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ABSTRACT: Quantitative evaluation of similarity between feature den-
sities of images is an important step in several computer vision and

data-mining applications such as registration of two or more images

and retrieval and clustering of images. Previously we had introduced a

new class of similarity measures based on entropic graphs to estimate
Rènyi’s a-entropy, a-Jensen difference divergence, a-mutual informa-

tion, and other divergence measures for image registration. Entropic

graphs such as the minimum spanning tree (MST) and k-Nearest neigh-

bor (kNN) graph allow the estimation of such similarity measures in
higher dimensional feature spaces. A major drawback of histogram-

based estimates of such measures is that they cannot be reliably con-

structed in higher dimensional feature spaces.

In this article, we shall briefly extrapolate upon the use of entropic
graph based divergence measures mentioned above. Additionally,

we shall present estimates of other divergence viz the Geometric-

Arithmetic mean divergence and Henze–Penrose affinity. We shall
present the application of these measures for pairwise image regis-

tration using features derived from independent component analysis

of the images. An extension of pairwise image registration is to simul-

taneously register multiple images, a challenging problem that arises
while constructing atlases of organs in medical imaging. Using

entropic graph methods we show the feasibility of such simultaneous

registration using graph based higher dimensional estimates of en-

tropy measures. Finally we present a new nonlinear correlation mea-
sure that is invariant to nonlinear transformations of the underlying

feature space and can be reliably constructed in higher dimensions.

We present an image clustering experiment to demonstrate the
robustness of this measure to nonlinear transformations and contrast

it with the clustering performance of the linear correlation coeffi-

cient. VVC 2007 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 16, 130–

145, 2006; Published online in Wiley InterScience (www.interscience.wiley.

com). DOI 10.1002/ima.20079
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I. INTRODUCTION

The accuracy of image matching algorithms critically depend on

two factors: the selection of a highly discriminating image feature

space and the choice of similarity measure to match these image

features. These factors are especially important when some of the

intensity differences are due to the sensor itself, as arises in registra-

tion of speckle-limited images or when images of objects exhibit

nonlinear intensity relationship. In such cases, it is well known that

the standard linear cross correlation is a poor similarity measure.

To overcome limitations of linear correlation, Viola and Wells

(1995) and Maes et al. (1997) devised a similarity measure based

on the Kullback–Liebler (1951) information divergence between

the joint feature density and the product of the marginal densities.

This is the mutual information (MI) measure and it quantifies the

nonlinear correlation between images as the amount of statistical

dependency in the underlying joint probability distribution func-

tions (pdf), where the pdf is estimated using pixel intensity histo-

grams. Although the pixel-histogram method overcomes the nonlin-

ear correlation problem, drawbacks abound owing to the use of

histogram density estimators. Histograms are efficient density esti-

mators in low dimensions, but cannot be reliably constructed in

higher dimensional feature spaces (>4), thus limiting themselves to

applications where dimensionality of feature space is very low. Sev-

eral applications such as in multi-image and multisensor regis-

tration require the higher dimensional feature descriptors to effec-

tively capture signal properties. Unfortunately, the pixel-histogram

method cannot be directly extended to address these problems.

Ma and Hero (2001) proposed the use of entropic-graph methods

for image registration. As contrasted to the previous approaches,

entropic graphs estimate an information divergence without the

need to compute histogram density estimates. Our approach is

based on the entropic graph based estimate of Rényi’s a-entropy
introduced by Hero and coworkers (1999, 2002, in press) and devel-

oped by Ma (2001) for image registration. An entropic graph is any

graph whose normalized total weight (sum of the edge lengths) is a

consistent estimator of a-entropy. An example of an entropic graph

is the k-nearest neighbor graph and because of its low
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computational complexity it is an attractive entropic graph algo-

rithm. This graph estimator can be viewed as a multidimensional

generalization of the Vasicek–Shannon entropy estimator for one

dimensional features (Vasicek, 1976; Beirlant et al., 1997). Graph

methods sidestep the issue of density estimation and have asymp-

totic convergence to the Rényi a-entropy of the feature distribution.

This article extends our previous work with regards to using

entropic graphs for registration. Here we present the applications of

entropic graphs for robust pairwise image registration and exten-

sions to multi-image registration. We also introduce a new measure

of nonlinear correlation that can be estimated using entropic graphs

and is shown to be more robust to nonlinear transformations than

the linear correlation coefficient (CC). Previously (Neemuchwala,

2005), we had demonstrated the advantages of cross modality

image registration algorithms that used divergence measures calcu-

lated on higher dimensional feature spaces using entropic graph

methods such as the minimum spanning tree and k-Nearest neigh-

bor graphs. Divergence was estimated using the a-Jensen difference
that is a generalization of the Shannon–Jensen divergence. In (Nee-

muchwala, 2005, Neemuchwala and Hero, 2005) we presented

entropic graph based estimation of Henze–Penrose affinity, a-MI,

and a-Geometric arithmetic mean divergence. An overview of our

previous work is presented in some detail here to ease understand-

ing of concepts related to entropic graph based estimation of en-

tropy and divergence.

This article is arranged as follows: Section II briefly introduces

different divergence measures based on Rényi’s generalized diver-

gence. Different graph length functionals will allow us to approxi-

mate a wide variety of entropic matching criteria without the need

to explicitly estimate densities or histograms. Building on our previ-

ous work (Hero et al., 2002; Neemuchwala, 2005; Neemuchwala

and Hero, 2005; Neemuchwala et al., 2005), in Sections III and IV

we will show how a kNNG can be used to estimate a-entropy,
Henze–Penrose affinity a-MI, and Geometric–Arithmetic mean

divergence. Section V introduces a new nonlinear correlation

method based on entropic graphs. Section VI will demonstrate how

the combination of high dimensional ICA features and kNNG simi-

larity measures can lead to significant registration benefits in ultra-

sound breast imaging. In section VII we explain the utility of higher

dimensional matching toward simultaneous registration of three

images. Lastly, section VIII presents a clustering example to con-

trast the performance of the NLCC versus the CC in the face of

image corruption due to nonlinear distortion.

II. GENERAL ENTROPIC DISSIMILARITY MEASURES

Z is a d-dimensional random vector and f(z) and g(z) denote two

possible densities for Z. Here Z will be a feature vector constructed

from the reference image and the target image to be registered and f
and g will be the feature densities. When the features are discrete

valued the densities f and g should be interpreted as probability

mass functions.

