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Abstract— This paper addresses the problem of sensor manage-
ment for a large network of agile sensors. Sensor management,
as defined here, refers to the process of dynamically retasking
agile sensors in response to an evolving environment. Sensors
may be agile in a variety of ways, e.g., the ability to reposition,
point an antenna, choose sensing mode, or waveform. The goal
of sensor management in a large network is to choose actions
for individual sensors dynamically so as to maximize overall
network utility. An effective sensor management algorithm must
combine prior knowledge, sensor models, environment models,
and measurements to predict the best actions to take.

Sensor management in the multiplatform setting is a challeng-
ing problem for several reasons. First, the state space required to
characterize an environment is typically of very high dimension
and poorly represented by a parametric form. Second, the net-
work must simultaneously address a number of competing goals.
Third, the number of potential taskings grows exponentially
with the number of sensors. Finally, in low communication
environments, decentralized methods are required.

The approach we present in this paper addresses these chal-
lenges through a novel combination of particle filtering for non-
parametric density estimation, information theory for comparing
actions, and physicomimetics for computational tractability. The
efficacy of the method is illustrated in a realistic surveillance
application by simulation, where an unknown number of ground
targets are to be detected and tracked by a network of mobile
sensors.

Index Terms— multiplatform sensor management, information
theory, particle filtering, joint multitarget probability density,
multitarget tracking.

I. I NTRODUCTION

Large networks of inexpensive sensors provide a means
for performing persistent and ubiquitous surveillance over a
wide region. Such networks have found use in diverse areas
including habitat monitoring, the biomedical arena, industrial
robotics, and defense. In this paper, we address the problem
of managing the resources of a network consisting of a large
number (i.e., tens to thousands) of agile sensors. Agility, as
defined here, refers to any property of a sensor that can be
dynamically tasked so that the network of sensors will be
better able to perform surveillance on a region. In the general
case, each sensor in the network is capable of a variety of
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actions, including where to move, which direction to emit
energy, what mode to use, what waveform to transmit (if
active), or which direction to listen (if passive). The goal
of network sensor management is to develop a methodology
where each node in the sensor network adjusts its behavior
dynamically so that the overall utility of the network is
maximized.

Sensor management in large agile networks is challenging
for a host of reasons. First, the state space required to charac-
terize the region under surveillance is typically of extremely
high dimension and is poorly represented by a parametric
form (e.g., a Gaussian or a sum of Gaussians). It is this
state space that the network of nodes is to estimate, so proper
mathematical formulation and efficient algorithmic implemen-
tation is key. Second, the sensor network must simultaneously
address many competing goals (e.g., detection of new areas of
interest while monitoring known areas of interest), and so the
scheduling metric must be suitably chosen to appropriately
balance between these goals. Third, exact maximization of
overall network utility is intractable as the number of actions
available to the network at each decision epoch is expo-
nential in the number of nodes and the number of actions
each node can take. Therefore, a principled approximation
to simultaneous multiplatform scheduling must be employed.
This method must be robust and, while not solving the
joint optimization problem exactly, encourage collaboration
between sensor nodes in the manner that joint optimization
would if it were practical to implement. Fourth, there must be
information sharing between the individual sensor nodes (or
the nodes and a central controller) so that the sensing workload
is appropriately divided up amongst the collection of sensors.
Information collected by the individual nodes must be fused
(either centrally or at each node individually) to yield a single
picture that characterizes the knowledge of the system under
surveillance. This fused picture must then drive the actions of
the sensors at the next decision epoch.

In this paper, we describe a method of scheduling the
nodes in a large agile network that addresses each of the
challenges outlined above. This method is a novel combination
of adaptive importance density particle filtering for nonpara-
metric density estimation, information theoretic measures for
estimating the value of possible future actions, and physi-
comimetics for providing a tractable approximation to the joint
optimization. An outline of the paper is as follows.

First, in Section II, we describe a mathematical formulation
called the Joint Multitarget Probability Density (JMPD). This
work has been reported previously [1], [2] and is reviewed
briefly here as required background material for the following
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sections. The JMPD is used to capture the estimate of the
state of the surveillance area, and is constructed on-line
using models of how the surveillance area evolves coupled
with models of how sensors work and actual measurements.
This method is related to the approach of others, including
Stone [3], Srivastava and Miller [4], and others [5], [6],
[7] as discussed in [1]. Our model problem consists of a
surveillance area encompassing a number of moving ground
targets. The number of targets, their positions, velocities and
classes are unknown at startup and (potentially) time varying
from then on. The JMPD is a single probabilistic entity that
simultaneously describes uncertainty about the number of
targets, as well as the positions, velocities, and identifications
of those targets. The JMPD is estimated on-line using a
novel multitarget particle filtering technique, which relies on
an importance density specifically designed for this problem.
Others have used particle filtering approaches for multitarget
filtering, including Orton [8], Maskell [9], and others [10],
[11], [12], [13].

Second, in Section III, a method of using an information
theoretic measure called the Rényi Divergence for sensor
management is discussed. Portions of this work have been
reported previously in [14]. The repetition here is minimal and
serves to establish the required background and notation for
the following sections. Specifically, the quality of a proposed
action (be it moving the sensor to another location, or pointing
an antenna in a particular direction) is measured by the amount
of information that is expected to be gained by its execution.
This approach is related to that of others, including Zhao [15],
Hintz [16], Schmaedeke [17], and others [18], [19], [20] as dis-
cussed in [14] and elsewhere. At each epoch when a decision
is to be made, the uncertainty about the surveillance region (as
captured by the JMPD) is used to compute the value of each
of the possible sensing actions using an information theoretic
measure called the Rényi (alpha-) Divergence. Information
theoretic metrics have the compelling property that different
types of information (e.g., information about the presence or
absence of targets, the position, velocity, and identification of
targets) can all be compared on an equal footing. For example,
by using an information based approach, the value of an action
that extracts information about the class of a firm target can
be compared directly to the value of an action that is meant to
search for new targets. We restrict our attention in this paper
to single-stage (myopic) scheduling. Multi-stage extensions to
the Ŕenyi Divergence approach using a partially observable
Markov decision process (POMDP) [21], [22] approach and
approximation techniques have been discussed elsewhere [23],
[24]. Others have used POMDP approaches with other metrics
and approximation methods for related problems, e.g., [25],
[26], [27], [28]. Of course, the most general dynamic sensor
scheduling problem is a partially observed stochastic control
problem over a finite or infinite horizon. Such problems are
formulated in terms of the information state and therefore
exactly solving the resulting dynamic programming problem
is computationally intractable in most cases [29].

The method of multiplatform information based sensor man-
agement that is the central contribution of this paper is given in
Section IV. It is shown therein that the multiplatform optimiza-

tion can be written as a sum of single platform optimizations
and a correction term. The correction term can be explicitly
written for a limiting case of the Ŕenyi Divergence, but it
can be qualitatively described in the general case. A physi-
comimetic term is used to approximate the correction term and
properly enforce collaboration and cooperation between the
large number of sensor nodes. Physicomimetics (or “artificial
physics”) [30] refers to a class of approximation methods moti-
vated by natural physical forces, e.g., the intermolecular forces
of liquids. Due to the exponential explosion in the number of
possible actions the network can take at any decision epoch,
it is impractical to enumerate all possible combinations of
sensing actions for the nodes in the network and choose the
best. The physicomimetic approach is a tractable and robust
approximation that allows each sensor to be scheduled locally
while providing an impetus for working together with the
other sensors. While this does not precisely get at the globally
optimum sensor management solution, it provides a tractable
approximation with robust performance. Others have used
physicomimetic approaches for multiplatform scheduling [31],
but to our knowledge this is the first time this approach has
been combined with information theory, and more importantly
the first time this approach has been directly related to a
constrained joint information theoretic optimization.

Fourth, we show that by having each sensor compute a
local estimate of the JMPD, the method can be decentralized.
Therefore, it is possible to implement this method with no
centralized controller, where each sensor is responsible for
making its own sensor management decisions. When band-
width is limited, only a subset of measurements may be shared
among sensors, leaving each local estimate of the JMPD sub-
optimal. However, it is shown by simulation that adequate
performance is still achieved as each sensor has a very good
local estimate of the JMPD.

Finally, we give a series of simulations in Section V that
show the performance of the method in detecting and tracking
an unknown number of moving ground targets in a model
problem. We consider large-scale problems involving tens
to hundreds of platforms cooperating together to perform
surveillance on a large region. The simulations illustrate sev-
eral key features of the approach: (a) The Rényi Divergence
metric combined with the JMPD estimate of uncertainty allows
platforms to trade between the competing goals of detection
and tracking, resulting in a system that performs well under
both criteria, (b) As the amount of communication available
in the system changes, different behavior patters emerge from
the collection of platforms – although the platforms are always
controlled by maximization of information flow through the
network, and (c) the combination of a physicomimetic force
and a (single-platform) information seeking force properly
balances the exploitation and exploration goals in a manner
that the individual forces themselves cannot.

