
Adaptive resource allocation for synthetic aperture radars

under resource constraints

Gregory E. Newstadta, Edmund G. Zelniob, and Alfred O. Hero IIIa

aElectrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI

48109, USA;
bAir Force Research Laboratory, Wright Patterson Air Force Base, OH, 45433, USA

ABSTRACT

In along-track synthetic aperture radar systems, measurements from multiple phase centers can be used to
remove bright stationary clutter in order to detect and estimate moving targets in the scene. The effectiveness
of this procedure can be improved by increasing the number of antennas in the system. However, due to
computational and communication constraints, it may be prohibitive to use a large number of antennas. In
this work, an efficient resource allocation policy is provided to exploit sparsity in the scene, namely that there
are few targets relative to the size of the scene. It is shown that even with limited computational resources,
one can have significant estimation and computational gains over non-adaptive strategies. Moreover, the
performance of the adaptive strategy approaches that of an oracle policy as the number of the stages grows
large.
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1. INTRODUCTION

In along-track synthetic aperture radars (SAR), a single transmit antenna and several receive antennas are
placed strategically along the direction of the radar flight path. Due to this arrangement, it is possible to
receive measurements of the scene from nearly identical phase center locations within a few milliseconds of
each other. Thus, it is possible to coherently (i.e., with phase included) cancel all stationary objects in the
scene, including high amplitude clutter and speckle noise.

In practice, noise in the system degrades the signal quality making it difficult to detect targets displaced
over high amplitude clutter. One can improve the signal-to-clutter-plus-noise-ratio (SCNR) by increasing the
number of antennas in the radar system. However, SAR image formation is an computationally expensive
process that scales as O(n2 logn), where n is the number of pixels in the image. In large scenes, real-time
processing constraints may limit the number of images that can be formed at any one time. Nevertheless,
if the locations containing targets is sparse in comparison to the size of the scene, there may be hope that
one can acquire the additional performance gains of a multi-antenna system without incurring a prohibitive
computational burden.

This paper provides a first look into using adaptive resource allocation techniques for moving target de-
tection in synthetic aperture radar systems. An algorithm is provided that allocates computational resources
in order to jointly detect and estimate targets that are sparsely located within a scene. This paper extends
existing work in adaptive resource allocation1, 2 to efficiently use computational resources in a SAR system.
Results on a synthetic dataset demonstrate that it is possible to have nearly 20 dB gains over non-adaptive
techniques in mean-squared error, while using less than 60% of the resource budget. Moreover, these results
asymptotically approach those of an oracle policy that knows the locations of the targets a priori, as the
number of stages grows large.

Further author information: (Send correspondence to Gregory E. Newstadt at newstage@umich.edu)
This document was ... public release statement.

Alfred
Cross-Out

Alfred
Inserted Text
a

Alfred
Cross-Out

Alfred
Inserted Text
benefit from

Alfred
Inserted Text
the 

Alfred
Inserted Text
of [1,2]



The remainder of this paper is organized as follows. Section 2 provides a brief overview of moving target
detection in along-track SAR systems. The problem formulation and adaptive policy is provided in Section
3. In Section 4, the performance of the proposed policy is analyzed. We conclude and point to future work
in Section 5.

2. MOVING TARGET DETECTION ALGORITHMS IN SAR SYSTEMS

(a) Time τ

(b) Time τ + δ

Figure 1. Illustration of an along track radar with two phase centers. Note that in (b), the stationary targets have
identical range and can be effectively canceled. Moving targets exhibit a phase difference and can be localized.

Figure 1 shows an illustration of an along-track system with two phase centers. In the figure, there is
a moving target, whose range to the phase center changes from time τ to time (τ + δ), and a stationary
target, whose range remains constant at both time. This system relies on the fact that the stationary
background is identical at both time points. In practice, the phase histories are corrupted by antenna
and pulse misalignment, thermal noise, specular glints, and other factors. Nevertheless, many synthetic
aperture radar moving target detection systems rely on the fact that there is a high degree of correlation
of the stationary “clutter”. This includes displaced phase center array processing (DPCA), along-track
interferometry (ATI), and space-time adaptive processing (STAP). Both DPCA and ATI are extremely
efficient algorithms that exploit the coherence of the stationary background, though empirical evidence has
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demonstrated that each of these algorithms are sensitive to different types of clutter. Deming3 shows that
it is possible to combine the benefits of both algorithms to effectively detect targets. Moreover, Deming
provides a theoretical analysis of ATI and DPCA that demonstrates that radar measurements from distinct
antennas in an along-track system that contain moving targets will be proportional up to a complex phase
factor, namely the “interferometric phase”. This phase is related to the target’s radial velocity, which can
be used to aid in both target detection and tracking.