A. Measures Related to the Ŕenyi Divergence. The basis

for entropic methods of image fusion is a measure of dissimilarity

between densities f and g. The Rényi a-divergence, also called the

Rényi a-relative entropy, between f and g of fractional order a [
(0,1)

DaðfkgÞ ¼ 1

a� 1
log

Z
gðzÞ f ðzÞ

gðzÞ
� �a

dz

¼ 1

a� 1
log

Z
f aðzÞg1�aðzÞdz: ð1Þ

When the density f is supported on [0,1]d and g is uniform over

this domain the (negative) a-divergence reduces to the Rényi a-en-
tropy of f:

Haðf Þ ¼ 1

1� a
log

Z
f aðzÞdz: ð2Þ

When specialized to various values of a the a-divergence can

be related to other well known divergence and affinity measures.

Two of the most important examples are the Hellinger dissimilarity

Hellinger–Battacharya distance squared,

DHellingerðfkgÞ ¼
Z ffiffiffiffiffiffiffiffi

f ðzÞ
p

�
ffiffiffiffiffiffiffiffi
gðzÞ

p� �2
dz

¼ 2 1� exp
1

2
D1

2
ðfkgÞ

� �� �
; ð3Þ

and the Kullback–Liebler (KL) divergence obtained in the limit as

a ? 1 of (1),

lim
a!1

DaðfkgÞ ¼
Z

gðzÞ log gðzÞ
f ðzÞ dz: ð4Þ

Another divergence measure arises as a special cases of the

Rényi a-divergence: the a-geometric-arithmetic mean divergence

(a-GA) (Taneja, 1995)

aDGAðf ; gÞ ¼ Daðpf þ qgkf pgqÞ ¼ 1

a� 1
log

Z
ðpf ðzÞ

þ qgðzÞÞaðf pðzÞgqðzÞÞ1�adz; ð5Þ

where the weights p and q ¼ 1 � p are selected in the interval (0,1).

The a-GA divergence is a measure of the discrepancy between the

arithmetic mean and the geometric mean of f and g, respectively,
with respect to weights p and q ¼ 1 � p, p [ [0,1]. The a-GA diver-

gence can thus be interpreted as the dissimilarity between the

weighted arithmetic mean p f(x) þ q g(x) and the weighted geomet-

ric mean f p(x) gq (x). Similarly to the a-Jensen difference (10), the

a-GA divergence is equal to zero if and only if f ¼ g (a.e.) and is

otherwise greater than zero. To our knowledge this measure has

never been applied to image registration.

Finally, when the dissimilarity between a joint density f(x,y) and
the product of its marginals g(x,y)¼f(x)f(y) is of interest, the aMI

can be defined from the a-divergence:

aMI ¼ DaðfkgÞ ¼ 1

a� 1
log

Z
f aðx; yÞf 1�aðxÞf 1�aðyÞdxdy: ð6Þ

In the limit as a ? 1 this measure converges to the Shannon MI

given by:

MI ¼
Z

f0;1ðz0; zTÞ log f0;1ðz0; zTÞ
f0ðz0Þf1ðzTÞ
� �

dz0dzT ¼ Hðf0Þ

þ Hðf1Þ � Hðf0;1Þ; ð7Þ

where H(g) ¼ �$ g ln g denotes the Shannon entropy of density g.
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For registering two discrete M 3 N images, one searches over a

set of transformations of the target image to find the one that maxi-

mizes the MI (7) between the reference and the transformed target.

We call this the ‘‘single pixel MI.’’ In Viola and Wells (1995) the

authors empirically approximated the single pixel MI (7) by ‘‘his-

togram plug-in’’ estimates, which when extended to the aMI gives

the estimate (neglecting unimportant normalization constants)

cMI ¼def 1

a� 1
log

X255
z0;zT¼0

f̂0;1ðz0; zTÞ log f̂0;1ðz0; zTÞ
f̂0ðz0Þf̂1ðzTÞ

 !
: ð8Þ

B. Other Entropic Similarity Measures. Another divergence

measure was introduced by Henze and Penrose (1999) as the limit of

the Friedman–Rafsky multivariate run-length statistic (Friedman and

Rafsky, 1979) and we shall call it the Henze–Penrose (HP) divergence

DHPðfkgÞ ¼
Z

p2f 2ðzÞ þ q2g2ðzÞ
pf ðzÞ þ qgðzÞ dz; ð9Þ

with respect to weights p and q ¼ 1 � p, p [ [0,1]. To our knowl-

edge this measure has not been applied to image registration.

An alternative entropic dissimilarity measure between two dis-

tributions is the a-Jensen difference (Basseville, 1989):

DHaðp; f ; gÞ ¼ Haðpf þ qgÞ � ½pHaðf Þ þ qHaðgÞ�; ð10Þ

with respect to weights p and q ¼ 1 � p, p [ [0,1]. The a-Jensen
difference has been applied to image registration (Hero, 2001; He,

in press). For detailed discussion on this divergence measure please

refer to (Neemuchwala, 2005; Neemuchwala and Hero, 2005; Nee-

muchwala et al., 2005).

All of the above divergence measures can be obtained as special

cases of the general class of f-divergences (Basseville, 1989). The

through the feature density functions; it is a nonnegative function and

equal zero only when f ¼ g; it is convex in f and g. On the other hand,
unlike the divergences, the a-Jensen difference is not invariant to in-

vertible transformations of the feature space Z. This means that the a-
Jensen difference could depend on the feature parameterization,

which is not desirable. We will see that this translates into reduced

discrimination capability in image registration applications.

III. ENTROPIC GRAPH ESTIMATORS OF FEATURE
SIMILARITY MEASURES

All of the similarity measures introduced in the previous section could

be estimated by plugging in feature histogram or density estimates of

the multivariate density f. This is the approach taken in virtually all

previous image registration work. A deterrent to these approaches is

the curse of dimensionality, which imposes prohibitive computational

burden when attempting to construct histograms in large feature

dimensions. An alternative approach, taken here, is to attempt to esti-

mate the divergence directly without recourse to difficult density esti-

mation. Such approaches have been developed for entropy estimation

using the gap Vasicek estimator for one dimensional feature spaces

(Miller and Fisher, 2003) and entropic graph entropic graph estima-

tors have been developed for higher dimensions (Hero and Michel,

1998; Hero et al., 2002). As our previous work in entropic graph esti-

mators forms the basis for approximating more general feature simi-

larity metrics we will review it here.

A. Entropic Graphs for Entropy Estimation. Assume that an

i.i.d. set of continuously valued feature vectors Zn ¼ fz1; . . . ; zng;

z 2 Rd have been collected from an image and that it is desired to

estimate the entropy of the underlying feature density f(z). An

entropic graph estimator of entropy is constructed as follows. Con-

sidering the n points in Zn as vertices, construct a a certain kind of

minimal graph that spans these vertices. Assume that the total edge

length of the graph satisfies the continuous and quasi additive prop-

erty (Redmond and Yukich, 1996), which is satisfied by graph con-

structions such as the minimal spanning tree, the traveling salesman

tour solving the traveling salesman problem (TSP), the steiner tree,

the Delaunay triangulation, and the k nearest neighbor graph.*

Then the total edge length function converges (a.s.) to a monotone

function of the Rényi a-entropy of f as n? ?.