II. T HE JOINT MULTITARGET PROBABILITY DENSITY

(JMPD)

This section describes the Joint Multitarget Probability
Density (JMPD) and its Particle Filter (PF) implementation.
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The JMPD is a single probabilistic entity that captures all
of the uncertainty about a surveillance region. This includes
uncertainty about the number of targets present in the region,
as well as the kinematic state, class, and mode of each. The
JMPD is computed recursively by fusing measurements, target
models, sensor models, and ancillary information such as
roadway and terrain elevation maps. This nonlinear filtering
approach is appropriate rather than other methods such as the
MHT [32] because it captures all uncertainty (i.e., uncertainty
about target number, kinematic state, and class) under one
framework, and linear/Gaussian assumptions typically do not
apply in this setting. As will be discussed in Sections III
and IV, the method of multiplatform sensor management
advocated here uses reduction in uncertainty as measured
by the JMPD to drive future sensing actions. A high level
overview of this process is illustrated in Figure 1.

The material in this section is largely drawn from a series of
previously published papers [34], [1], [33], [2]. More detail on
the formulation and implementation can be found therein. The
summary discussion here is provided as background material
necessary before introducing the main topic of this paper,
multiplatform sensor resource allocation via maximizing in-
formation flow. As discussed in [1] and elsewhere, the JMPD
approach presented is related to the approach of others, e.g.,
[5], [35], [7], [6].

A. Formulation of the JMPD

Recursive estimation of the JMPD provides a means for
simultaneously estimating the number of targets and their
kinematic states by fusing models and measurements. The joint
multitarget conditional probability density

p(x1
k, x2

k,...xT−1
k , xT

k , Tk|z0:k) = (1)

p(x1
k, x2

k, ...xT−1
k , xT

k |Tk, z0:k)p(Tk|z0:k)

is the probability density for exactlyT targets with states
x1, x2, ..., xT−1, xT at time k based on a set of past obser-
vationsz0:k.

The observation setz0:k refers to the collection of measure-
ments up to and including timek, i.e.,z0:k

.= {z0, z1, · · · , zk},
where each of thezi may be a single measurement or a
collection of measurements made at timei (e.g., a vector,
matrix, or cube of measurements from a single sensor or a
concatenation of measurements from multiple sensors made
at the same time). We will refer to measurements made at
a specific timei as zi, all measurements made from time
0 to time k as z0:k, and a generic measurement set (either
a collection of measurements or a measurement at a single
time) as simplyz, which will be clear by context. Furthermore,
in future sections we will also find it necessary to explicitly
include the sensing actionr (e.g., the choice of sensor mode
or sensor movement) that resulted in the measurementz.
In this case, the JMPD will be more explicitly written as
p(x1

k, x2
k, ...xT−1

k , xT
k , Tk|z0:k, r0:k) and measurement likeli-

hood will be written asp(zk|x1
k, x2

k, ...xT−1
k , xT

k , Tk, rk). For
simplicity, this extended notation is suppressed in the present
discussion.

Each of the xi in the density
p(x1

k, x2
k, · · · , xT−1

k , xT
k |Tk, z0:k) is a vector quantity.

We will typically use the two-dimensional target state
idealization[x, ẋ, y, ẏ] when providing concrete examples in
this paper, although the notation will be kept general until
examples are presented. In other problems where the mode is
to be estimated [36], we have used[x, ẋ, y, ẏ, m] and when
the class is to be estimated [37] we have used[x, ẋ, y, ẏ, c].

For convenience, the JMPD will be written more compactly
in the traditional manner asp(Xk, Tk|z0:k), which implies that
the system state-vectorXk represents a collection ofTk targets
each possessing their own state vector. This can be viewed as
a hybrid stochastic system where the discrete random variable
Tk governs the dimensionality ofXk.

The number of targets at timek, Tk, is a variable to be
estimated simultaneously with the states of theTk targets. The
JMPD is defined for allTk, Tk = 0 · · ·∞. We abuse termi-
nology by calling the JMPDp(x1

k, x2
t , ...x

T−1
k , xT

k , Tk|z0:k) a
density sinceTk is a discrete valued random variable. In fact,
as eq. (1) shows, the JMPD is a continuous discrete hybrid as it
is a product of the probability mass functionp(Tk|z0:k) and the
probability density functionp(x1

k, x2
k, ...xT−1

k , xT
k |Tk, z0:k).

Therefore the normalization condition that the JMPD must
satisfy is

∞∑

T=0

∫
dx1 · · · dxT p(x1, · · · , xT , T |z) = 1 , (2)

where the single integral sign is used to denote theT integra-
tions required (note that we have dropped the time subscripts
here to lighten the notation). This can alternatively be written
in the shorthand notation

∞∑

T=0

∫
dXp(X, T |z) = 1 , (3)

where it is understood again thatT determines the dimen-
sionality of X and the single integral sign represents theT
integrations required.

The likelihood p(z|X,T ) and the joint multitarget prob-
ability density p(X,T |z) are conventional Bayesian objects
manipulated by the usual rules of probability and statistics.
Specifically, the temporal update of the posterior likelihood
proceeds according to the usual rules of Bayesian filtering.
The model of how the JMPD evolves over time is given
by p(Xk, Tk|Xk−1, Tk−1) and will be referred to as the
kinematic prior (KP). The kinematic prior includes models of
target motion, target birth and death, and any additional prior
information on kinematics that may exist such as terrain and
roadway maps. In the case where target identification is part
of the state being estimated, different kinematic models may
be used for different target types.

The time-updated (prediction) density is computed via the
model updateequation as

p(Xk, Tk|z0:k−1) = (4)
∞X

Tk−1=0

Z
dXk−1p(Xk, Tk|Xk−1, Tk−1)p(Xk−1, Tk−1|z0:k−1) .
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Fig. 1. An illustration of the recursive state estimation and sensor management process described in this paper. In general, one performs state estimation
to capture the uncertainty about the surveillance region. The state of the surveillance region is captured by the joint multitarget probability density, which
is approximated using a particular method of state estimation based on particle filtering. This estimate is passed to a sensor management algorithm which
decides what action(s) to take next. Our method of sensor management is based on a constrained joint information theoretic optimization. This action is then
executed, resulting in a measurement of the environment which is used to update the state estimate.

Note that the formulation of the time evolution of the
JMPD given in eq. (4) makes several assumptions. First,
as is commonly done, we assume that state evolution is
Markov. Furthermore, we assume the action at timek − 1
does not influence state evolution, i.e., if the sensing action
performed at timek − 1 is denotedrk−1 then by assump-
tion p(Xk, Tk|Xk−1, Tk−1, rk−1) = p(Xk, Tk|Xk−1, Tk−1).
In some situations this assumption is not valid, including the
“smart” target problem [38]. If either of these assumptions is
invalid in a particular setting, eq. (4) would be generalized
appropriately.

The measurement updateequation uses Bayes’ rule to
update the posterior density with a new measurementzk as

p(Xk, Tk|z0:k) =
p(zk|Xk, Tk)p(Xk, Tk|z0:k−1)

p(zk|z0:k−1)
. (5)

B. The Particle Filter Implementation of the JMPD

The sample space of the JMPD is very large since it
contains all possible configurations of state vectorsXk =
{x1

k, · · · , xTk

k } for all possible values ofTk. Thus, for com-
putational tractability, a sophisticated approximation method
is required. This section briefly describes our particle filter
implementation with special attention given to the adaptive
importance density that allows tracability. Measurements of
the computational complexity of this estimation algorithm
versus number of targets in the surveillance area on standard
equipment are given in [1].

1) Notation: In particle filtering, the probability density of
interest (here the JMPD) is represented by a set ofN weighted
samples (particles). Since a particle is a sample from the PDF
of interest, here a particle is more than just the estimate of the
state of a target; it is an estimate of the state of the surveillance
region. In particular, it incorporates both an estimate of the
states of all of the targets as well as an estimate of the number
of targets.

The multitarget state vector forT targets is simply the
concatenation ofT single target state vectors (again here the
time subscript is dropped for notational simplicity):

X = [x1, x2, · · · , xT−1, xT ] . (6)

A particlei is similarly expressed as a concatenation ofT (i)

state estimates as

X(i) = [x(i)(1), x(i)(2), · · · , x(i)(T (i)−1), x(i)(T (i))] , (7)

which says particlei estimates there areT (i) targets, where
T (i) can be any non-negative integer, and in general is different
for different particles.