STAP extends traditional moving target detection algorithms to the case where there are more than two
phase centers. Ender4 provides a SAR-focused STAP algorithm that models the stationary clutter as being
embedded in a one-dimensional subspace. In a K-antenna system, a single phase center is used to estimate
the clutter and the remaining K − 1 phase centers are used to estimate the moving component. However,
STAP relies on the ability to estimate the clutter distribution in homogeneous target-free data. Moreover,
all three algorithms (DPCA, ATI, and STAP) are quite sensitive to calibration errors and specular noise.

In recent work,5 a generalized SAR image model was proposed that combined the physical, kinematic,
and statistical properties of SAR images into a unified Bayesian structure. The model exploited the plethora
of structure that is available in SAR images constructed from multi-antenna and multi-pass data collections.
Moreover, the hierarchical Bayesian model (a) infers the parameters of the model directly from the data with
very little tuning of algorithm parameters, and (b) provides a Monte Carlo representation of the posterior
distribution. This algorithm has the additional benefit that it provides an explicit characterization of the
clutter distribution as well as the probability that a target occupies a given region within the scene.

The algorithms discussed above can all be used effectively for SAR moving target detection. In this
paper, a simplified model is used to demonstrate the benefit of employing adaptive resource allocation to
efficiently use limited resources. In particular, it is assumed that (a) the phase centers are well-calibrated and
(b) the clutter distribution is known a priori. In practice, both of these could be accomplished by using the
SAR hierarchical Bayesian model to estimate these parameters from previous passes of the radar. Within
the i-th spatial region, the clutter distribution in an along-track system with K antennas is modeled as
complex-valued multivariate Normal with parameters

ci ∼ CN
(

0, γ2
i

[

(1− ρi)IK×K + ρi1K1T
K

])

∈ C
K , (1)

where γ2
i denotes the antenna (channel) variance, and ρi denotes the antenna (channel) coherence. Note

that both γ2
i and ρi will vary spatially (i.e., buildings versus roads) and temporally (as the radar platform

changes spatial location).

3. PROBLEM FORMULATION

Limited resources can be efficiently used by focusing effort in certain areas, while reducing it in others. Thus,
an agile system must be available to dynamically allocate the available resources. Note that these resources
come in many forms, such as radar dwell time, monetary resources, or computational time. In this work, we
focus on the latter case, though this work is generalizable to other agile systems.

3.1 Scene segmentation and measurement model

This work assumes that the scene of interest is large and can be divided into many smaller subregions that
may or may not contain targets. In particular, it is assumed that the number of subregions containing targets
is small as compared to the size of the scene. An indicator variable for the existence of a target in the i-th
region is defined as

Ii =

{

1, target is in the i−th subregion

0, else
, i = 1, 2, . . . , N, (2)



where N is the number of subregions. A sparseness prior on these indicators is imposed so that

Pr(Ii = 1) ≪ 1 (3)

In an along-track SAR system with KMAX antennas, one can choose to use anywhere between 0 and KMAX

antennas to form measurements (images) within the i-th subregion. In practice, SAR image formation within
subregions of the scene can be done efficiently using digital spotlighting. We define Ki ∈ [0,KMAX ] to be
the number of antennas used to create a vector of measurements, which are modeled as

yi = xiIi + ci + ni ∈ C
Ki (4)

xi = h
φ
Ki

µi ∈ C
Ki (5)

where ci is the clutter component, ni is the noise component, and xi is the target component in the i-th
subregion, composed of a reflectance µi and a interferometric vector defined by

h
φ
Ki

=















1
exp {2πjφ}

...
exp {2πj(Ki − 2)φ}
exp {2πj(Ki − 1)φ}















∈ C
Ki (6)

Note that this model can be generalized so that each of the Ki measurements is a vector quantity (i.e., a
group of pixels), but the simpler case is used here to demonstrate utility of resource management.