More specifically, define the length functional of such a minimal

graph as

LgðZnÞ ¼ min
E2X

X
e2E

egðZnÞ ¼
X
i

egi ;

where O is a set of graphs with specified properties, e.g., the class

of acyclic or spanning graphs (leading to the MST), e is the euclid-
ean length of an edge in O, g is called the edge exponent or the

power weighting constant, and 0 < g < d. The sum Ri ei
g is an

equivalent notation this length functional, where the {ei}i are the

lengths of the edges in the minimal graph. The determination of Lg
usually requires a combinatorial optimization over the set O but in

some cases, e.g., the kNNG, this can be done in O(n log n) time.

The celebrated Beardwood, Halton and Hammersley (BHH)

Theorem asserts that (Redmond and Yukich, 1996)

lim
n!1LgðZnÞ=na ¼ bd;g

Z
f aðzÞdz; ða:s:Þ ð11Þ

where a ¼ (d � g)/d and bd,g is a constant independent of f — it

only depends on the type of graph construction (MST, kNNG, etc).

Comparing this to the expression (2) for the Rényi entropy it is

obvious that an entropy estimator can be constructed from the rela-

tion ð1� aÞ�1
log LgðZnÞ=na
� � ¼ Ĥaðf Þ þ c, where c ¼ (1 � a)�1

log bd,g is a removable bias. Furthermore, it is seen that one can

estimate entropy for different values of a [ [0,1] by adjusting g. For
many minimal graph constructions the topology of the minimal

graph is independent of g and only a single combinatorial optimiza-

tion is required to estimate Ha for all a.

B. Entropic Graph Estimate of Henze–Penrose Affin-
ity. Friedman and Rafsky (1979) presented a multivariate general-

ization of the Wald–Wolfowitz for the two sample problem. The

Wald–Wolfowitz test statistic is used to decide between the follow-

ing hypotheses on a pair of scalar random variables X,O [ Rd with

densities fx, fo respectively:

H0: fx ¼ fo; H1: fx 6¼ fo: ð12Þ
The test statistic is applied to an i.i.d. random sample {xi}i¼1

n1 ,

{oi}i¼ 1
n0 from fx and fo. In the univariate Wald–Wolfowitz test (d ¼

1), the n0 þ n1 scalar observations {zi}i ¼ {xi}i,{oi}i are ranked in

ascending order. Each observation is then replaced by a class label

X or O depending upon the sample to which it originally belonged,

resulting in a rank ordered sequence. The Wald–Wolfowitz test sta-

tistic is the total number of runs (run-length) Rl of Xs or Os in the

label sequence. As in run-length coding, Rl, is the length of consec-

utive sequences of length l of identical labels.

*Roughly speaking, continuous quasi additive functionals can be approximated
closely by the sum of the weight functionals of minimal graphs constructed on a uni-
form partition of [0,1]d.
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The Friedman–Rafsky (FR) test (1979) generalizes the Wald–

Wolfowitz test to d dimensions by clever use of the MST. The FR

test proceeds as follows: (1) construct the MST on the pooled multi-

variate sample points {xi} | {oi}; (2) retain only those edges that

connect an X labeled vertex to an O labeled vertex; (3) The FR test

statistic, N, is defined as the number of edges retained. The hypoth-

esis H1 in (12) is accepted for smaller values of the FR test statistic.

As shown by Henze and Penrose (1999), when normalized by the

total number n0 þ n1 of points, the FR test statistic N converges to 1

minus the Henze–Penrose divergence (9) between the distributions

fx and fo. The FR test is illustrated in Figure 1.

IV. ENTROPIC GRAPH ESTIMATORS OF a-GA AND aMI

Assume for simplicity that the target and reference feature sets

On0 ¼ foigi and X n1 ¼ fxigi have the same cardinality n0 ¼ n1 ¼
n. The estimators of a-GA and aMI are based on a kNNG-Voronoi

partitioning heuristic, described later. While Voronoi and nearest

neighbor approaches to entropy estimation have been proposed by

Miller (2003) and Kozachenko and Leonenko (1987), respectively,

to our knowledge the heuristic below is new and is applicable to

both entropy and divergence estimation.

A. kNNG Estimator of aGA. Assume an equal number of fea-

ture vectors On ¼ foigni¼1 and Xn ¼ fxigni¼1 are acquired from

images 1 and 2, where oi and xi are i.i.d. random variables distrib-

uted with densities fo and fx, respectively. Here we apply the

kNNG-Voronoi partitioning heuristic approximation from Nee-

muchwala and Hero (2005). This heuristic allows us to approximate

the volume of cellular Voronoi partitions on the feature density

using kNN graph edge lengths. To estimate aDGA (fo,fx) ¼ (a �
1)�1 log IGA (fo,fx), where IGA (fo,fx) is the integral in (5):

IGAðfo; fxÞ ¼
Z

haðzÞðf po ðzÞf qx ðzÞÞ1�adz ¼
Z

f po ðzÞf qx ðzÞ
hðzÞ

� �1�a

hðzÞdz;

ð13Þ

and h(z)¼ p fo(z) þ q fx(z). Finally, observe that h is the density

function of the pooled sample Zn ¼ foi; xigni¼1 with p ¼ q ¼ 1/2.

Reindex (in no particular order) these 2n samples as fzig2ni¼1. If the

consistent kNNG-Voronoi partition density estimation procedure

discussed in Neemuchwala and Hero (2005), is used to estimate fo,
fx and h from On;Xn and Zn, respectively, we know that

cIGA ¼ 1

2n

X2n
i¼1

f̂ po ðziÞf̂ qx ðziÞ
ĥðziÞ

 !1�a

ð14Þ

is a consistent estimator of aGA divergence. We assume for sim-

plicity that the support sets of fo and fx are contained in [0,1]
d. There

is no loss of generality if actual support sets are bounded regions

S � Rd as they can be mapped inside the unit cube through coordi-

nate transformation.

Next invoke the kNN-Voronoi heuristic and make the partition

density estimator approximations

ĥðziÞ ¼ lðPzðziÞÞ
kðPzðziÞÞ �

c=n

minfedi ðOnÞ; edi ðXnÞg
;

f̂oðziÞ ¼ lðPoðziÞÞ
kðPoðziÞÞ �

c=n

edi ðOnÞ
;

f̂xðziÞ ¼ lðPxðziÞÞ
kðPxðziÞÞ �

c=n

edi ðX nÞ
:

Substitution of these approximations into (14) yields the entropic

graph approximation to the a-GA mean divergence (5):

daDGA ¼ 1

a� 1
log

1

2n

X2n
i¼1

min
eiðOnÞ
eiðXnÞ
� �g=2

;
eiðX nÞ
eiðOnÞ
� �g=2

( )
;

ð15Þ

where unimportant constants have been omitted.