To formalize, letδD denote the ordinary Dirac delta, and
define a delta function between theT -target state vectorX
and theT (i)-target state vectorX(i) as

δ(X −X(i)) =
{

0 T 6= T (i)

δD(X −X(i)) otherwise
(8)

Then the particle filter approximation to the JMPD is given
by a set of particlesX(i) and corresponding weightsw(i) as

p(X, T |z) ≈
N∑

i=1

w(i)δ(X −X(i)) (9)

where
∑N

i=1 w(i) = 1.
The JMPD is defined for all possible numbers of targets,

T = 0, 1, 2, · · · . As each of the particles is a sample drawn
from the JMPD, a particle may estimate0, 1, 2, · · · targets.
Here, different particles in the approximation may correspond
to different estimates of the number of targets.

2) Multitarget SIR: With these definitions, the traditional
sampling importance resampling (SIR) particle filter extends
directly to filtering with the JMPD. The method is to simply
propose new particles at timek from the particles at time
k−1 by projecting through the kinematic prior. This kinematic
model includes both the dynamics of persistent targets (e.g., a
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nearly constant velocity model) and the model of how targets
enter and exit the surveillance region (e.g., a spatially uniform
birth/death process). Specifically, targets entering or leaving
the surveillance region are accounted for as the proposed
particle X

(i)
k may have either fewer targets or more targets

than X
(i)
k−1 (i.e., T

(i)
k = T

(i)
k−1 − 1 or T

(i)
k = T

(i)
k−1 + 1). The

weight update when particles are proposed in this manner is
simply

w
(i)
k = w

(i)
k−1p(zk|X(i)

k ) . (10)

3) The Inefficiency of the SIR Method:The SIR particle
filter has the benefit of being simple to describe and easy to
implement. However, SIR is too numerically inefficient for
multitarget problems.

Assume for discussion that the sensor is pixelated, returning
energy in one ofC sensor cells. Target birth may occur in any
unoccupied cell at any time step. Target death may occur in
any occupied cell at any time step. One method of handling
this would be to have a very large number of particles, capable
of encoding all possibilities of the next state, i.e., no new
target, one new target (in each of the possible unoccupied
cells), two new targets (in each possible pair of unoccupied
cells), etc. and likewise with target removal. This must still
retain the particle diversity required for efficient filtering.
This method requires an enormous number of particles for
successful approximation.

Furthermore, even with no birth and death, target proposals
using kinematics are too inefficient for multitarget problems.
Consider the simple case where there areT targets in the
surveillance region, and this is known to the filter. In order
for a particle to be a “good” estimate of the multitarget state,
all T targets must be proposed to “good” locations. Without
knowledge of measurements, the probability an individual
target is proposed to a “good” location isα < 1. Therefore,
as the number of targets grows, the probability of a “good”
multitarget proposal becomes significantly less than one (goes
as αT ). Hence, the number of particles required to perform
adequate tracking with high probability grows exponentially.

Both of these problems are remedied via an importance
density that more closely approximates the optimal importance
density (i.e., uses current measurements to direct proposals to
higher likelihood multitarget states). In the following subsec-
tions, we briefly summarize the importance density. Additional
detail can be found in [1], [2].

4) Importance Density Design for Target Birth/Death:In
order to reach the efficiency required for tractable detection
of multiple targets, we advocate a measurement directed sam-
pling scheme for target birth and death. As described in detail
in [2], the key idea in the development of a tractable method to
handle target birth and death is an existence grid. The existence
grid contains the probability that a single target is in celli at
time k given the measurements made up to and including time
k. Qualitatively, the existence grid describes those regions of
the measurement space that deserve attention. The existence
grid cells are initialized with a prior probability which may
be spatially varying. The probability of target existence in
each cell is propagated forward via a simple addition/removal
model, and updated with new measurements according to

Bayes’ rule. In our application, we have chosen to use a
spatially and temporally constant arrival and removal rate.
These simplifications make the existence grid computationally
simple to maintain.

To handle target birth, new targets are preferentially added
in locations according to the rate dictated by the existence grid.
This bias is removed during the weight update process so that
the Bayesian recursions are still exactly implemented. This
implementational technique allows particles to be used more
efficiently as new targets are only added in highly probable
areas. Target death is handled analogously.

5) Importance Density Design for Persistent Targets:The
kinematic prior does not take advantage of the fact that the
JMPD state vector is made up of individual target state vectors.
In particular, targets that are far apart in measurement space are
uncoupled and should be treated as such. Furthermore, similar
to that of the uniformed birth/death proposal, the current
measurements are not used when proposing new particles.
These two considerations taken together result in an inefficient
use of particles and therefore require a large number of
particles to successfully track. Empirical results illustrating
this assertion are given in [1].

To overcome these deficiencies, we use a technique which
biases proposals towards measurements and allows for fac-
torization of the multitarget state when permissible. These
strategies propose each target (or cluster of coupled targets,
as will be clarified later) in a particle separately, and form
new particles as the combination of the proposed clusters.
We describe the use of two sample-based methods here, the
independent partitions (IP) method of [8] and the coupled
partitions (CP) method. The basic idea of both CP and IP is to
construct particle proposals at the target (or group-of-targets)
level, incorporating measurements to bias proposals toward
the optimal importance density. This bias is removed in the
weight update stage, and therefore the Bayes recursions are
still exactly implemented. We advocate an adaptive partition
(AP) method which performs a clustering on targets and au-
tomatically switches between the two methods as appropriate.
Finally, we mention an improved method of target (or group-
of-targets) proposal that is based on directly sampling from
the optimal importance density. This method is applicable in
some situations (as discussed in [2]) and has been shown to
increases algorithm efficiency significantly in those cases. All
of the methods are performed only on the persistent targets,
and the algorithm is done in conjunction with the addition and
removal of targets as described in the preceding section.

The Independent-Partition (IP) Method. The independent
partition (IP) method given by Orton [8] is a convenient way
to propose particles when part or all of the joint multitarget
density factors. As employed here, the IP method proposes
a new target as follows. For a targetp, each particle at time
k−1 has it’spth partition proposed via the kinematic prior and
weighted by the measurements. From this set ofN weighted
estimates of the state of thepth target, we selectN samples
with replacement to form thepth partition of the particles at
time k.

With well separated targets, this method allows many targets
to be tracked with the same number of particles needed to
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track a single target (although each particle is larger). Indeed,
in the case of well separated targets, the multitarget tracking
problem breaks down into many single-target problems. The
IP method is useful for just this case, as it allows the targets
to be treated independently when their relative spacing deems
that appropriate. Note, however, that applying this method
on a target by target basis is not appropriate when there is
any measurement-to-target association ambiguity. Therefore,
when targets are close together in sensor space, an alternative
approach must be used.

The Coupled Partition (CP) Proposal Method.When the
posterior distributions on target position begin to overlap, we
call the corresponding partitions coupled. In these instances,
another method of particle proposal such as Coupled Partitions
(CP) must be used. An alternative method would be to use
the IP strategy on groups of partitions as alluded to in [8]. As
discussed below, the CP method proposes multiple possible
future realizations for each partition (as opposed to the IP
method which proposes a single future realization for each
particle). This additional sampling fidelity can be viewed as a
better approximation to the optimal importance density than a
method that simply proposes one possible realization for each
particle. In practice, we find that the CP method provides a
benefit by giving extra computation at those points where it is
most necessary.

We apply the CP method as follows. To propose partitions
p1 · · · pM of particle i, CP proposesR possible realizations
of the future state using the kinematic prior. TheR proposed
futures are then given weights according to the current mea-
surements and a single representative is selected. This process
is repeated for each particle until the partitions for all particles
has been formed. As in the IP method, the final particle
weights are adjusted for this biased sampling.

Adaptive Particle Proposal Method. A more efficient
method is to use a hybrid of the IP and CP method, called
the Adaptive-Partition (AP) method [34], [1]. The adaptive-
partition method again considers each target separately. Those
targets sufficiently well separated from all other targets are
treated as independent and proposed using the IP method.
When targets are not sufficiently distant, the CP method is
used on those groups (clusters) of targets that are coupled.
To determine when targets are sufficiently separated, we use
filter estimate of targets states and then perform a clustering
procedure based on distance in sensor space between the
estimated target states.

An Improvement. In certain circumstances, the optimal
importance density can be more efficiently approximated than
the sample based approach discussed here. In particular, if
target dynamics are linear/Gaussian and measurements are
made on a grid, the optimal proposal involves sampling from
truncated normals [33], [2]. In this case, a similar AP approach
is used wherein partitions are first separated into groups that
are uncoupled and then each group is treated by sampling from
the optimal importance density. In the more generic case, one
does not have a convenient (semi-) closed form and instead
relies on the purely sample driven methods of IP and CP as
described above.

