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ABSTRACT
This works considers the problem of energy constrained adaptive
search for sparse targets given probabilistic prior knowledge of
target locations. An Adaptive Resource Allocation Policy (ARAP)
was introduced by Bashan (2008), showing significant gains over
standard methods can be achieved without prior knowledge on the
targets’ locations. This work extends ARAP to account for non-
uniform prior knowledge. It is shown that potential gains exist as
compared to ARAP. Moreover, we show that by overestimating
the true region of interest, the proposed search policy can always
outperform ARAP in terms of worst-case gain. Lastly, results from
an application involving estimating the approach of airplanes at an
airport suggest that bi-level piecewise uniform priors are adequate
approximations.

Index Terms— Adaptive sampling

1. INTRODUCTION

In this work, we consider the problem of estimating a sparse
region of interest (ROI) with prior knowledge on the locations of
the targets. In [1], a resource allocation approach called ARAP
was developed for the detection and estimation of sparse signals
containing targets in noise. ARAP was shown to asymptotically
allocate resources in an optimal fashion when targets were assumed
to be uniformly spread throughout the signal. We extend this
analysis to non-uniform priors.

In many applications, prior information on target locations is
highly non-uniform. This suggests that ARAP can be improved
by taking advantage of this information. Moreover, in closed-
form ARAP was limited to a 2-stage allocation policy, since
measurements after the first stage yield a non-uniform prior for
the next stage. Thus, developing the theoretical background for a 2-
stage allocation using a non-uniform prior could provide invaluable
insight into extending ARAP beyond 2-stages.

In this paper, we relax the assumption of a uniform prior in
detecting/estimating the ROI using ARAP. We derive rules of thumb
for when to use potentially inaccurate non-uniform prior knowledge
as opposed to the uniform alternative. It is shown that potential
gains over the uniform alternative exist as long as the non-uniform
prior knowledge is reasonably accurate, where the gain depends
on the individual application. Our analysis applies to simple bi-
level piecewise uniform priors. The results indicate that a bi-level
prior may be a sufficient approximation to the underlying model
for many applications.

Much of the previous work in resource allocation has been
directed towards inhomogeneous signals [2], [3]. Castro introduces
a 2-stage algorithm to first coarsely search a signal or image, and
then refine areas near boundary points. It was shown that fast
convergence rates (in MSE) were possible for certain classes of
inhomogeneous signals. In this work, we are interested in signals
only restricted to having a small ROI.

Thus, our signals could be considered sparse in the sense that the
ratio of the ROI to the entire signal is small. In compressed sensing

[4], the goal is to reconstruct a sparse signal using many fewer
samples than the size of the signal. Haupt, Castro and Nowak [5]
introduce distilled sensing as an adaptive approach for recovering
sparse signals in noise, and show that they can recover much weaker
signals as compared to non-adaptive approaches. However, neither
approach considers the best way to allocate resources within a
stage, nor do they directly estimate the ROI.

The rest of this paper is organized as follows. In Section 2
we introduce notation and review ARAP. Section 3 presents a
performance analysis, including uncertainty in the prior knowledge
and an application where a non-uniform prior is likely. Finally, we
conclude and point out future work in Section 4.

2. BACKGROUND OF ARAP

We will follow the notation laid out in [1]. Consider a discrete space
X = {1, 2, . . . , Q} containing Q cells. Let Ψ denote a region of
interest (ROI) in X , i.e., Ψ ⊆ X . In the sequel Ψ will be a randomly
selected small subset of X , |Ψ| � |Ψc|, where |Ψ| equals the
number of elements in Ψ and Ψc is the relative complement, X \Ψ,
of Ψ. Let Ii be an indicator function of the ROI such that Ii = 1 if
i ∈ Ψ and 0 otherwise, and {pi = Pr(Ii = 1)}Qi=1 is an associated
set of prior probabilities. Define

yi(t) =
√
λ(i, t)θiIi + ni(t), i = 1, 2, . . . , Q (1)

be the measurement of the i-th cell at time t, where λ(i, t) > 0
is the search effort, e.g. energy, allocated to cell i at time t, θi ∼
N (µθ, σ

2
θ) is the random target return, and ni(t) ∼ N (0, σ2) is

additive Gaussian noise. In [1] the following cost function was
introduced

J(Λ) =

Q∑
i=1

νIi + (1− ν)(1− Ii)
Λ(i)

, (2)

with Λ(i) =
∑2
t=1 λ(i, t). and ν ∈ [ 1

2
, 1]. When pi = p for

all i (i.e., uniform prior knowledge), the expected value of (2)
can be directly minimized subject to a total energy constraint λT .
The solution of the minimization problem yields a search policy,
{λ(i, t)}, which we refer to as ARAP.