B. kNNG Estimator of aMI. We assume that n vectors of paired

features zi ¼ (oi, xi) [ R2d are acquired from the two images, i.e.,

Zn ¼ fzigni¼1 is the coincidence scatter-plot of these features.

Define fox(z) the joint feature density and fo and fx the marginal den-

sities of oi [ Rd and xi [ Rd, respectively, and define the integral

expression IMIIMI ¼
R
f aðoxÞðu; vÞf 1�a

o ðuÞf 1�a
x ðvÞdudv appearing in

the expression for the aMI (6), i.e., aMI ¼ 1
a�1

log IMI. If a

Figure 1. Illustration of Friedman and Rafsky’s (FR) MSTestimate of the Henze–Penrose divergence for the case of two Gaussian densities. (a)
The two densities have the mean and variance parameters. (b) the mean of one distribution is now shifted so that the densities diverge. The pro-

portion of MSTedges that connect feature vectors from different classes is a consistent estimate of 1 � DHP(fokfx). [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]
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consistent partition density estimate of procedure, discussed in the

previous subsection, is used to estimate fox, fo, and fx, then it is eas-

ily seen that

cIMI ¼ 1

n

Xn
i¼1

f̂oðoiÞf̂xðxiÞ
f̂oxðoi; xiÞ

 !1�a

ð16Þ

is a consistent estimator of IMI. Here, we note that according to the

definition of a consistent estimator, a consistent estimator of IMI is

one that converges in probability to IMI as the sample size grows.

Application of the kNNG-Voronoi partitioning heuristic (Nee-

muchwala and Hero, 2005) yields

f̂oxðziÞ � c=n

e2di ðZnÞ
; f̂oðuiÞ � c=n

edi ðOnÞ
; f̂xðviÞ � c=n

edi ðXnÞ
;

which when substituted into (16) gives the entropic graph approxi-

mation to the aMI

daMI ¼ 1

a� 1
log

1

na

Xn
i¼1

eiðZnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eiðOnÞeiðXnÞ

p !2g

; ð17Þ

where eiðZnÞ is the distance from the point zi ¼ (oi, xi) [ R2d to its

nearest neighbor in {Zj} and eiðOnÞ ðeiðXnÞÞ is the distance from

the point oi [ Rd, (xi [ Rd) to its nearest neighbor in On ðXnÞ.
Again, unimportant constant factors have been omitted from (17).

C. Implementation Issue. The stable computation of the a-MI

estimator (Equation 17) requires that ei(o) and ei(x) be non-zero

whenever ei(o 3 x) is nonzero (Fig. 2). If either ei(o) or ei(x) is
zero, a-MI cannot be calculated due to division-by-zero problems.

For continuously distributed features {Oi} and fX ig the probability

of stable computation is one, since the probability that any two fea-

ture components be exactly equal is zero. However, for practical

applications where the feature space is quantized to finite precision

arithmetic, the probability of stable computation is strictly less than

one. In fact, it can be shown that the probability of stable computa-

tion of the a-MI estimator rapidly goes to zero as the number of

feature realizations gets large.

A remedy for this is randomization. To avoid zero values of

ei(o) and ei(x), a small amount of uniform noise may be added to

the feature coefficient. This randomization disperses points uni-

formly in an area around their discretized value. This process is

consistent with the assumption that local distribution of continu-

ously valued feature vectors is uniform around their discretized val-

ues. In simulations with discretized 8-bit pixel intensity features,

univariate uniform noise with a variance r2 ¼ 0.02 was added to

each pixel intensity. This ensured that no two intensities were

exactly the same and thus enabling stable computation of aMI.

Another approach is to replace ei(o) and ei(x) with max(ei(o), e) and
max(ei(x), e), where e << 1 (Kybic, 2004).

V. A NONLINEAR CORRELATION MEASURE

The simple form of Eq. (17) is suggestive of a nonlinear correlation

measure between the features {Oi} and fX ig that eliminates the

implementation issue discussed above. Indeed, if ‘‘ei’’ in Eq. (17) is

redefined as the statistical expectation ‘‘E,’’ then the a-MI estimator

takes the appearance of a linear correlation coefficient between

{Oi} and fX ig. However, as explained above, the ratio eiðo3xÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eiðoÞeiðxÞ

p
is not bounded between 0 and 1, rather it can take val-

ues that are arbitrarily large. The following modification of Eq. 17

can be used to ensure that the nonlinear correlation measure lie

between 0 and 1. This new measure is called the nonlinear correla-

tion coefficient (NLCC).

Let ei(o 3 x) be the distance from ith feature pair (oi,ei) to its

nearest neighbor as before. Instead of ei(o) and ei(x) being the coor-

dinate-wise nearest neighbor distances along the feature coordinate

axes X and O (see Fig. 2) we define ~ei(o) and ~ei(x) the associated

nearest neighbor distances in the plane (see Fig. 3). The quantity

~eiðo3xÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~eiðoÞ~eiðxÞ

p
is now bounded between 0 and 1. In particu-

lar, it is equal to one when the nearest neighbor to (oi, xi) is also the

coordinate-wise nearest neighbor to (oi, xi) along the coordinate

axes O and X .

Figure 2. Illustration of the distances ei(o 3 x), ei(o), and ei(x) used
in the a-MI estimator [(Eq. (17)]. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 3. Illustration of modified distances ei(x) and ei(o) used to

stabilize the estimator [(Eq. (17)], defining the nonlinear correlation
coefficient (NLCC). [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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In particular the quantity

q̂ ¼ 1

n

Xn
i¼1

~eiðo3xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~eiðoÞ~eiðxÞ

p !
ð18Þ

is equal to one when the nearest neighbor graph is monotone

(increasing or decreasing) piecewise linear curve in the plane 4.

Thus, if the features are realizations of the random vector ðO;XÞ
which obeys the monotone model:

H ¼ gðXÞ; ð19Þ
where g(�) is a monotonic increasing function, the NLCC q̂ will

equal 1 with probability one (Fig. 4). This motivates the use of q as

a measure of information between Y and X . Unfortunately, if the

actual model is

H ¼ gðXÞ þ w ð20Þ
where w is additive noise, q̂ will converge to zero as n ? ? for

any continuous random variable w. It can be shown that the rate of

convergence in this case is n
�g
2d . This motivates the modification of

the NLCC to:

q̂NLCC ¼ 1

n1�g=2d

Xn
i¼1

~eiðo3xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~eiðoÞ~eiðxÞ

p !
: ð21Þ

This modified correlation now takes values between 0 and ?. A

normalized version can be defined as:

q̂ ¼ q̂NLCC
1þ q̂NLCC

ð22Þ

that is between zero and one.