III. I NFORMATION THEORY FORSINGLE SENSOR

MANAGEMENT

This section describes a method of sensor management
based on maximizing information flow. We focus here on the
single platform case and describe the multiplatform case in
the following section. Sensor management, as defined here,
refers to choosing the best action for an agile sensor to take.
This may include where to point, what mode to use, or where
to move. In this method of sensor management, actions are
ranked based on the amount of information expected to be
gained from their execution. In principle, this is accomplished
by computing the expected gain in information between the
current JMPD and the JMPD that would result after taking
action r and making a measurement, for all feasibler. Then
the sensor management decision is to select the bestr using
expected information gain as the metric. The method presented
in this section is generic with respect to whatr represents –
i.e., r may represent the choice of a waveform, the choice of
a pointing direction, or the choice movement for the platform
(or all three).

The material in the first half of this section is largely drawn
from a series of previously published papers [14], [40], [37]. It
provides the background and notational conventions necessary
before introducing the main topic of this paper, multiplatform
sensor resource allocation via maximizing information flow.
These references also include measurements of the computa-
tional complexity of the algorithms on standard equipment.
The information-based approach presented here is related to
the approach of others, e.g., [17], [41], [18] as discussed in
[14] and elsewhere.

A. The Ŕenyi Divergence

In our approach, the calculation of information gain between
two densitiesp1 and p0 is done using the Ŕenyi information
divergence [42], also known as theα-divergence:

Dα(p1||p0) =
1

α− 1
ln

∫
pα
1 (x)p1−α

0 (x)dx . (11)

Theα parameter adjusts how heavily the metric emphasizes
the tails of the two distributionsp1 and p0. In the limiting
case ofα → 1 the Ŕenyi divergence becomes the commonly
utilized Kullback-Leibler (KL) discrimination

lim
α→1

Dα(p1||p0) =
∫

p0(x) ln
p0(x)
p1(x)

dx . (12)

If α = 0.5, the Ŕenyi information divergence becomes the
Hellinger affinity 2 ln

∫ √
p1(x)p0(x)dx, which is related to

the Hellinger-Battacharya distance squared [42] via

DHellinger(p1||p0) = 2
(

1− exp
(
.5D 1

2
(p1||p0)

))
. (13)

B. Ŕenyi Divergence Between the Prior and Posterior JMPD

The function Dα in eq. (11) is a measure of the diver-
gence between the densitiesp0 and p1. In our application,
we wish to compute the divergence between the predic-
tion density p(Xk, Tk|z0:k−1, r0:k−1) and the updated den-
sity after a measurementzk when taking actionrk, denoted
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p(Xk, Tk|z0:k−1, r0:k−1, zk, rk). Notice that we now include
the action taken at timek, rk, and the history of actions
r0:k−1 explicitly into the notation for clarity. This divergence
measures the amount of information that the new measurement
has provided and allows us to rank the utility of different
actions according to the information flow they produce. The
relevant divergence for our setting is thus given by

Dα

(
p(·|z0:k−1, r0:k−1,zk, rk)||p(·|z0:k−1, r0:k−1)

)
= (14)

1
α− 1

ln
∑

Tk

∫
pα(Xk, Tk|z0:k−1, r0:k−1, zk, rk)×

p1−α(Xk, Tk|z0:k−1, r0:k−1)dXk ,

where the integral is interpreted as in eq. (3).
Using Bayes’ formula applied to the JMPD (eq. (5)), we

obtain

Dα

(
p(·|z0:k−1, r0:k−1, zk, rk)||p(·|z0:k−1, r0:k−1)

)
= (15)

1
α− 1

ln
1

pα(zk|z0:k−1, r0:k−1, rk)
×

∑

Tk

∫
pα(zk|Xk, Tk, rk)p(Xk, Tk|z0:k−1, r0:k−1)dXk ,

which shows that the ingredients to computing the diver-
gence are the prediction JMPDp(Xk, Tk|z0:k−1, r0:k−1), the
measurement likelihoodp(zk|Xk, Tk, rk) and the received
measurementszk.

C. The Expected Ŕenyi Divergence for a Sensing Action

To determine the best action to take next, we must in fact
predict the value of taking actionrk before actually receiving
the measurementzk. Therefore, we calculate theexpected
value of the divergence for each possible action and use this
to select the next action. The expectation may be written as
an integral over all possible outcomeszk when taking action
rk as

E

[
Dα

(
p(·|z0:k−1, r0:k−1, zk, rk)||p(·|z0:k−1, r0:k−1)

)
(16)

|z0:k−1, r0:k−1, rk

]
=

∫
dzkp(zk|z0:k−1, r0:k−1, rk)×

Dα

(
p(·|z0:k−1, r0:k−1, zk, rk)||p(·|z0:k−1, r0:k−1)

)
,

The expectation in eq. (16) is across the measurement
outcomezk and is to be interpreted as a conditional expecta-
tion where the past sensor measurementsz0:k−1, past sensor
actionsr0:k−1, and current sensing actionrk are known.

Then the method of scheduling we advocate is to choose the
best action̂rk as the one that maximizes the expected gain in
information, i.e.,

r̂k = arg max
rk

(17)

E

[
Dα

(
p(·|z0:k−1, r0:k−1, zk, rk)||p(·|z0:k−1, r0:k−1)

)

|z0:k−1, r0:k−1, rk

]
.

In practice, certainrk are infeasible. There arekinematic
constraints of the platform which make certain locations
unreachable in a single time step, including maximum platform
velocity and maximum platform acceleration. Also there are
physical constraintswhich prevent certain motions, including
the topology of the surveillance region (i.e., a sensor should
not collide with anything). Therefore, we actually need the
constrained optimization

r̂k = arg max
rk∈C

(18)

E

[
Dα

(
p(·|z0:k−1, r0:k−1, zk, rk)||p(·|z0:k−1, r0:k−1)

)

|z0:k−1, r0:k−1, rk

]
,

whereC is the set of actions that meet both the kinematic
and physical constraints. For single sensor scheduling, these
constraints are handled in practice by simply removing those
actions that violate the constraints from consideration.

D. Theoretical Motivation For the Information Gain Metric

Consider a situation where a target is to be detected,
tracked and identified using observations acquired sequentially
according to a given sensor selection policy. In this situation
one might look for a policy that is “universal” in the sense that
the generated sensor sequence is optimal for all three tasks. A
truly universal policy is not likely to exist since no single
policy can be expected to simultaneously minimize target
tracking MSE and target miss-classification probability, for
example. Remarkably, policies that optimize information gain
are near universal: they perform nearly as well as task-specific
optimal policies for a wide range of tasks. In this sense the
information gain can be considered as a proxy for performance
for any of these tasks. The fundamental role of information
gain as a near universal proxy has been demonstrated both
by simulation and by analysis in [37][43]. The key result is
a bound that shows any bounded risk function is sandwiched
between two weighted alpha divergences. This inequality is
a rigorous theoretical result that suggests that the expected
information gain is a near universal proxy for arbitrary risk
functions.

E. Computational Method

When there are only a small number of actions to choose
from, application of this method is straightforward. For each
possible action, we compute the expected gain in information
as given by eq. (16). This computation isO(M) where M
is the (small) number of (discrete) actions possible for the
sensor to take. Of course, each of theM computations has
complexity that scales with the number of particles used in the
particle filter approximation to the JMPD (N ) and the number
of targets predicted to be in the surveillance region (T ).
Furthermore, when the measurementz is continuous (or multi-
dimensional), advanced numerical techniques are required to
evaluate the expectation.
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However, when the action space is continuous, simple enu-
meration is not feasible. We now specialize to the case where
the actionr refers to a new positioning of the sensor (i.e., the
platform is mobile and the sensor management problem is one
of deciding where to move the platform). The new positionr
of the sensor is in principle a3 dimensional vector from the
continuumR3 specifying the(x, y, z) coordinates of the next
platform position. In this situation, we use ideas from earlier
works that employ “virtual force” or “potential field” methods
[44], [31], [45]. In the field approach, one computes a force
that compels a sensor to move rather than explicitly calculating
the value of all possible next positions and choosing the best.

In our method, the value of a potential next position is given
by the expected information gain (eq. (16)). Therefore, the
force that drives platform action in the continuous action space
case is the gradient of the information gain field at the current
location, as given by

FI(rk) = −β∇rk
(19)

E

[
Dα

(
p(·|z0:k−1, r0:k−1, zk, rk)||p(·|z0:k−1, r0:k−1)

)

|z0:k−1, r0:k−1, rk

]
,

whereβ is simply a scaling constant. This force then drives
the sensor to move in the manner that maximally provides
information flow (subject to the constraints discussed above).

