSED ALGORITHM HAS NEARLY APPROXIMATELY HALF THE ERROR

OF THE ATI/DPCA ALGORITHMS WITHOUT REQUIRING TUNING OF
THRESHOLDS.

Algorithm Bias MSE No. Missed

Raw 0.56 0.86 7

Calibrated 0.60 0.91 0

Bayes SAR 0.11 0.16 0

ATI/DPCA∗ -0.06 0.32 57

ATI/DPCA∗∗ 0.17 0.24 5

is closest to the true radial velocity (among all ambiguous
choices). Note that given the region of test pixels, detection
of target pixels and estimation of the interferometric phase are
done independently of knowledge of the true state.

Figure 8 shows the estimated radial velocities for a single
target over 18 seconds at 0.25 second increments. We compare
the estimation of radial velocity from the output of the Bayes
SAR algorithm, from the raw images, from the calibrated
images, and from two DPCA/ATI joint algorithms as described
by Deming [8] with phase/magnitude thresholds of (25 deg, 15
dB) and (25 deg, 30 dB) respectively. For fair comparisons, the
DPCA/ATI thresholds are applied to the calibrated imagery,
though this is a non-trivial step in general. Numerical results
are summarized in Table V. It is seen that the Bayes SAR
algorithm outperforms the others in terms of MSE for both
targets. Moreover, the Bayes SAR algorithm never misses a
target detection in this dataset, which is not the case for the
DPCA/ATI algorithms. Moreover, while the calibrated images
also never miss the target, there was significant bias and MSE
due to the inclusion of pixels that are ignored by the Bayes

SAR and ATI/DPCA algorithms.

VIII. D ISCUSSION AND FUTURE WORK

Recent work [1]–[3] has shown that it is possible to suc-
cessfully decompose natural high-dimensional signals/images
into low-rank and sparse components in the presence of noise,
leading to the so-called robust principal component analysis
algorithms. [4] introduced a Bayesian formulation of the
problem that built on the success of these algorithms with the
additional benefits of (a) robustness to unknown densely dis-
tributed noise with noise statistics that can be inferred from the
data, (b) convergence speeds in real applications of the mean
solution that are similar to those of the optimization-based
procedures, and (c) characterization of the uncertainty (i.e.,
estimates of the posterior distribution) that could lead to im-
provements in subsequent inference. Moreover, the Bayesian
formulation is shown to be capable of generalization to cases
where additional information is available, e.g. spatial/Markov
dependencies.

SAR imagery collected from a staring sensor across multi-
ple passes, frames, and receive channels contains significant
amounts of redundant information, which suggests that a low-
dimensional representation for the clutter could be exploited
to improve GMTI algorithms. Indeed, algorithms such as
STAP already use a low-rank assumption in order to cancel
clutter. On the other hand, these algorithms depend on the
availability of homogeneous target-free data, thresholds for
phase/magnitude-based detection which may vary across the
scene, and appropriate calibration across receive channels.
Moreover, SAR-specific phenomena such as complex-valued
images, glints and speckle noise make it difficult to apply the
previously developed RPCA methods for SAR GMTI.

This work provides a Bayesian formulation similar to [4]
that (a) directly accounts for SAR-specific phenomena, (b) in-
cludes information available from staring SAR sensors (multi-
pass, multi-frame, and multi-antenna), and (c) characterizes
uncertainty by yielding a posterior distribution on the variables
of interest given the observed SAR images. Similar to Ding
et al. [4], this algorithm requires few tuning parameters since
most quantities of interest are inferred directly from the data -
this allows the algorithm to be robust to a large collection of
operating conditions. Moreover, the performance of the pro-
posed approach is analyzed over both simulated and measured
datasets, demonstrating competing or better performance than
the RPCA algorithms and ATI/DPCA.

There are several research directions which could be used
in order to improve the methods described in this paper.
First, the statistical model presented in this paper chose prior
distributions, such as the Multivariate-Normal-Inverse-Wishart
and Bernoulli-Beta distributions, for numerical efficiency.
In practice, this worked reasonably well on the measured
dataset. Moreover, these distributions have been applied to
other Bayesian modeling problems [4], [5]. Nevertheless, one
may wish to understand the sensitivity to model mismatch
by analyzing performance over larger datasets. Additionally,
future work could explore the tradeoff between model fidelity
and computational burden. This could include generalizations



13

to the model, such as complex target maneuvers, multiple
target classes, and explicit tracking of the target phase, as well
as physical models such as multiplicative, rather than additive,
speckle noise.

This method provides a rich model that can combine spatial,
temporal, and kinematic information as well as infer nuisance
parameters such as clutter distributions and antenna calibration
errors. Nevertheless, this framework comes at the expense of
significant computational burden, especially as compared to
methods such as DPCA and ATI. The inference algorithm
is designed explicitly to be highly parallelizable and future
work should explore ways to utilize this property in order to
efficiently estimate the posterior distribution.

Finally, future work will include the development of algo-
rithms that exploit the use of a posterior distribution for im-
proved performance in a signal processing task, e.g. detection,
tracking or classification. In particular, we are interested in
using algorithms for simultaneously detecting and estimating
targets over a sparse scene with resource constraints, as well
determining the fundamental performance limits of a SAR
target tracking system.
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