We illustrate the NLCC by comparing it with the linear correla-

tion coefficient 23 for two simple models. The linear correlation

coefficient is defined as:

q̂CC ¼
1
n

Pn
i¼1ðoi � �oÞðxi � �xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1ðoi � �oÞ2 1

n

Pn
i¼1ðxi � �xÞ2

q ð23Þ

where �o ¼ 1/n Rn
i¼1 oi and �x ¼ 1/n Rn

i¼1 xi are sample means.

A. Numerical Experiments with NLCC. Consider the linear

model H ¼ aX þ w, where a2 ¼ qCC
2/(qCC

2 þ 1). Figure 5 shows a

plot of the linear [Eq. (23)] and nonlinear [Eq. (21)] correlation

coefficients, q̂CC and q̂NLCC, for this model as functions of the num-

ber of points N for various values of a. As a increases, the linear

correlation increases but does not reach one because of the presence

of additive noise w. In the limit as N ? ? the nonlinear correlation

coefficient converges to a constant.

Now consider the nonlinear model given by H ¼ agðXÞ þ w;
gðXÞ ¼ bX 3. As shown in Figure 6, the linear correlation coeffi-

cient remains unchanged at the value corresponding to the relation

between Y and X . The nonlinear correlation, however, increases

with a, showing that it responds to changes in the nonlinear relation

between Y and X .

Figure 7 confirms these findings. It illustrates the relation

between the linear and nonlinear correlation coefficients for both

linear and nonlinear models. The values are plotted for N ¼ 50,000

and a increases from 0.1 to 0.7071.

Figure 4. The Nearest Neighbor Graph over the realizations (oi 3
xi)i¼1

N of the paired features describes a monotone function in the
plane. For this case, the NLCC q̂ ¼ 1.

Figure 5. Comparison of linear and nonlinear correlation coefficient

for a linear model. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Figure 6. Comparison of linear and nonlinear correlation coefficient
for a nonlinear model. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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VI. APPLICATION TO ULTRASOUND BREAST IMAGING

Ultrasound (US) imaging is an important medical imaging modality

for whole breast imaging that can aid discrimination of malignant

from benign lesions, can be used to detect multifocal secondary

masses, and can quantify response to chemotherapy or radiation

therapy. In Figure 8a set of 20 2D slices extracted from a 3D volu-

metric US breast scanner is shown for 20 different patients (cases)

receiving chemotherapy. The women were imaged on their backs

with the transducer placed so as to image through the breast toward

the chest wall. Some of the cases clearly exhibit tumors (delineated

masses with shadows), others exhibit significant connective tissue

structure (bright thin lines or edges), and all have significant speckle

noise and distortions.

In registering ultrasound images of the breast, the reference and

secondary images have genuine differences from each other be-

cause of biological changes and differences in imaging, such as

positioning of the tissues during compression and angle dependence

of scattering from tissue boundaries. The tissues are distorted out of

a given image plane as well as within it. Speckle noise, elastic

Figure 7. Plot of CC v/s NLCC for N ¼ 50,000 and a ¼ 0.1 to

0.7071. [Color figure can be viewed in the online issue, which is avail-
able at www.interscience.wiley.com.]

Figure 8. Ultrasound (US) breast scans from twenty volume scans of patients undergoing chemotherapy.
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deformations, and shadows further complicate the registration pro-

cess, thus making ultrasound breast images notoriously difficult to

register. It is for this reason that conventional registration methods

tend to have problems with US breast images. Here we will illus-

trate the advantages of matching on high dimensional feature spaces

implemented with entropic similarity metrics.

A. Ultrasound Breast Database. To benchmark the various

registration methods studied we evaluated the mean squared regis-

tration error for registering a slice of US breast image volume to an

adjacent slice in the same image volume (case). For each case we

added differing amounts of spatially homogeneous and independent

random noise to both slices in order evaluate algorithm robustness.

A training database of volumetric scans of 6 patients and a test data-

base of 15 patient scans were created. Feature selection was per-

formed using the training database and registration performance

was evaluated over the test database. These databases were drawn

from a larger database of 3D scans of the left or right breast of

female subjects, aged 21–49 years, undergoing chemotherapy or

going to biopsy for possible breast cancer. Each volumetric scan

has a field of view of about 4 cm3 (voxel dimensions 0.1 mm2 3
0.5 mm) and encompasses the tumor, cyst, or other structure of in-

terest. The scans were acquired at 1 cm depth resolution yielding 90

cross-sectional images at 0.4 cm horizontal resolution. The patient

data were collected with the intention to monitor therapy progress

in the patients. Tumor/cyst dimensions vary and can range from

5 mm3 to 1 cm3 or higher. As the aim of this study is to quantitatively

compare different feature selection and registration methods we re-

stricted our investigation to rotation transformations over � 168.

B. Feature Space. We have experimented with a large number

of vector valued features including Meyer 2D wavelet coefficients,

grey level tag features, and curvelet features. Here we present

results for vector valued features constructed by projecting image

patches onto a basis for the patch derived from independent compo-

nent analysis (ICA). The ICA basis is especially well suited for our

purposes since it aims to obtain vector features that have statisti-

cally independent elements and can therefore facilitate estimation

of aMI and other entropic measures.

Specifically, in ICA an optimal basis is found from a training set

which decomposes images Xi in the training set into a small number

of approximately statistically independent components {Sj} each

supported on an 8 3 8 pixel block (we choose an 8 by 8 block only

for concreteness):

Xi ¼
Xp
j¼1

aijSj: ð24Þ

We select basis elements {Sj} from an over-complete linearly de-

pendent basis using randomized selection over the database. For

image i the feature vectors zi are defined as the coefficients {aij} in

(24) obtained by projecting each of its 8 3 8 subimage blocks onto

the basis.

Figure 6.2 illustrates the estimated 64D (8 3 8) ICA basis for

the training database. The basis was extracted by training on over

100,000 randomly sampled 83 8 subimages taken from the six vol-

umetric breast ultrasound scans. The algorithm used for extraction

was Hyvärinen and Oja’s (1999) FastICA ICA code (available from

Hyvärinen.) which uses a fixed-point algorithm to perform maxi-

mum likelihood estimation of the basis elements in the ICA data

model (24). Note that no pruning is performed on the ICA basis

vectors. The 64D ICA is a full decomposition of the 8 3 8 patch of

image (Fig. 9). Given this ICA basis and a pair of to-be-registered

image slices, coefficient vectors are extracted by projecting each 8

3 8 neighborhood in the images onto the basis set. Thus, for aMI

the coincidence scatter plot is in 128 dimensions; the number of

dimensions of a coincidence feature extracted at a particular row–

column coordinate in the pair of images. The feature space for the

aJensen, aGA, and Henze–Penrose registration criteria was con-

structed by pooling the two labeled sets of 64D feature vectors.