For a single stage, it was shown in [1] that the optimal allocation
is given by

λ(i, 1) =
αλT
√
pi

Q∑
j=1

√
pj

(3)

where α is the percentage of total energy used in the first stage (in
the case of a 1-stage algorith, α = 1). Moreover, it was shown that
given {λ(i, 1)}Qi=1 and the measurements at the first stage Y (1),
the optimal allocation at the second stage is given by



λ(i, 2) =


λT −

Q∑
j=1

λ(j, 1)

Q∑
j=k0+1

√
w(j)

√
w(i) − λ(i, 1)

 I(i > k0) (4)

where pIi|y(1)
4
= Pr(Ii = 1|y(1)), wi = νpIi|y(1) + (1− ν)(1−

pIi|y(1)) , w(i) is an ordered version of wi, and k0 defines a cutoff
point based upon that ordering. Proof of existence of a unique
k0 is given in [1]. However, since {λ(i, 1)}Qi=1 can take on Q
values in general, minimizing the expected value of (2) becomes a
combinatorially complex problem. Therefore, [1] is restricted to the
case of uniform prior knowledge on target locations, i.e., pi = p for
all i, reducing the optimization to a single parameter grid search.

In this work, we elaborate on the myopic approach suggested
in [1] for non-uniform priors. Rather than solve the minimization
problem directly, resources are allocated optimally within each
stage as follows:

Algorithm 1: Two stage Non-uniform Adaptive Resource Allo-
cation Policy (NU-ARAP)

Step 1: Allocate first stage according to (3) and measure
y(1) in (1).

Step 2: Compute posterior probabilities pIi|y(1)
4
= Pr(Ii =

1|y(1)) and wi = νpIi|y(1) +(1−ν)(1−pIi|y(1)).
Step 3: Rank order the wi’s using the permutation operator

τ , then use λ∗1 and the ordered statistic wτ(i) to find
a threshold k0.

Step 4: Given k0, apply λ(i, 2), the energy allocation, to
cell i as in 4 and measure y(2)

To complete the definition of NU-ARAP, one must perform
a line search over α, the percentage allocated at each stage to
determine the best allocation. Due to the suboptimality that is
inherent when a myopic approach is used, this work is concerned
with answering the following questions: (1) Are there benefits to
using a suboptimal approach with a non-uniform prior, as compared
to an asymptotically optimal solution (i.e., ARAP)? In other words,
do the gains of using a non-uniform prior outweigh the loss in
optimality? And (2), how robust is NU-ARAP to mismatches in
the prior distribution of target locations?

It should be noted that this work faces a fundamental tradeoff
in potential gains versus practicality. On the one hand, if an
underlying model is highly complex and non-uniform, there is a
clear advantage to using this model in creating allocation policies,
and larger gains would be expected. Conversely, as the underlying
model becomes more intricate, it becomes more likely that there
will be inaccuracies and/or mismatches in the assumed models.
For practical reasons, this work considers the case of two-level
piecewise uniform priors that may capture the essence of a general
non-uniform prior, while maintaining analytical simplicity.

3. PERFORMANCE ANALYSIS

This section presents performance analysis of NU-ARAP in several
fashions. Section 3.1 gives asymptotic properties of NU-ARAP.
Sections 3.2 and 3.3 present a basis for analysis and corresponding
simulations for the robustness of the algorithm. Lastly, Section 3.4
considers an air traffic control (ATC) radar application that fits well
with the presented framework.

3.1. Asymptotic properties for ν = 1

In the current section the following asymptotic properties of NU-
ARAP are presented (where by asymptotic we mean high SNR and
large Q):

1) Consistency - Given that a target is present in cell i, the
posterior probabilities pIi|Y (1) → 1 in probability for all
i ∈ 1, . . . , Q as long as p̂i > 0. For the complement case
where Ii = 0, we have pIi|Y (1) → 0.

2) Asymptotic Gain - The gain of using the suboptimal ap-
proach described in the previous section over using an
exhaustive search approaches the optimal gain, −10 log p for
p = E|Ψ|/Q as SNR →∞, as long as Ii = 1→ pi > 0.

Consistency follows from the fact that pIi|yj
is proportional to

the LRT, which is known to be the uniformly most powerful test for
comparing Gaussians with different means (as is the case here). A
full proof is given in [6]. The asymptotic gain follows directly from
[1] where for pIi|y(1) → Ii, λ(i, 1)→ 0 and the gain approaches
the optimal gain over an exhaustive search.