In an adaptive setting, multiple stages of measurements are collected, indexed by a time t. A single stage
of measurements consists of a vector of measurements yi(t) for each subregion i = 1, 2, . . . , N , where

yi(t) = xi(t)Ii + ci(t) + ni(t) ∈ C
Ki(t) (7)

xi(t) = h
φ

Ki(t)
µi ∈ C

Ki(t) (8)

for i = 1, 2, . . . , N . In this formulation, targets are assumed to be static. Hence, there is no time index on µi,
φi or Ii. However, the noise and clutter components, as well as the number of measurements per subregion
Ki(t), are assumed to vary over time. This model can be generalized to account for time-varying targets in
a method similar to Chapter 3 of related work.5 The prior distributions on these parameters are given by

µi ∼ CN
(

0, σ2
θ

)

ci(t) ∼ CN (0,Σc
i(t))

ni(t) ∼ CN (0,Σn)

(9)

with

Σc
i(t) = γ2

i (t)
[

(1 − ρi(t))IK×K + ρi(t)1K1T
K

]

Σn = ν2IK×K

(10)

Note that given the interferometric phase φi, the posterior distributions of µi and Ii given the measurements
Yi(t) = {yi(1),yi(2), . . . ,yi(t)} are given as the following closed-form updates

Pr(Ii = 1|Yi(t)) =
f(yi(t)|Ii = 1)Pr(Ii = 1|Yi(t− 1))

f(yi(t)|Ii = 1)Pr(Ii = 1|Yi(t− 1)) + f(yi(t)|Ii = 0)Pr(Ii = 0|Yi(t− 1))
(11)



and

ηi(t) = yi(t)− h
φ
Ki

(t)µ̂i(t− 1)

Si(t) = [hφ
Ki

(t)][hφ
Ki

(t)]Hσ2
i (t− 1) +Σc

i (t) +Σn

Γi(t) = σ2
i (t− 1) · [hφ

Ki
(t)]H (Si(t))

−1

µ̂i(t) = µ̂i(t− 1) + Γi(t)ηi(t)

σ2
i (t) =

[

1− Γi(t)h
φ
Ki

(t)
]

σ2
i (t− 1)

(12)

with initial conditions

µ̂i(0) = 0

σ2
i (0) = σ2

θ

(13)

Note that σ2
i (t) actually has the form:

σ2
i (t) = σ2

i (t− 1)− Γi(t)h
φ
Ki

(t)σ2
i (t− 1)

= σ2
i (t− 1)− σ2

i (t− 1)[hφ
Ki

(t)]H(Si(t))
−1[hφ

Ki
(t)]σ2

i (t− 1)
(14)

Using various matrix inverse identities, it can be shown that

σ2
i (t) =

[

1

σ2
i (t− 1)

+
1

αi(t)

(

Ki(t) +
βi(t)K

2
i (t)|sinc

φiKi(t)
2π |2

Ki(t)βi(t) + αi(t)

)]−1

(15)

where

αi(t) = γ2
i (t)(1− ρi(t)) + ν2

βi(t) = γ2
i (t)ρi(t)

(16)

Moreover, Equation (15) has a simple upper bounded that is tight for large interferometric phase φi (where
the sinc term is approximately zero), given by

σ2
i (t) =

[

1

σ2
i (t− 1)

+
1

αi(t)

(

Ki(t) +
βi(t)K

2
i (t)|sinc

φiKi(t)
2π |2

Ki(t)βi(t) + αi(t)

)]−1

≤

[

1

σ2
i (t− 1)

+
Ki(t)

αi(t)

]−1
(17)

This shows that the posterior variance of µi is inversely proportional to the number of measurements Ki(t),
though the benefit of each measurement will depend on the channel variance γ2

i (t), the channel coherence
ρi(t) and the noise variance ν2 (all through the αi(t) term). Note that when φi is also random, then these will
not be the exact update equations of the posterior distribution, so one would need to use a richer posterior
estimation technique such as an extended Kalman filter or particle filter.

3.2 Computational resource constraints and cost function

We formulate an optimization problem by considering a resource budget on the total number of measurements
that can be used at any particular stage:

N
∑

i=1

Ki(t) ≤ Kbudget(t), t = 1, 2, . . . , T (18)



where N is the number of subregions, T is the number of stages of measurements and Kbudget(t) is the known
budget per stage. For an extension to the case where the per-stage budget is also a design parameter, see
the work of Wei and Hero.6 The optimization problem is then of the form

min
{Ki(t)}i,t

J({Ki(t)}i,t) s.t.