Thus, the dimensionality of the feature space was 64D. MST or

kNNG were constructed on the 64D feature spaces of the pooled

sample. In either case these feature dimensions (128D or 64D) are

too large for a histogram binning algorithm to be feasible, which

prevented comparison to the full dimensional classical density

plug-in MI registration criterion.

Recently, Kybic (2004) used the kNN graph to estimate MI by

randomly grouping higher dimensional feature vectors. Divergence

was calculated as the mean divergence over m such groupings of n
points each. In our approach, all extracted feature vectors are used

to estimate divergence. In experiments where feature vectors were

partitioned (e.g., using k-Means clustering) before building the NN

tree over the centroids of these partitions, we noticed a drop in

registration accuracy. Kybic reports that divergence estimation bias

decreased for m > 50 and registration error was lower than histo-

gram estimates of divergence.

C. Experimental Results. For each of the 15 scans in the test

set two image slices were extracted in the depth direction perpen-

dicular to the skin, such that they showed the cross-section of the

tumor. These two slices have a separation distance of about 5 mm

(Fig. 10). At this distance, the speckle deccorelates but the underly-

ing anatomy remains approximately unchanged. The first cross-

sectional slice was picked such that it intersected with the ellipsoi-

dal-shaped tumor through its center. The second slice was picked

Figure 9. 8 3 8 ICA basis set obtained from training on randomly

selected 8 3 8 blocks in the training database of breast scans.
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closer to the edge of the tumor. These images thus show a natural

decline in tumor size, as would be expected in time sampled scans

of tumors responding to therapy. Since view direction changes from

one image scan to the next for the same patient over time, rotational

deformation is often deployed to correct these changes during regis-

tration. We simulated this effect by registering a rotationally

deformed image with its unrotated slice-separated counterpart, for

each patient in the 15 test cases. Rotational deformation was in

steps of 2 degrees such that the sequence of deformations was [�16

�8 �4 �2 0 (unchanged) 2 4 8 16 ] degrees. Further, the images

were offset (relatively translated) by 0.5 mm (5 pixels) laterally to

remove any residual noise correlation since it can bias the registra-

tion results. Since some displacement can be expected from the

handheld UL imaging process and the relative tissue motion of the

compressible breast tissue, this is not unreasonable. For each defor-

mation angle, divergence measures were calculated, where the

‘‘registered state’’ is the one with 0 degrees of relative deformation.

Figure 11 shows average objective function plots for the registra-

tion experiment discussed above. Thirty different noise realizations

were added to the 15 test images at every angle of rotational defor-

mation to give N ¼ 400 different images for calculation of the match-

ing functions. In the figure, each graph plots the sample mean, l̂u,
calculated over the N measurements at each angle, u. The standard

deviation of l̂u, also called the standard error of the measurements, is

given by rMu ¼ ru=
ffiffiffiffi
N

p
for u [ {�168, . . . , þ 168}, where ru is the

standard deviation of the Nmeasurements made at each rotational de-

formation. To normalize the images it is important to discount for the

relative scaling between the matching functions. Hence, l̂u of each

matching function is normalized such that max(rMu
) is unity. This

restricts arbitrary scaling and also discounts for any scaling inherent

in the computation of the matching function. In each row, the extent

on the search space is identical. This facilitates comparison of two

divergence estimates and also allows for comparison of a particular

divergence as noise increases. It can readily be seen from the trends

that at low levels of noise, all feature based estimates have sharper

peaks than the Shannon MI estimate using pixel features. Further, as

noise increases some divergence estimates, notably a GA and aMI

divergence between the ICA features of the images, maintain sensi-

tivity to rotational deformation.

For each extracted image slice we created 250 noisy replicates by

adding truncated Gaussian noise. 8 3 8 neighborhoods of the ultra-

sound image replicates were projected onto the 64D ICA basis. The

RMS registration error is illustrated for six different algorithms in

Figure 12 as a function of the RMS (truncated) Gaussian noise. Regis-

tration error was determined as the RMS difference between the loca-

tion of the peak in the matching criterion and the true rotation angle.

Note from the figure that, except for the a-Jensen difference, the

standard single pixel MI underperformes relative to the other meth-

ods. This is due to the superiority of the high dimensional ICA fea-

tures used by these other methods. The a Jensen difference imple-

mented with kNN vs MST give identical performance. Unlike the

other metrics, the a Jensen difference is not invariant to reparameteri-

zation, which explains its relatively poor performance for large RMS

noise. Finally, we remark that the runtime complexity of the kNN-

based methods (off-the-shelf kdb-tree implementation) is lower than

the MST-based methods (off-the-shelf Kruskal algorithm).

VII. SIMULTANEOUS MULTI-IMAGE REGISTRATION

Multi-image registration deals with the problem of registering three

or more images simultaneously. In breast cancer therapy patient

progress is monitored by periodic UL scans of the breast. Radiolog-

ists often register breast images of a patient collected at periodic

intervals to monitor tumor growth or recession. One approach is to

sequentially register pairs of images from time A to time B, time B

to time C, and so on. Besides being cumbersome and expensive,

this process may lead to the accumulation of registration errors. A

less expensive solution that may be able to avoid error accumula-

tion is to register all the sequential scans (A,B,C,. . .) simultane-

ously. This section demonstrates the utility of entropic graph meth-

ods to simultaneously register three or more images.

Figure 10. UL Images of the breast separated and rotationally deformed. (a) Cross-sectional image through center of tumor. (b) Rotated

cross-sectional image acquired at a distance 5 mm away from Image in (a).
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A. Divergence Estimation for Multi-Image Registration. Eval-
uation of divergence for multiple images is straightforward. The a-
MI between d-dimensional features fX igNi¼1, fOigNi¼1, fYigNi¼1

extracted from three images, I1,I2,I3, respectively, is an extension of

Eq. (17) as follows:

daMI ¼ 1

a� 1
log

1

na

Xn
i¼1

eiðx3o3yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eiðxÞeiðoÞeiðyÞ

p !3g

; ð25Þ

where ei(x 3 o 3 y) is the distance from the point zi ¼ [xi,oi,yi] [
R3d to its nearest neighbor in {Zj}j = i and ei(x) (ei(o)) (ei(y)) is the
distance from the point xi [ Rd, (oi [ Rd), (yi [ Rd) to its nearest

neighbor in fXjgj6¼iðfOjgj6¼iÞfYjgj 6¼i, respectively.