3.2. Robustness analysis

In this section, the performance of NU-ARAP is analyzed in the
context of its robustness to mismatches in the assumed prior as
compared to the underlying model. For these purposes, the under-
lying model will be denoted as g∗ = {pi}Qi=1, and the assumed
prior as ĝ = {p̂i}Qi=1. Note that in general, allocations will depend
on both the assumed and underlying priors, since the first stage
allocation depends only on the assumed prior, while subsequent
allocations depend on both. Moreover, u := {p̂i = p}Qi=1 will
be referred to as a uniform prior and will be used as a base for
comparison. The expected cost minimized by our algorithm given
the underlying model, assumed model, and percentage of energy
allocated at each stage, E[J(Λ)|g∗, ĝ, α], is derived in [6]. For
sake of space, the equations are not reproduced here.

In this work, mismatches are considered by making the assump-
tion that both g∗ and ĝ are elements of a class of priors, G (note
that these are priors for each cell i, and not over all cells; i.e., they
do not integrate to one over all i). Thus, for any assumed model
ĝ, two criteria are considered: (1) the expected cost, C(ĝ; g∗), and
(2) the worst-case gain when compared with using a uniform prior,
K(ĝ). Expressions for these quantities are given below.

C(ĝ; g∗) = E[J(Λ)|g∗, ĝ, α] (5)

K(ĝ) = max
g∗∈G

−10 log
C(ĝ; g∗)

C(u; g∗)
(6)

3.3. Robustness simulations

The remainder of this section considers a specific class of prior
models in order to form intuition on the robustness of NU-ARAP.
Let us consider a set of priors G = {ĝ1, ĝ2, . . . , ĝm} and ĝi ={
pij
}Q
j=1

. As mentioned previously, there is a tradeoff between the
complexity of the assumed prior versus the potential gains over
the uniform alternative. For this reason, then, the considered set G
contains only 2-level piecewise uniform priors; i.e., each pij ∈ ĝi
can take one of two values. For valid comparisons between priors,
the number of expected targets, E|Ψ| =

∑Q
j=1 pj = Qpunif is

set to a single constant. Define Hi = {j : pij = piH} to be the
set corresponding to the high probability region, and Li to be its
complement set. For simplicity of analysis, the low-level probability
will be constant across all priors in G; i.e., pij ∈ Li = pL for all
i, j. In this way, each ĝi can be described completely by the set
Hi. Lastly, it will be assumed that the indices are ordered, so that



(a) Worst-Case Gain (b) Gains across G for punif = 0.055

Fig. 1. In (a), the worst-case gain is plotted as a function of the approximating prior, ĝi which is characterized completely by the size
of the high probability region, Ĥi. Across all sparsity levels, the worst-case gain is monotonically increasing in Ĥi. In (b), the gains in
expected cost over using the uniform alternative for several possible approximating priors is plotted as a function of the underlying prior.

j > k → pji > pki . For a discussion of these constraints, see [6].
Figure 2 plots two possible priors in the described G.

Fig. 2. This plot shows two possible priors in the considered class
G that share the same number of expected targets. Each curve
represents a single prior parameterization, gi ∈ G.

For the simulations, we let Q = 10000, |Hi| ∈ [1500, 4000],
pL = 0.002, and vary the number of expected targets across five
sparsity levels, punif = {0.01, 0.0325, 0.055, 0.0755, 0.1}. Figure
1(a) plots K(ĝ) versus ĝ. Clearly, the figure suggests that the
worst-case gain is monotonically increasing in |Hi|. Intuitively, this
indicates that in terms of worst-case gain, it is better to oversample
the region where targets are likely to be.

Figure 1(b) presents the gain in expected cost over the uniform
alternative as a function of the underlying model for a single
sparsity level (punif = 0.055). The performance of several
approximating priors (|Ĥi| ∈ {1500, 2125, 2750, 3375, 4000})
is compared to the underlying model, as well as the uniform
alternative. It should be noted that the gain in expected cost decays
rapidly when the high probability region is underestimated (i.e.,
|Ĥi| < |H∗|), indicating that it is better to be conservative in
the estimation of H∗i , agreeing with the analysis in the previous
paragraph. Note that as long as the reverse is true (i.e., the high
probability region is overestimated), then the gain is nearly constant
and equal to a point on the underlying model curve. This suggests
that as long as the assumed prior is sufficiently conservative in

estimating the high probability region, then NU-ARAP will always
perform at least as well, and typically much better, as ARAP with
a uniform prior.

3.4. Application: ATC radar example

(a) Physical problem (b) Bernoulli priors

Fig. 3. In (a), we show a possible layout of a landing field based
on the statistics given in [7]. In (b), we show four possible priors to
represent the same problem, as a function of sorted cell index. The
blue curve represents the underlying model and the green curve
represents the equivalent uniform model (with a sparsity level of
0.01). The remaining two curves, which differ in the size of the
high-probability regions, represent 2-level approximations to the
underlying model. In all cases, the number of expected targets is
kept constant.