N
∑

i=1

Ki(t) ≤ Kbudget(t), t = 1, 2, . . . , T (19)

where J({Ki(t)}i,t) is a cost function that depends on our design criteria. In this work, we choose to optimize
the mean-squared error within the region of interest, defined as

J({Ki(t)}i,t) = E

[

T
∑

t=1

N
∑

i=1

Ii (µ̂i(t)− µi)
2

]

(20)

Moreover, this cost is optimized in a greedy fashion, so that decisions at the t-th stage depend on the greedy
cost function:

Jt({Ki(t)}i) = E

[

N
∑

i=1

Ii (µ̂i(t)− µi)
2

]

(21)

For extensions to non-greedy optimization techniques, see Chapter 3 in related work.5 This cost function is
optimized by letting

µ̂i(t) = E [µi|Y (t− 1)] , (22)

i.e., the posterior mean. Plugging Equation (22) into Equation (21) yields

Jt({Ki(t)}i) =
N
∑

i=1

E(Ii|Y (t− 1))σ2
i (t)

≤
N
∑

i=1

Pr(Ii = 1|Yi(t− 1))

[

1

σ2
i (t− 1)

+
Ki(t)

αi(t)

]−1
(23)

where the last term is provided by the upper bound in Equation (17).

3.3 Adaptive resource allocation policy

The optimization problem in this paper follows a form very similar to related work1 and has an approximate
closed-form solution as follows. First, define

wi(t) =
√

Pr(Ii(t)|Yi(t− 1)) (24)

ci(t) = 1/σ2
i (t) (25)

zi(t) = wi(t)σ
2
i (t) (26)

λi(t) =
Ki(t)

αi(t)
(27)

and order the zi’s so that
zτ(1)(t) ≤ zτ(2)(t) ≤ · · · ≤ zτ(N)(t). (28)

Define the cutoff k0 = 0 if

cτ(1)(t)

N
∑

i=1

wτ(i)(t)

wτ(1)(t)
< Kbudget(t) +

N
∑

i=1

ci(t); (29)



otherwise, k0 is the integer k satisfying

zτ(k)(t) ≤

N
∑

i=k+1

wτ(i)(t)

Kbudget(t) +
N
∑

i=k+1

cτ(i)(t)

< zτ(k+1)(t) (30)

Note that k0 is proved to exist and be unique.7 Then the intermediate solution to the optimization problem
is given by

λi(t) =

λtotal(t) +
Q
∑

k=k0+1

cτ(k)(t)

Q
∑

k=k0+1

wτ(k)(t)

wi(t)− ci(t) (31)

for all τ(i) > k0 and 0 else. The final solution is given by

Ki(t) = min {floor (λi(t)αi(t)) ,KMAX} , (32)

where it should be noted that Ki(t) must be an integer between 0 and KMAX . Thus, the provided solution
is a relaxation to an integer program, and subsequently may not be an optimal solution. However, it is very
tractable from a computational standpoint as the complexity is dominated by the sorting algorithm which
runs in O(N logN) time (as compared to significantly higher computational complexity of integer programs).

4. PERFORMANCE ANALYSIS

This section provides an analysis of the proposed policy under considerable resource constraints. Initially,
policies for comparison to the one proposed in Section 3.3 are provided, followed by performance measures
used for numerical comparisons.

4.1 Policies for comparison

(a) Uniform Allocation (b) Optimal

Figure 2. Illustration of an along track radar with two phase centers. Note that in (b), the stationary targets have
identical range and can be effectively canceled. Moving targets exhibit a phase difference and can be localized.

We consider two intuitive policies for comparison to the one provided in Section 3.3. On one side of the
spectrum, the uniform allocation policy equally distributes resources across all subregions so that

Kuniform
i (t) = floor

(

Kbudget(t)

N

)

. (33)
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Note that any competitive policy should perform better than a uniform allocation. In contrast, the oracle
(or omniscient) policy, which knows the locations of targets a priori, provides an upper bound on potential
performance of any policy. It can be shown that the oracle policy that optimizes the greedy cost function
has an intermediate solution given by

λoracle
i (t) =

{

Kbudget

Ntargets
, Ii = 1

0, Ii = 0
(34)

where Ntargets is the number of targets in the scene. This yields the oracle policy

Koracle
i (t) = min

{

floor
(

λoracle
i (t)αi(t)

)

,KMAX

}

(35)

Both the uniform and oracle policies are illustrated graphically in Figure 2, where a darker color illustrates
more sensing effort. Note that the oracle policy is unattainable with finite resources, but we hope to approach
the performance of this policy through adaptation of computational resources over time.