Similarly, building on Eq. (15) a-GA can be estimated between

one reference and two target images as follows:

daDGA ¼ 1

a� 1
log

1

3n

X3n
i¼1

minfrjg3j¼1

r1 ¼ min
eiðoÞ
eiðxÞ
� �g=2

;
eiðxÞ
eiðoÞ
� �g=2

( )
;

r2 ¼ min
eiðxÞ
eiðyÞ
� �g=2

;
eiðyÞ
eiðxÞ
� �g=2

( )
;

r3 ¼ min
eiðyÞ
eiðoÞ
� �g=2

;
eiðoÞ
eiðyÞ
� �g=2

( )
;

ð26Þ

Figure 11. Normalized average profiles of image matching criteria for registration of UL breast images taken from two slices of the image vol-
ume database under decreasing SNR. All plots are normalized with respect to the maximum variance in the sampled observations. (row 1) kNN-

based estimate of a-Jensen difference divergence between ICA features of the two images, (row 2) MST-based estimate of a-Jensen difference

divergence between ICA features of the two images, (row 3) NN estimate of a Geometric–Arithmetic mean affinity between ICA features, (row 4)

MST based estimate of Henze–Penrose affinity between ICA features, (row 5) Shannon Mutual Information estimated using pixel feature histo-
gram method, (row 6) a Mutual Information estimated using NN graphs on ICA features and lastly, (row 7) NN estimate of the Nonlinear correla-

tion coefficient between the ICA feature vectors. Columns represent objective function under increasing additive noise. Column 1–4 represent

additive truncated Gaussian noise of standard deviation, r ¼ 0, 2, 8, and 16. Rotational deformations were confined to �16 degrees. [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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where ei(x), ei(o), and ei(y) are the distances from a point zi [ {{xi}
i,

{oi}
i, {yi}

i} [ Rd to its nearest neighbor in fX igi, fOigi, and fYigi,
respectively. Here, as above a ¼ (d � g)/d.

Shannon MI can be estimated using pixel features by extending

Eq. (8) to histogram estimates of the joint pdf in 3D space as fol-

lows:

daMI ¼def 1

a� 1
log

X255
x;o;y¼0

f̂ a0;1ðx; o; yÞ f̂xðxÞf̂oðoÞf̂yðyÞ
� �1�a

: ð27Þ

In (27) we assume 8-bit gray level, f̂ x,o,y denotes the joint intensity

level ‘‘coincidence histogram’’

f̂x;o;yðx; o; yÞ ¼ 1

MN

XMN

k¼1

Ixk ;okyk ðx; o; yÞ; ð28Þ

and Ixk,ok yk (x,o,y) is the indicator function equal to one when

(xk,ok,yk) ¼ (x,o,y) and equal to zero otherwise.

Equation 28 requires building a histogram in the 3D joint space

of the three images. Generalizing to N images, it can easily be seen

that a N-dimensional histogram would be required to estimate Shan-

non MI using the histogram plug-in method. As discussed earlier,

the curse of dimensionality restricts the estimation of Shannon MI

in higher dimensions. On comparison with Eq. 25 and 27 it is seen

that estimation of a-MI and a-GA do not suffer from this curse-of-

dimensionality since the complexity of the kNN graph grows only

linearly in the dimension.

In the following section, the performance of entropic graph

based divergence estimates of a-MI and a-GA is compared with

traditional histogram estimation techniques of Shannon MI.

B. Quantitative Performance Evaluation in Multi-Image
Registration. The methods used to evaluate performance of

divergence estimates for the two-image case are extended to three

images. The database of UL images is divided, as before, into train-

ing and testing sets. 64D ICA are estimated on the training set and

used as features for registration. Test images are extracted from

each volumetric scan in the test dataset. A �5 mm depth directional

distance separates the reference image Iref from the two target

images Itar1 and Itar2. ICA basis coefficient features are extracted

from the reference and target images using the standard subblock

projection technique, as before. Registration performance is eval-

uated over rotational deformation within the range �168. Figure 13
shows an example registration scenario where the reference images

is shown to be sandwiched between two target images that are

rotated.

Figure 14 shows the registration performance of the 16 test

image sets. Mis-registration error is measured as the sum of mean-

squared misregistration errors along each of the target images, and

can hence vary from 08 to 328. The SNR in all the images is pro-

gressively decreased by adding truncated uncorrelated Gaussian

noise. Mean misregistration error is obtained by Monte-Carlo simu-

lations over 30 different noise realizations on each of the 16 image.

Thus, every point in the graph is the mean error over 480 measure-

ments. Standard error bars are as shown.

VIII. IMAGE CLUSTERING

Nonlinear transformations often creep into the image acquisition

process, common sources being lens distortion in cameras, changes

in light patterns, or sensor specific nonlinearities such as magnetic

field inhomogeneities in magnetic resonance imaging. Since the

nonlinear transformations cannot be recovered by a linear measure

of similarity such as the linear correlation coefficient, in such situa-

tions, the use of a measure invariant to nonlinear transformations

could be justified as being more robust approach. While the MI

measure, as used by Viola and Wells (1995), is invariant to non-

linear transformations it is a joint statistic that requires one-to-one

Figure 12. Rotational root mean squared error obtained from re-
gistration of ultrasound breast images using six different image simi-

larity/dissimilarity criteria. Standard error bars are as indicated. These

plots were obtained by averaging 15 cases, each with 250 Monte

Carlo trials adding noise to the images prior to registration, corre-
sponding to a total of 3750 registration experiments. [Color figure

can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

Figure 13. Multi-image registration

scenario illustrated using three UL

images of the breast where the refer-

ence image is sandwiched between
two target images that are rotated �
168, respectively.
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feature correspondence and is difficult to calculate directly in

higher-dimensional spaces. The NLCC that we introduced in sec-

tion V does not suffer from these drawbacks since it is not a joint

statistic and can also be reliably calculated in higher-dimensional

spaces using the graph-based methods we describe.

In this section, we attempt to use this invariance property of

NLCC for an image clustering application. In this preliminary

example we demonstrated clustering of images sampled from the

Corel image database. Fifteen labeled images were randomly

picked and resized to 100 3 100 pixels using bilinear interpolation.

Six different nonlinear transformation functions, including quad-

ratic, cubic, parabolic, sigmoid, inverse sigmoid, and reverse video,

were applied to the images in the intensity space.