IV. M ULTIPLATFORM INFORMATION BASED SENSOR

MANAGEMENT

In this section, we present our method of information
based multiplatform sensor management. The method works
by maximizing the expected information gain between the
posterior JMPD and the JMPD after a new set of measure-
ments are made by theP platforms. It builds on the ideas and
notation developed in Section III for the single sensor case
but now has the additional constraints imposed by multiple
sensors in a single surveillance area (i.e., the sensors should
not collide and sensors should not be redundantly tasked
unless there is compelling reason to do so). Additionally, it is
ultimately desired to employ the technique in a decentralized
low-communication environment so the technique should lend
itself to this setting. Some of this material has appeared in
previous conference papers [45], [46]. As mentioned earlier,
others have approached this problem from a similar viewpoint,
e.g., [18], [47].

This section proceeds by first giving the formulation of opti-
mal multisensor information theoretic scheduling assuming the
scheduler is centralized. This is seen to be a joint constrained
information theoretic optimization by natural extension of
the ideas in Section III, but the constraint set has changed.
Furthermore, the optimization is now seen to be combinatoric
in nature (i.e., the joint action space grows exponentially with
the number of sensors) so relaxation is required. We next show
that the joint constrained information theoretic optimization
can be written as a sum of single sensor optimizations and a
correction term. The correction term can be explicitly written
in a limiting case of the Ŕenyi Divergence. The correction

term is then approximated to produce a tractable method
computationally. Finally, if we allow each sensor to compute a
local estimate of the JMPD and use limited message passing
between neighboring sensors, we show the entire procedure
can be done in a decentralized manner.

A. Optimal Multisensor Information Theoretic Scheduling

Information theoretic scheduling for a collection ofP
platforms requires choosing the set ofP next-actions for the
P platforms. The formulation for the multiple platform case
can be given as a direct extension of the single sensor case.
First, letri

k andzi
k denote the sensing action and measurement

received, respectively, for theith sensor at timek. Next, let~rk

and ~zk denote the sensing actions (here the new positioning
of the P platforms) and measurements for theP platforms at
time k, respectively. That is, let

~rk = [r1
k, r2

k, · · · , rP−1
k , rP

k ] (20)

and

~zk = [z1
k, z2

k, · · · , zP−1
k , zP

k ] . (21)

Then multisensor information theoretic scheduling seeks to
find the best choice of sensor actions~̂rk as given by eq. (22),
where the integral is to be interpreted as performing theP
integrations required.

~̂rk = arg max
~rk∈C′

(22)

E

[
Dα

(
p(·|z0:k−1, r0:k−1, ~zk, ~rk)||p(·|z0:k−1, r0:k−1)

)

|z0:k−1, r0:k−1, ~rk

]

= arg max
~rk∈C′

∫
d~ztp(~zk|z0:k−1, r0:k−1, ~rk)×

Dα

(
p(·|z0:k−1, r0:k−1)||p(·|z0:k−1, r0:k−1, ~zk, ~rk)

)
.

Analogously to eq. (16), the expectation in eq. (22) is
taken over the measurement outcomes~zk and is conditioned
on knowing the past measurementsz0:k−1, the past actions
r0:k−1, and the current action set~rk.

Note that direct computation of this quantity requires com-
parison ofMP possible sensing actions (in the case where
there areM discrete actions for each of theP platforms). This
is clearly not tractable for largeP , and therefore approximate
techniques are required.

Note further that this is also a constrained optimization.
In the multisensor case, the constraint setC′ is expanded
beyond the single sensor constraint set to now include both
the original constraints ofC and a new constraint that sensors
do not collide with each other. That is

C′ = C ∩ {‖ri − rj‖ > d ∀i, j wherei 6= j } . (23)
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B. Connection to Single Sensor Optimization

The joint optimization can be rewritten as a sum of single
sensor optimizations plus a correction factor as

arg max
~rk∈C′

(24)

P∑

i=1

E
[
Dα

(
p(·|z0:k−1, r0:k−1, z

i
k, ri

k)||p(·|z0:k−1, r0:k−1)
)

|z0:k−1, r0:k−1, ~rk

]
+

E
[
h(~zk, ~rk, z0:k−1, r0:k−1)|z0:k−1, r0:k−1, ~rk

]
.

where the functionh is an “information coupling” term which
accounts for the fact (among other things) that the gain in
information for two sensors taking the same action is not
double the information gain for a single sensor taking the
action. In the limiting case asα → 1, the correction term
can be written explicitly and the simplification becomes

arg max
~rk∈C′

(25)

P∑

i=1

E
[
Dα

(
p(·|z0:k−1, r0:k−1, z

i
k, ri

k)||p(·|z0:k−1, r0:k−1)
)

|z0:k−1, r0:k−1, ~rk

]
+

E
[
ln

( p(z1
k, · · · , zP

k |r1
k, · · · , rP

k , z0:k−1, r0:k−1)
p(z1

k|r1
k, z0:k−1, r0:k−1) · · · p(zP

k |rP
k , z0:k−1, r0:k−1)

)

|z0:k−1, r0:k−1, ~rk

]
.

i.e., the multisensor optimization can be written explicitly as
a sum of single sensor optimizations and a correction term
which is simply the expected value of the log of the joint
measurement likelihood over the product of the individual
measurement likelihoods. The proof of this statement is given
in the Appendix.

The correction term has this intuitive form related to mutual
information when the KL divergence (α → 1) is used. It
reflects the utility that other sensor measurements provide
in predicting a sensors measurement. In the limiting case of
independent actions, this term vanishes.

The correction term is stillO(MP ) to compute, whereM
is the number of potential actions each platform could take
and P is the number of platforms, and therefore must be
approximated. Note also, that it is this correction term that
hinders distributed implementation.

C. Computational Method

The new constraint that sensors cannot collide deals with
action sets and not simply with individual actions and so it
cannot be handled by simply censoring actions that violate the
constraint. Therefore, we address this constraint by defining

the Lagrangian

L(~rk) = (26)

E
[
Dα

(
p(·|z0:k−1, r0:k−1, ~zk, ~rk)||p(·|z0:k−1, r0:k−1)

)

|z0:k−1, r0:k−1, ~rk

]
+ λf(~rk)

=
P∑

i=1

E
[
Dα

(
p(·|z0:k−1, r0:k−1, z

i, ri)||p(·|z0:k−1, r0:k−1)
)

|z0:k−1, r0:k−1, ~rk

]
+

E
[
h(~zk, ~rk, z0:k−1, r0:k−1)

]
+ λf(~rk) ,

where the functionf is a term that penalizes action sets that
move the sensors too close together. The joint optimization
then becomes an unconstrained optimization

~̂rk = arg max
~rk

L(~rk) . (27)

This optimization can be looked at as a sum of three terms:
a collection of single-sensor optimizations, an information
coupling (or correction) term, and a collision avoidance term.
In our method, we simultaneously approximate both the infor-
mation coupling term involving the expectation ofh and the
collision prevention termf by introducing a function which
reduces the value of action sets that involve sensors moving
close together. We have chosen to use a physicomimetic force
[31] to provide this approximation, although other similar
approximations are also valid. Evaluating this force has a very
small computational burden, and requires only that a node
know the positions of its neighbors. Different approximation
methods may be more appropriate in other settings. For exam-
ple, in cases where teams of sensors must work to interrogate
a single target one may use a second order expansion of the
information gain and a third order correction term. If there
are additional obstacles in the region (e.g., buildings or no-
fly zones) the collision avoidance term would be suitably
modified.

We provide an empirical comparison between the correction
term (exactly computed at a small number of points) and
the Lennard-Jones force used as the approximation for the
correction term and the relaxation term on a model problem
in Section V-A.2.

Since we remain in a continuous action space environment,
we must cast this approximation term via a vector force as
well. We use a generalization of the Lennard-Jones potential
that serves as a zeroth order model of the intermolecular forces
of liquids [48]. The Lennard-Jones force for a pair of platforms
i, j separated by a distancedi,j is radial with magnitude

FLJ(di,j) = −ε

[
m

γm

dm+1
i,j

− n
γn

dn+1
i,j

]
. (28)

For the standard Lennard-Jones potentialm = 12 and
n = 6, and is referred to as the 6-12 potential. Observe
that this is strongly repulsive as the radius between sensors
di,j gets small. The termsγ and ε are chosen based on
platform kinematic properties. The total force platformi feels
is simply the vector sum of the forces from all other platforms.
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To compute the total force, a platform need only know the
positions of the other nodes; in fact, since the force falls off
so rapidly those sensors that are much more distant thatγ have
negligible effect on the computation. Therefore, for practical
purposes, a node only needs to know the positions of nearby
neighbors.