Here we simulate an active air traffic control (ATC) radar system
to detect and estimate locations of airplanes at a landing field. The
baseline for comparison is an ATC that scans a 360 degree region at
constant angular velocity, corresponding to an exhaustive resource
allocation policy. An ARAP approach would acquire an initial scan
at a constant angular velocity, but rotate the radar with a non-
uniform angular velocity during the second scan as a function of the
previous measurements. However, airplanes tend to approach from
certain directions with much higher probability, due to geographic,
political, and safety constraints. Thus, when determining a search



policy, we would expect a highly non-uniform prior. Therefore, it
would be expected that one could do better by initially scanning
the region at variable angular velocities corresponding to these
probabilities. It is this NU-ARAP scenario that we consider here.

In [7], Shortle gives statistical characteristics of aircraft landing
at a single runway at the Detroit Metropolitan Airport (DTW). In
particular, the paper suggests that the lateral position of an aircraft
landing at runway 21L is approximately Gaussian distributed given
its longitudinal distance from the runway, though it differs from a
standard Gaussian in the tails (which are exponentially distributed).
Moreover, the variance was found to be a monotonically increasing
function of distance.

In these simulations, the underlying model is chosen to roughly
approximate aircrafts approaching runway 21L at the DTW airport.
Thus, the field of view is set to size 30000× 1000 ft2. The under-
lying prior is assumed to be proportional to a Gaussian distribution
along the lateral direction with a variance that is proportional to
its longitudinal distance. It is further assumed that multiple targets
are more likely for distant aircraft, but that these decrease as the
aircraft approaches the airstrip. The prior probabilities are expo-
nentially scaled correspondingly along the longitudinal direction to
boost probabilities further from the runway. This simulation also
considers two approximating priors, which differ only in the size of
the high probability region, while keeping the number of expected
targets constant. Lastly, for the sake of Monte-Carlo analysis, the
minimum Bernoulli probability is set to 0.002 in order to guarantee
a sufficient number of expected targets. The priors are shown in
their physical representation in Figure 3(a), and as a set of Bernoulli
priors in 3(b).

Fig. 4. This plot compares the performance of the four possible
priors in terms of gains over an exhaustive search as a function
of SNR. The largest gains occur when the underlying prior is
known (solid red curve), while all non-uniform priors outperform
the uniform alternative (green curve) by at least 1 dB for SNR
values below 15 dB. Furthermore, the approximations (blue and
black curves) may be more practical in a real application, yet they
still maintain significant gains over the uniform model.

For Q = 10000 and priors shown in Figure 3, the empirical
expected cost from NU-ARAP is computed over 2000 Monte Carlo
samples for each SNR point (SNR is defined as the signal to noise
ratio per cell for an equal energy allocation, i.e., SNR = λT /Q

σ2 ,
where σ2 is the noise variance). Recall that when a uniform prior
is used, NU-ARAP reduces to the ‘optimal’ allocation described by
ARAP. Figure 4 compares the gains with respect to an exhaustive
search as a function of SNR and prior information. There are several
notable characteristics in this plot.

First, although a myopic approach is used for all of the non-
uniform priors, NU-ARAP yields improvement over ARAP at SNR
values below 15 dB (which in many instances represent more
realistic situations). As one may expect, the largest gains occur
when the underlying model is known to NU-ARAP (red curve).

However, practicality limits access to complete (and accurate)
priors. It is encouraging that the 2-level approximations give the
most significant gain margin as compared to the uniform model.
From these results, it is conjectured that only a few terms in a Haar
basis for the prior probabilities may be required in order to retain
the vast majority of the lost gain. Note also that in all cases, the
asymptotic gains (i.e., for SNR > 30 dB) approach the optimal
value −10 log 0.01 = 20 dB as discussed in Section 3.1. Lastly, it
should be noted that Figure 4 agrees with the analysis in the previ-
ous section, as the more conservative approximation (blue curve) to
the underlying model outperforms the other approximation (black
curve).

4. CONCLUSIONS AND FUTURE WORK

In this work, we have extended previous work on adaptive resource
allocation for search by exploring the case where prior knowledge
is non-uniform. It was shown that there is room for performance
gain when the underlying model is non-uniform and known, even
when a suboptimal allocation policy is used. Moreover, even in the
case where there might be uncertainty in the prior knowledge, we
have provided a simple means for comparing mismatches through
the analytical computation of the objective function minimized by
NU-ARAP. Although the robustness analysis will be application-
dependent, our results suggest that NU-ARAP will outperform the
uniform alternative when we conservatively estimate the underlying
prior model for target locations. Additionally, using NU-ARAP in
the application of ATC radar, we find that 2-level approximations
to the underlying prior still lead to significant gains.

Future work will consider more general classes of priors, and
in particular, piecewise constant priors that may be represented by
a Haar basis. Moreover, we plan to extend our analysis to more
concrete measures, such as MSE or probability of detection.
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