This work considers two performance measures for numerical comparison: (a) the mean-squared error
(MSE) performance as compared to the uniform policy, and (b) the percentage of available resources used.
For the former case, the gains in MSE as compared to the uniform policy is defined as

G(K) = −10 log
MSE(K)

MSE(Kuniform)
(36)

where MSE(K) is the average MSE over all stages and trials of the policy defined by K. Note that one
would expect the MSE of a proposed policy to be less than that of the uniform policy (and so G should be
positive).

The second performance considered is a product of the fact that the proposed policies may use fewer
than the maximum amount of available resources. This is due to using a continuous relaxation to the integer
program, as well as having an upper bound on the computational resources Ki(t) ≤ KMAX . The second
measure is defined as the percentage of average resources used

H(K) = Ê

[

T
∑

t=1

1

Kbudget(t)

N
∑

i=1

Ki(t)

]

(37)

where an empirical expectation is used over independent trials in the simulations.

4.2 Simulated dataset

In this paper, we consider the following setup:

• The number of subregions, N = 1, 000.

• The prior probability of target existence, Pr(Ii = 1) = 0.01.

• The prior target variance, σθ = 1.

• The additive noise variance, ν = 1/(642).

• The clutter noise variance, randomly distributed according to Figure 3. Note, most of the clutter noise
has lower variance than the target (i.e., negative log-ratio), but there is a significant portion with higher
variance.

• The interferometric phase, φi = π/3, assumed known.
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Figure 3. Distribution of the ratio of clutter variance to target variance (on a dB scale)

• The number of measurement stages, T = 30.

• The average number of measurements per subregion, 2

• The number of independent Monte Carlo trials, M = 200.

• The maximum number of antennas, KMAX = 10, 20, 50.

The results are provided in Figure 4 with columns representing different along-track radar systems with
KMAX = 10, 20, 50, respectively. The adaptive policy does significantly better than the uniform allocation as
the number of stages increase. Moreover, it approaches the performance of the oracle policy as the number
of stages increase. Finally, the optimal/adaptive policies use significantly fewer resources than are maximally
available. These computational resources can be used for other tasks such as estimating the interferometric
phase, estimating the clutter distribution (i.e., with a Gibbs sampler), or exploring the remainder of the
scene (to increase robustness to model mismatch).

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have provided a first glimpse into using adaptive resource allocation in order to efficiently
use computational resources in order to simultaneously detect and estimate targets in multiple-antenna
along-track SAR systems. We are able to provide significant gains over a non-adaptive uniform strategy,
both in terms of estimation error as well as computational savings. This could be used to alleviate the large
computational/communication burden associated with large-area along-track systems, as well as provide
stronger signal quality for post-processing.

This work was based on a simplified SAR measurement model in order to provide intuition on the ability
to use adaptive resource allocation techniques for efficient sensor management. Future work will look into
ways to increase the fidelity of the model to real-world sensors, yet maintain the benefits provided in this
paper. This would include (a) using the full SAR image model as provided in related work,5 (b) using richer
filtering/posterior estimation techniques (such as particle filters), and (c) including richer target models that
can include dynamic motion, such as transition probabilities and/or population models.

Acknowledgment

This research was partially supported by the Air Force Research Laboratory Sensors Directorate under grant
FA8650-07-D-1220-0006.



0 10 20 30
−10

−5

0

5

10

15

20

Stage

G
ai

n 
in

 d
B

 o
ve

r 
ex

h

 

 

0 10 20 30
−10

−5

0

5

10

15

20

Stage

G
ai

n 
in

 d
B

 o
ve

r 
ex

h

 

 

0 10 20 30
−10

−5

0

5

10

15

20

Stage

G
ai

n 
in

 d
B

 o
ve

r 
ex

h

 

 

Adaptive
Optimal

Adaptive
Optimal

Adaptive
Optimal

(a) Gain in mean-squared error compared to uniform policy, G(K)
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(b) Percentage of resources used, H(K)

Figure 4. This figure shows performance of the adaptive, uniform, and oracle policies as measured by MSE and
percentage of resources used, for three values of KMAX = 10, 20, 50 (from left-to-right, respectively). Note that the
adaptive policy approaches the performance of the oracle policy which has greater than 15 dB performance gains
over the uniform policy in MSE. Moreover, the adaptive and oracle policies use significantly fewer resources than the
uniform allocation. Both of these policies use less than 60% of the available resources for at later stages (t ≈ 30).
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