Denote byFi,j
LJ (ri) the vector force nodei feels from nodej

when positioned atri (which is radial in direction with magni-
tude given by eq. (28)). Then the total force nodei feels from
all other nodes when positioned atri is simply Fi

LJ (ri) =∑
j 6=i F

i,j
LJ (ri). Using this approximation approach to the joint

constrained information theoretic optimization of eq. (22)
results in the final approximate multiplatform optimization

~̂rk = arg max
~rk

(29)

N∑

i=1

{
E

[
Dα

(
p(·|z0:k−1, r0:k−1, z

i
k, ri

k)||p(·|z0:k−1, r0:k−1)
)]

+λFi
LJ(ri

k)
}

.

This approximation can be viewed as driving sensors to
compute greedy actions (i.e., ignoring the actions of other
sensors) and correcting over-zealous information seeking be-
havior by compelling sensors to stay away from others. These
two forces are balanced through the choice ofλ, which
when properly chosen, allows sensors to come near when the
situation warrants (i.e., in cases where the maximal joint utility
is gained from close positioning of sensors), while staying
apart in general.

D. Distributed Implementation

Notice that the method eq. (29) allows each sensor to
compute its next action in a completely distributed manner,
assuming each sensor has (a) knowledge of the other sensors
positions, and (b) knowledge of the JMPD (or alternatively has
access to all measurements the network has made). The first
portion of the term in simply requires the expected information
gain computed at each node without regard to the actions of
other nodes. The second portion of the term requires only that
each node know of the position of the nearby nodes.

We are further interested here in a low communication
version of this optimization. Therefore, only selected measure-
ments may be transmitted by the network. What results in this
case is that each sensor in the network has an approximate
JMPD, computed only using locally made measurements and
measurements shared by nearby neighbors. There are many
reasonable ways a node may decide what measurements
should be transmitted to its neighbors and many reasonable
ways to define a neighborhood. In this work, we employ
a method where a node sends measurements based on the
likelihood that they originate from a target. This information
is directly calculable from the (locally estimated) JMPD by
marginalization. Furthermore, when a node transmits mea-
surements, it also must also share its position so that the
physicomimetic force may be computed by its neighbor. Our
simulation studies assume a “radius of communication” which
defines the neighborhood of a sensor. It is assumed all sensors

within the communication radius can hear the transmission,
and no sensor outside can. This results in a nice practical
situation where no static interconnection of nodes is required.
If a node does not hear from another, it knows the other is
outside of range and therefore should have no bearing on
current decisions.

Therefore, in practice the distributed version of this opti-
mization works as follows. Each sensor collects measurements
at its current position. Selected measurements (based on the
likelihood they originate from a target as determined by the
local estimate of the JMPD) are broadcast along with an
estimate of platform position. Those platforms within the
communication radius receive this transmission, and likewise
a platform receives the transmission from all other platforms
for which it is in the communication radius. The locally made
measurements and measurements received from neighbors are
used to update the local JMPD as described in Section II. Each
platform than computes the greedy (single-sensor) information
based utility for future positionings and corrects this impetus
with the repulsive Lennard-Jones force. The platform then
moves and the process starts anew.

V. SIMULATION RESULTS

In this section, we present two simulation case studies that
illustrate the efficacy of the sensor management method given
in Section IV.

The first case study uses a small number (15) of very
capable platforms to provide region surveillance. This sim-
ulation implements the decentralized version of the algorithm
by (a) estimating the (local) JMPD at each platform from local
measurements and measurements received from neighbors (if
any), and (b) computing platform movements by combining
locally computed information theoretic forces with locally
computed physicomimetic forces. The simulation analyzes
performance in terms of detection and tracking capabilities
as a function of communication radius.

The second case study focusses on a large number (as many
as 500) of platforms with very limited sensing capabilities.
For the purposes of simulation, the centralized version of
the algorithm is used. Although simulation of the entire
decentralized algorithm is near real-time on a per-platform
basis (as would be required for implementation), simulation of
500 platforms requires significantly longer than real-time (500
times the single platform simulation time). The centralized
algorithm is significantly cheaper computationally, owing to
the fact that only one JMPD must be estimated (rather than 500
separate JMPDs). The communication burden is significantly
increased, however. This simulation illustrates surveillance
performance in a similar model problem, and also compares
the performance of the proposed algorithm with an algorithm
that uses only the physicomimetic force and one that only
uses the information gain force. It is shown that the proposed
algorithm, which combines these two forces as motivated
by the joint constrained information theoretic optimization
approximation, significantly outperforms algorithms based on
the constituent forces alone.
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Fig. 2. Left: The model problem setup. The network is to determine the number and kinematic states of a group of moving ground targets. Each node
stares directly down making measurements of the surveillance region. The sensor management algorithm described here provides a distributed, decentralized,
low communication method for controlling the motion of nodes over time so as to best learn the contents of the surveillance region.Right: Each node in
the network repeatedly follows the procedure of generating measurements, transmitting them to neighbors, receiving measurements, updating its probability
density, and finally computing the information theoretic and physicomimetic forces to decide where to move next.

A. A Simulation With a Small Number of Very Capable
Platforms

1) Description of the Model Problem:The following simu-
lation uses15 platforms with decentralized control to provide
surveillance on a large region. The model problem uses a
5000m × 5000m surveillance area that contains10 moving
ground targets (the number of targets, their positions and
velocities are initially unknown). Each sensor has an imaging
sensor with a wide field of view that provides evidence as
to the presence or absence of targets in a subsection of the
region at any time. The goal is for the network of sensors to
collaborate together in a low communication setting so that
the number of targets and their individual states is learned as
quickly and accurately as possible.

Target trajectories for the simulation come directly from a
set of recorded data based on GPS measurements of vehicle
positions over time collected as part of a battle training exer-
cise at the Army’s National Training Center. Targets routinely
come within sensor cell resolution (i.e., cross). Persistent

targets are modeled in the JMPD time evolution using a simple
nearly constant velocity approach, which is in fact mismatched
to the actual targets as they routinely perform move-stop-move
and other maneuvers. Target birth and death is modeled in the
JMPD time evolution as spatially and temporally constant.

Each platform is idealized to hover above the surveillance
region and has an imaging sensor that stares directly down. At
each time step, the imager measures cells in the surveillance
area by making measurements on a grid with100m × 100m
detection cell resolution. The model problem setup is illus-
trated in Figure 2.

When measuring a cell, the imager returns either a0 (no
detection) or a1 (detection) which is governed by a probability
of detection (pd) and a per-cell false alarm rate (pf ). Both
are assumed to be temporally and spatially constant in this
simulation. The signal to noise ratio (SNR) links these values
together. The sensor is modeled to have a field of view with
radius5 cells from its center and hence measures a circular
patch on the ground. The effectiveSNR is maximum at the
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center and falls off asr2 at the periphery. We fixSNRmax =
16dB, pf = 0.01, and usepd = p

1
1+SNR

f , which is a standard
model for thresholded detection of Rayleigh returns [49].
When there areT targets in the same cell, the detection

probability increases according topd(T ) = p
1

1+SNR∗T

f . Figure
3 illustrates theSNR and pd as a function of distance from
field of view center.
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for SNR = 16dB with pf = .01 in the Rayleigh model.

Fig. 3. A description of the capability of the sensors used in this simulation.
Each sensor has a footprint on the ground of radius 5 cells. The effective
SNR (and hencepd) is modeled to fall off as 1

r2 from the field of view
center.

Each platform computes a local estimate of the JMPD using
measurements it has made and measurements received from
neighbors. Platforms then use the joint constrained information
theoretic optimization approximation described in the previous
section to compute next best movements.

Figure 4 shows an initial (random) positioning of the15
sensors and the position after some time. As can be seen
from the figure, over time the sensors preferentially align
themselves around the targets (which were discovered through
repeated interrogation of the ground) while still allocating
some resources to look for new targets.

2) A Comparison of the Correction Term and the Physi-
comimetic Approximation:As described in Section IV, the
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(a) The initial (randomly placed) deployment of15 sensors in a
surveillance region.
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(b) The configuration of the sensors after250 time steps.

Fig. 4. The random positioning of the15 platforms at initialization (left) and
after some time (right). The platform position is given by the blue number
and its field of view is described by the circle surrounding the number. The
true position of each of the ten moving ground targets is shown by the green
numbered circles. The estimate of the position for the targets (taken from
the omniscient fuser) is given by the red covariance ellipses. Qualitatively,
after some time, the platforms have preferentially aligned themselves over
the targets while still allocating some network resources to look for incoming
(new) targets.

joint constrained information theoretic optimization is rewrit-
ten as a sum of single information theoretic optimizations,
a correction term, and a relaxation term. These last two
terms are approximated with a physicomimetic term resulting
in a computationally tractable approach. In this section, we
provide a comparison between the approximation term and
the correction term in the model problem as motivation for its
use.