Here is a quick mathematical description of the nonlinear

transformations. Also see Figure 15 for a graphical illustration

of the transform. Let x correspond to the set of intensity features

extracted from the original image. Let y correspond to the set of

intensity features generated by applying a nonlinear transforma-

tion T(x).
Quadratic transformation

y ¼ TðxÞ ¼ a 3 x2 ð29Þ

Cubic transformation

y ¼ TðxÞ ¼ a 3 x3 ð30Þ
Parabolic transformation

y ¼ TðxÞ ¼ aðx� xcÞ2 þ yc ð31Þ

Third-order polynomial transformation

y ¼ TðxÞ ¼ a 3 x2 þ b 3 x3 ð32Þ

Sigmoidal transformation

y ¼ TðxÞ ¼ 1

1þ exp�a 3 ðx� bÞ ð33Þ

Inverse-sigmoid transformation

y ¼ TðxÞ ¼ �1

a
3 log

� 1� x

x

�
þ b ð34Þ

Figure 15. Nonlinear transformations applied to images from the
Corel database. [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]

Figure 14. Multi-image registration scenario
illustrated using three UL images of the breast

where the reference image is sandwiched

between two target images that are rotated �
168, respectively. [Color figure can be viewed in

the online issue, which is available at www.

interscience.wiley.com.]
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Reverse video transformation

y ¼ TðxÞ ¼ maxðxÞ � x: ð35Þ
Images of the 15 objects used in this clustering study were trans-

formed nonlinearly using the formulations described before. Fur-

ther, reverse-video versions of each image were also transformed

and added to the dataset. Finally, using different values of the pa-

rameters a and b, every image in the dataset has 21 additional trans-

formed counterparts to create a dataset of 330 unique images. The

LCC and NLCC were then estimated between all images of the

databased picked 2 at a time. There are 330
2

� �
=2 such combinations.

The linear and nonlinear CC were then calculated for all such image

pairs. To visualize the resultant cloud of relative positions of these

images where distance is measured using the similarity measure,

we project them onto a 2D space using a variant of the multidimen-

sional scaling algorithm as used in the Pajek (Batagelj and Mrvar,

2003) software package. The relative estimates provided by MDS

algorithms are accurate up to a rotation of the coordinate positions

of the vertices. The resultant mappings can be seen in Figures 16

and 17. The performance of the clustering result is measured using

a clustering figure-of-merit called the Dunn’s validity index (1974)

defined as

Figure 16. Demonstration of image clustering using the linear correlation coefficient. Intensity images of 15 objects were each transformed

using a nonlinear function. Using the CC as a similarity function the images were projected onto a 2D scale using a MDS algorithm (Batagelj and

Mrvar, 2003). The nodes of the graph represent images while the edges represent similarity between images. For clarity, only edge weight greater
than a particular threshold (0.9) of the CC are shown. [Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com.]
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Dnc ¼ min
i¼1;...;nc

min
j¼i;...;nc

dðci; cjÞ
maxk¼1;...;nc diamðckÞ
� �� 	

; ð36Þ

where d(ci,cj) is the dissimilarity function between two clusters

ci and cj and is defined as d(ci,cj) ¼ min(x [ ci, y [ cj) d(x,y)
and diam(ci) is the diameter of the cluster representing its dis-

persion and given as diam(ci) ¼ max(x,y [ ci) d(x,y). Dunn’s

technique is well suited to illustrate clustering performance since

it attempts to identify clusters that are compact and well sepa-

rated. In this experiment the number of classes are known apri-

ori (15 image classes) and the validity index is used to measure

the performance of the clustering algorithm. A higher value of

Dnc
thus implies that the algorithm can cluster the data into 15

partitions with better separation between classes and more com-

pactness within each class.

Figures 16 and 17 above show clustering performance of the

LCC and NLCC, respectively. The vertices represent the images in

the lower dimensional space. The bidirectional links between

images each have an associated weight wij
LCC and wi,j

NLCC, where i
and j index over images and the superscript signifies the distance

measure of the link. By thresholding on w we can visualize only the

Figure 17. Demonstration of image clustering using the nonlinear correlation coefficient. Intensity images of 15 objects were each transformed

using a nonlinear function. Using the NLCC as a similarity function the images were projected onto a 2D scale using a MDS algorithm (Batagelj

and Mrvar, 2003). The nodes of the graph represent images while the edges represent similarity between images. For clarity, only edge weight
greater than a particular threshold (0.8) of the NLCC are shown. [Color figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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strong links. Thus, absent links imply that the link weights were

low and the images were not perceived to be similar. In the first fig-

ure we can see that the LCC has a highly disperse cluster with a

great amount of intermingling between classes. This is also

reflected in the lower Dunn’s validity index for the clustering of 15

classes. The NLCC, however, shows tight clustering and scores

much higher on the Dunn’s validity index. Earlier, in section V we

saw that the NLCC is invariant to nonlinear transformations of the

underlying image intensity features. By definition, the linear CC is

invariant only to linear transformations of image intensity features.

Hence, the clustering of objects under the influence of nonlinear

transformations on the feature space is much better behaved when

the NLCC is used as a dissimilarity measure.

IX. CONCLUSION

In this article, we have presented several extensions of our previous

work on entropy estimation for image registration. These extensions

include new kNN estimators of the aMI and geometric-arithmetic

mean divergence (aGA) and a new measure of nonlinear correla-

tion. As compared with previous work in which estimated Jensen

differences were used for registration, these divergence measures

have the advantage of invariance to reparameterization of the fea-

ture space. While we do not yet have any convergence results for

the kNN divergence estimators, there is circumstantial theoretical

evidence that they do converge. Furthermore, our numerical evalua-

tions show that these divergence estimators outperform previous

approaches to image registration. We also introduced the Fried-

man–Rafsky (FR) multivariate run test, which is an estimator of

Henze–Penrose divergence, as a new matching criterion for image

registration. Our numerical experiments showed that the FR, aGA,
and aMI significantly outperform previous approaches in terms of

registration mean squared error. Of course, as compared to our

kNNG divergence estimators, the FR method has the advantage of

proven theoretical convergence but has the disadvantage of higher

runtime complexity.

The new kNN estimators of the aMI and aGA have the

advantage of invariance to reparameterization of the feature

space. While convergence results for the kNN divergence esti-

mators were not provided there is circumstantial theoretical evi-

dence that they do converge. Furthermore, the numerical evalua-

tions show that these divergence estimators outperform previous

approaches to image registration. This article also introduced the

Friedman–Rafsky (FR) multivariate run test, which is an estima-

tor of Henze–Penrose divergence, as a new matching criterion

for image registration. Of course, as compared to our kNNG

divergence estimators, the FR method has the advantage of pro-

ven theoretical convergence but has the disadvantage of higher

runtime complexity.

The performance of aGA and Henze–Penrose have exceeded

those of other divergence measures. We hypothesize that the combi-

nation of low-dimensional complexity through the exclusive use of

marginal spaces and invariance to transformations has led to supe-

rior noise performance and robustness in these measures as com-

pared to others. Unlike the other metrics, the aJensen difference is

not invariant to re-parameterization, which explains its relatively

poor performance for large RMS noise.

An exciting extension of this work is in registration of multi-

ple images. Multiple images could be registered simultaneously

to form an atlas. Multi-image registration could also be used to

simultaneously register time-sampled imagery such as those

acquired during periodic UL examination for cancer detection

and management.

Lastly, we have introduced a new measure of nonlinear correla-

tion. Based on an extension of aGA and aMI measures, the NLCC

is estimated using the kNN graph to adaptively partition space

based on local density of samples. We contrast its performance to

the linear CC and find this measure to be robust in the face of non-

linear intensity transformations.
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