We consider two sensors that are each able to measure cells
in the surveillance region as described above. Of interest is the
difference between the information gain for a pair of actions
(r1, r2) when evaluated jointly as compared to the sum of
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Sensor 1 Sensor 2

Sensor 1
FOV

Sensor 2
FOV

d

Fig. 5. Two platforms are a distanced apart. Whend is large, their fields of view do not overlap, and the sum of individual information gains is close to the
joint information gain. Conversely, when the platforms are close, the joint information gain differs significantly from the sum of individual information gains.

individual information gains (i.e., the correction term). We
can examine the discrepancy as a function of the distanced
between the platforms. This is illustrated in Figure 5.

When the platforms are far apart, there is very little dif-
ference between the sum of individual platform information
gains and the full joint information gain. As the platforms
move closer, the sum of individual information gain terms
overestimates the value actions by “double-counting” informa-
tion (among other things). Figure 6 illustrates the discrepancy
in information gain estimation (i.e., the difference between the
full joint optimization and the sum of individual optimizations)
as a function of platform distanced. Additionally, the (scaled)
Lennard-Jones force is superimposed to provide motivation for
its use.
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Fig. 6. A comparison of the correction term and the physicomimetic approx-
imation as a function of distance between two platforms.

3) Emergent Behavior as a Function of Communication
Radius:Figure 7 illustrates the effect of communication radius
on network behavior. When the communication radius is
high, platforms spread out nearly evenly (while preferentially
staying with targets) as each platform knows where (most of)
the others are and that the existing targets are being covered.

Conversely, in the low communication radius setting, platforms
tend to cluster near targets. This is because a platform does
not know where other platforms are unless they are close
(within the communication radius) and furthermore does not
know if targets are being effectively maintained by other
platforms until they are nearby. Despite this difference in
behavior, in both cases the number and position of targets
has been correctly learned by the network. However, in the
high communication radius case, each individual sensor knows
much more. The net effect of this additional knowledge is that
if a platform were to fail, its duties would be picked up by
another platform in the network much more quickly.

4) Monte Carlo Simulation of Performance:Figure 8
presents the results of a Monte Carlo simulation of per-
formance in this model problem. We illustrate the network
knowledge in three ways:

• At the Average Sensor: Each sensor has a local estimate
of the JMPD whose fidelity is governed by the commu-
nication radius. Therefore, at low communication radius,
each sensor only has knowledge only of the local area,
and hence will only provide estimates of nearby targets.
As communication radius increases, sensors become more
aware of the entire region.

• At the Track Fuser: Aperiodically, individual sensor
estimates must be coalesced to provide a single picture
of the surveillance region. We assume for bandwidth
conservation purposes that sensors transmit estimates
about confirmed targets only to a base station rather than
the entire (local) JMPD estimate. The base station then
fuses these tracks to provide an estimate of the entire
surveillance region.

• At the (hypothetical) Omniscient Fuser: To benchmark
performance, we also include a (hypothetical) omniscient
fuser that receives all measurements made by all nodes in
the network and constructs the optimal JMPD estimate.
Note: this entity is used only for constructing the figure
and is not used in the simulation in any way. In particular,
all sensor management decisions are computed locally
using the local estimate of the JMPD.
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(a) Steady-state behavior when the communication radius is low
(r=500m).
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(b) Steady-state behavior when the communication radius is high
(r=5000m).

Fig. 7. The qualitative behavior of the platforms as a function of communication radius. In each graphic, the top plot shows the position of the platforms and
targets in the surveillance region. The bottom plot shows which sensors (1...15) know about which of the ten targets. The omniscient fuser and track fuser
performance are included for reference. In both cases, all targets are successfully detected and tracked with no false targets at the displayed time. However,
the behavior of the system as communication radius changes is markedly different. In the low communication radius case (top-left), platforms tend group
heavily around existing targets, while in the high communication radius case (top-right), platforms spread out more. Furthermore, as the bottom plots indicate,
in the low communication radius case (bot-left) platforms tend to only know about nearby targets, whereas in the high communication radius case (bot-right),
platforms have a very global picture.

The performance of the network is measured in two ways:

• The number ofTrue Targets detected and tracked. This
measures the number, of ten possible, of actual targets
that have been successfully detected and tracked (i.e.,
have position estimates that are within some allowable
amount).

• The number ofFalse Targetsincorrectly thought to exist.
This measures the number of targets that are thought
to exist when in fact they do not. Sensors receive false
alarms (detections when in fact no target exists) according
the false alarm ratepf . When a number of false alarms
occur in a row or when the sensor does not properly
reinterrogate, a false target may be created.

Additionally, we look at theCommunication Require-
mentsof the method in terms of the percent of measurements
that each node transmits. A node measures some number
of cells at each time step. It then uses the (local) JMPD
to compute the likelihood that each measurement originated
from a target. Those measurements (along with the platform
position) that have likely originated from a target are broadcast
to be received by any neighbor within the broadcast radius .
Since the target density in this experiment is low, the number
of measurements truly originating from targets is also low.
Therefore it is to be expected that the number of transmitted
measurements will be small.

Each simulation runs250 time steps. Figure 8 presents the
results of the average number of true targets, average number
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(a) The average number of true targets correctly
detected (ten is perfect)for the average sensor, the
omniscient fuser, and the track fuser as a function
of communication radius.
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(b) The average number of false targets incor-
rectly detected (zero is perfect) for the average
sensor, the omniscient fuser, and the track fuser
as a function of communication radius.
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(c) The average communication burden of the
proposed decentralized approach as a function of
communication radius.

Fig. 8. Monte Carlo performance results for the 15 sensor region surveillance application.

of false targets from time step50 on (after the burn-in time
where the initially ignorant network has been able to learn
about the surveillance region) for each of the three entities
(the average sensor, the track fuser, and the omniscient fuser).
Figure ?? presents the number of measurements transmitted
by the sensors as a fraction of total measurements made.

B. A Simulation With a Large Number of Very Limited Capa-
bility Platforms

1) Description of the Model Problem:In this subsection,
we turn our attention to a setting where surveillance is to
be performed with a large number (hundreds or thousands)
of inexpensive low-capability sensors. The simulation uses
the same region size and target motion data as the previous
simulation. Again, the platforms are idealized to hover above
the surveillance region and stare directly down. However, in
this simulation each sensor is capable of only measuring a
single detection cell immediately below the platform and has
degraded detection capabilities (SNR = 10dB). Figure 9
shows a typical (random) initial deployment of sensing assets.
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Fig. 9. The (random) initial deployment of500 platforms in a surveillance
region. The position of each of the platforms is shown by a red dot. The true
location of the ground targets is shown by the green dots (of course, both the
number of targets and their kinematic states are unknown at initialization).
Each platform has a low-capability sensor that merely measures a single
100m×100m pixel immediately below for the presence or absence of targets.

2) Emergent Behavior With Different Scheduling Methods:
In Section IV, we saw that the optimal multiplatform informa-
tion theoretic scheduling criteria was in fact a joint constrained
information theoretic optimization. Through algebraic manip-
ulation, Lagrangian relaxation, and direct approximation we
proposed a method of approximate scheduling that ultimately
results in a sensor being compelled to move by two competing
forces: One based on greedily maximizing information gain,
and one based on physicomimetics that acts to keep sensors
apart and promote region exploration in just the correct
manner.

In this section, we illustrate how the combination of these
two forces promotes just the correct platform behavior and that
the individual forces themselves are not sufficient. Specifically,
we compare both qualitatively and quantitatively the surveil-
lance performance of a network of sensors with three different
scheduling algorithms:

• The proposedCombination of Information Theoretic
Forces and Physicomimetic Forces, which provides
a balance between information seeking behavior and
explorative behavior and is connected directly with the
optimal multiplatform scheduling method.

• A purely Information Theoretic Method , which tasks
sensors to take actions that maximize information gain
(only).

• A purely Physicomimetic Method, which maintains sep-
aration between sensors using the repulsive force (only).

Figure 10 shows the steady-state platform positioning of
500 platforms under each of the three methods.

3) Monte Carlo Simulation of Performance:We again
display the performance of the scheduling algorithm based on
(a) the number of true targets detected, and (b) the number
of false targets reported. Figure 11 shows the performance
of the proposed scheduling algorithm versus the number of
platforms in comparison to the behavior of the two constituent
components alone.

This figure shows that the proposed method effectively
combines the strengths of the constituent methods. The physi-
comimetic method enforces collaboration and explorative be-
havior by encouraging platforms to maintain spatial separation.
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(a) Steady-state positioning of platforms con-
trolled by the physicomimetic force only. Notice
that the platforms simply spread out in the region
to avoid collision.
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(b) Steady-state positioning of platforms con-
trolled by the information theoretic force only.
Notice that the platforms over-cluster near the
true target positions and have large regions that
are not explored.
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(c) Steady-state positioning of platforms con-
trolled by the combination physicomimetic and
information theoretic forces. Here, platforms both
explore the entire region and preferentially clus-
ter near real targets.

Fig. 10. The combination of information theoretic forces and physicomimetic forces drives the sensors to behave in a manner that combines the explorative
nature of physicomimetics and the exploitative nature of information theoretic optimization.
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Fig. 11. Performance of the proposed method versus number of platforms in
terms of true targets detected and false targets reported. For comparison pur-
poses, the performance of each of the constituent forces (the physicomimetic
force and the information theoretic force) are included. As can be seen in
the figures, the combined force method significantly outperforms each of the
constituent methods. In fact, the performance of the constituent methods at
500 platforms is similar to the combined method with50-100 platforms.

When used alone, this results in good detection capability but
poor tracking capability, as once a target is found there is
no impetus to continue to follow its motion. Furthermore,
spurious detections that are the result of the false alarm
process are not tracked down through reinterrogation, resulting
in more false targets. Conversely, the information theoretic
method encourages exploitative behavior. When used alone,
this results in poor detection capability but good tracking
capability. Platforms tend to cluster around known targets and
track them very well but do not have the impetus to look for
new targets in unsurveyed regions. False targets are minimized
but real targets are less likely to be found. The proposed
method, which combines these two forces, as motivated by the
approximation to the joint constrained information theoretic
optimization, manages to use the strengths of both of the
constituent methods by both exploring and exploiting in just
the right ratio.

VI. CONCLUSION

This paper has addressed the problem of sensor management
for a large network of dynamic sensors. The method presented
is a novel combination of particle filtering for nonparametric
density estimation, information theoretic measures for com-
paring possible action sequences, and artificial physics for
providing approximate cooperation between sensor nodes.

This paper has provided three main contributions. First, it
has described a mathematical formulation for estimation of
the state of the surveillance region based on recursive esti-
mation of the joint multitarget probability density. Numerical
estimation of this high dimensional non-parametric density
is done online via a novel multitarget particle filter. Second,
this paper has presented a new method of sensor management
for large dynamic networks that combines information theory
and physicomimetics. Use of information theory allows this
method to have the property that potential actions which
provide different types of information can be compared on
a common footing, that of information gain. Use of physi-
comimetics provides a tractable and robust approximation to
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the joint optimization problem. As the number of possible
network actions grows exponentially with the number of
sensors and number of actions each sensor can take, finding
the globally optimum action set is not tractable. Finally, this
paper has shown that the method can be decentralized method
wherein each sensor generates a picture of the surveillance
region based on its own measurements and measurements
received from neighboring nodes. This local picture then drives
the actions of each sensor at the next decision epoch, and also
drives which measurements are sent to other sensors.

Future work in this area includes the extension of the
methods to long-term (non-myopic) scheduling. In a man-
ner analogous to multisensor scheduling, (naive) multi-step
scheduling results in an exponential explosion of potential
actions. Therefore, principled approximation methods (perhaps
domain-specific) must be developed for tractable implemen-
tation. As alluded to earlier, some work has been done in
extending the information theoretic scheduling metrics to the
multi-step setting, but has focussed mainly on the single
platform setting.

APPENDIX

In this appendix, we show how the multisensor divergence
can be written as sum of single sensor divergences and an
explicit correction term. As in the text, we specialize to the
case of the Ŕenyi Divergence whereα → 1 which becomes
the Kullback-Leibler Divergence [42].

The Kullback Leibler (KL) divergence between two densi-
ties p0(x) andp1(x) is defined as

KLD(p1||p0) =
∫

p0(x) ln
p0(x)
p1(x)

dx (30)

In the JMPD setting, the divergence between the prediction
density and the updated density after allP sensors have made
measurementsz1, · · · , zP is from the definition

KLD
(
p(·|z0:k−1, z

1, · · · , zP )||p(·|z0:k−1)
)

= (31)

∑

Tk

∫
p(Xk, Tk|z0:k−1) ln

p(Xk, Tk|z0:k−1)
p(Xk, Tk|z0:k−1, z1, · · · , zp)

dXk .

(Note that we omit from the notation conditioning on past
measurementsr0:k−1 and current actionr1, · · · , rP for nota-
tional simplicity).

Using Bayes rule (5) on the denominator of the log term,
this can be simplified to

∑

Tk

∫
p(Xk, Tk|z0:k−1) ln

p(z1, · · · , zP |z0:k−1)
p(z1, · · · , zP |Xk, Tk)

dXk .

(32)
Further simplifying algebraically on the log term, we have

lnp(z1, · · · , zP |z0:k−1)− (33)
∑

Tk

∫
p(Xk, Tk|z0:k−1) ln p(z1, · · · , zP |Xk, Tk)dXk .

Both log terms can expanded giving

ln

(
p(z1|z0:k−1) · · · p(zP |z0:k−1)× (34)

p(z1, · · · , zP |z0:k−1)
p(z1|z0:k−1) · · · p(zP |z0:k−1)

)
−

∑

Tk

∫
p(Xk, Tk|z0:k−1)×

ln

(
p(z1|Xk, Tk) · · · p(zP |Xk, Tk)×

p(z1, · · · , zP |Xk, Tk)
p(z1|Xk, Tk) · · · p(zP |Xk, Tk)

)
dXk

And distributing the logs, the multisensor KLD becomes

lnp(z1|z0:k−1) + · · ·+ ln p(zP |z0:k−1)+ (35)

ln
p(z1, · · · , zP |z0:k−1)

p(z1|z0:k−1) · · · p(zP |z0:k−1)

−
∑

Tk

∫
p(Xk, Tk|z0:k−1) ln p(z1|Xk, Tk)dXk − · · ·

−
∑

Tk

∫
p(Xk, Tk|z0:k−1) ln p(zP |Xk, Tk)dXk

−
∑

Tk

∫
p(Xk, Tk|z0:k−1) ln

p(z1, · · · , zP |Xk, Tk)
p(z1|Xk, Tk) · · · p(zP |Xk, Tk)

Recognizing the components as the individual sensor diver-
gences by comparison to eq. (33), we have

KLD
(
p(·|z0:k−1, z

1)||p(·|z0:k−1)
)

+ · · · (36)

+KLD
(
p(·|z0:k−1, z

P )||p(·|z0:k−1)
)
+

ln
p(z1, · · · , zP |z0:k−1)

p(z1|z0:k−1) · · · p(zP |z0:k−1)

−
∑

Tk

∫
p(Xk, Tk|z0:k−1) ln

p(z1, · · · , zP |Xk, Tk)
p(z1|Xk, Tk) · · · p(zP |Xk, Tk)

The integral term is0 since

p(z1, · · · , zP |Xk, Tk)

p(z1|Xk, Tk) · · · p(zP |Xk, Tk)
(37)

=
p(z1|Xk, Tk)p(z2|Xk, Tk, z1) · · · p(zP |Xk, Tk, zP−1, · · · , z1)

p(z1|Xk, Tk) · · · p(zP |Xk, Tk)

=
p(z1|Xk, Tk) · · · p(zP |Xk, Tk)

p(z1|Xk, Tk) · · · p(zP |Xk, Tk)

=1 .

i.e., as the likelihood in the numerator is conditioned on the
truth at the current time(Xk, Tk), the additional measurements
from other platforms add no information. Note the subtlety
that this isnot the case with the likelihood conditioned on
past measurements. Here knowing other sensor measurements
does add additional information.

Therefore, the result is that the Kullback-Leibler Divergence
between the prediction JMPD and the JMPD afterP sensors
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have made measurementsz1 · · · zP is simply the sum of theP
single sensor divergences and a correction term, given explic-
itly by the log ratio of “informed” likelihoods to “uninformed”
likelihoods, i.e.,

KLD
(
p(·|z0:k−1, z

1, · · · , zP )||p(·|z0:k−1)
)

= (38)

P∑

i=1

KLD
(
p(·|z0:k−1, z

i)||p(·|z0:k−1)
)
+

ln
p(z1, · · · , zP |z0:k−1)

p(z1|z0:k−1) · · · p(zP |z0:k−1)
.

By taking the expected value of both sides and recognizing
that the Ŕenyi Divergence becomes the Kullback Leibler
Divergence asα → 1, we have the desired result.
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