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Abstract—In this paper a minimax methodology is presented
for combining information from two imaging modalities having
different intrinsic spatial resolutions. The focus application is
emission computed tomography (ECT), a low-resolution modality
for reconstruction of radionuclide tracer density, when sup-
plemented by high-resolution anatomical boundary information
extracted from a magnetic resonance image (MRI) of the same
imaging volume. The MRI boundary within the two-dimensional
(2-D) slice of interest is parameterized by a closed planar curve.
The Cramèr–Rao (CR) lower bound is used to analyze estimation
errors for different boundary shapes. Under a spatially inhomoge-
neous Gibbs field model for the tracer density a representation for
the minimax MRI-enhanced tracer density estimator is obtained.
It is shown that the estimator is asymptotically equivalent to a
penalized maximum likelihood (PML) estimator with resolution-
selective Gibbs penalty. Quantitative comparisons are presented
using the iterative space alternating generalized expectation maxi-
mization (SAGE-EM) algorithm to implement the PML estimator
with and without minimax weight averaging.

Index Terms—Asymptotic marginalization, Cramèr–Rao (CR)
bound, expectation maximization (EM) algorithm, Fisher infor-
mation, multiresolution imaging, penalized maximum likelihood,
planar curves, spatially variant Gibbs field model.

I. INTRODUCTION

T HIS paper is concerned with the following question
arising in multiresolution imaging. How should informa-

tion from two imaging sensors with different intrinsic spatial
resolutions and noise statistics be combined in order to better
estimate some common feature of the images? It is intuitively
reasonable that a feature in a noisy high-resolution image
should be forced onto the lower resolution image only if
the feature can be estimated with sufficiently small variance.
This paper provides a theoretical basis for this intuition in
the context of minimax optimal fusion of high- and low-
resolution image information for the multimodality medical
imaging application described below. The minimax procedure
can be viewed as a simple two step process: 1) apply a spatially
variant blur function to the high-resolution image, where the
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amount of blurring is inversely proportional to the observed
Fisher information at that spatial location; 2) use an iterative
penalized maximum likelihood method to fuse the regions in
the images having high Fisher information.

Emission computed tomography (ECT) is a functional imag-
ing modality which reconstructs the radionuclide spatial distri-
bution from gamma rays emitted from a patient after injection
of a radioactive tracer. The tracer uptake over a region-
of-interest (ROI) is defined as the integral over the ROI
of the radionuclide distribution. Tracer uptake estimation is
an essential tool in medicine and biological sciences for
evaluating metabolic function of living systems. Magnetic
resonance imaging (MRI) is an anatomical imaging modality
which images tissue structures based on proton spin transverse
magnetization differences. ECT and MRI are complementary
modalities. MRI has very high spatial resolution and produces
exquisitely detailed images of anatomical structures, such as
organ boundaries. ECT has far lower spatial resolution than
MRI but can track a large number of different biochemical
compounds as they are metabolized by organs within the body.
Recently, it has been recognized that when functional and
anatomical organ boundaries are spatially correlated, MRI and
ECT data can be combined to improve the accuracy of uptake
estimates [1]–[6].

The simplest method for merging the high-resolution MRI
data, which we call side information, into the low resolution
ECT data is postreconstruction integration: simply integrate
the reconstructed ECT image within a boundary extracted
from the MRI image. This is the approach taken in [7] and
[8] for quantification of radiotracer uptake in functional brain
imaging. However, resolution mismatch can produce severe
bias due to blurring of an organ’s tracer intensity across the
organ boundary. To avoid such bias it is better to incorporate
the MRI side information as an integral part of the ECT
image reconstruction process. One of the principal algorithms
proposed for this purpose is iterative maximuma posteriori
(MAP), equivalently penalized maximum likelihood (PML),
tracer reconstruction implemented with a spatially variant
Gibbs prior, or penalty, to enforce smoothness and incorporate
boundary information. Most penalty functions operate at pixel
scale and fall into one of two categories: penalties using
interpixel line site models [9], [1]; and penalties using tissue-
label models at each pixel [10], [6].
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MAP/PML methods can also produce bias in uptake esti-
mates when noisy or poorly registered side information leads
to boundary mismatch between the ECT and MRI images [11].
Various methods for reducing these mismatch errors have been
proposed including: line site blurring [12]; line site weighting
according to correlation with functional boundaries [13]; joint
estimation of tracer intensity and line sites, [14], [15]; joint
estimation of tracer intensity and anatomical tissue labels [16];
and robustification via subquadratic potential functions [17].
While more accurate than simpler methods like [12], joint
estimation methods [15], [16] have the disadvantage of high
computational complexity due in part to the presence of local
extrema in the likelihood function. This paper develops a
simply implemented minimax approach to uptake estimation
with organ boundary side information that provides protection
against boundary mismatch.

There are several important elements that distinguish the
approach described in this paper from previous approaches.
First, a smooth continuously parameterizable boundary model
is used which permits subpixel boundary resolution. Second,
the boundary Fisher information matrix (FIM) [18] is used to
specifya priori boundary estimator accuracy. The FIM speci-
fies a lower bound on the covariance of the boundary estimate
and also plays a key role in simplifying the implementation of
the minimax uptake estimator. Third, a minimum probability
of error criterion is adopted to robustify radiotracer estimation
errors to boundary mismatch. We show that the minimax
radiotracer estimate is equivalent to a PML reconstruction with
nonquadratic averaged Gibbs penalty, where the averaging is
performed over a “least-favorable” distribution of the bound-
ary. Using the smooth parametric boundary model we show
that the averaged Gibbs penalty is asymptotically equivalent to
a standard quadratic Gibbs penalty implemented with blurred
penalty weights where the blurring kernel is inversely related
to the FIM. This approach is illustrated for a particularly sim-
ple boundary parameterization using periodic B-splines which,
like all polar parametric boundary models, apply only to star
shaped organs, i.e., organs whose boundary can be described
by a radius function which is a scalar function of angle. This
class includes a wide range of complex nonconvex shapes but
would not include, for example, kidney shaped regions.

In Section II the problem statement along with principal
simplifying assumptions are given. In Sections III-A and III-B
the standard additive Gaussian statistical model for high-
resolution MRI measurements is given and a periodic B-
spline representation for star-shaped regions is presented. Two
boundary estimators are then presented, one implemented by
the maximum likelihood principle and the other a simpler edge
filtering (EF) implementation. In Section III-C an expression
for the FIM is given for the B-spline parameters and the matrix
CR bound is used to explore the estimator covariance. An
interesting conclusion is that for sufficiently high MRI spatial
resolution the CR bound is minimized for disk shapes. This
agrees with intuition that, for fixed MRI spatial resolution,
smooth rounded shapes should be the easiest to estimate.
Simulations are also given showing that for high MRI contrast-
to-noise ratio (CNR), both the ML and the EF boundary
estimators have virtually identical mean square error (MSE)

performance, both nearly achieving the CR bound. However,
as the CNR decreases below a certain threshold the EF
estimator error increases more quickly than that of the ML
estimator.

In Section IV the focus is turned to the problem of radio-
tracer reconstruction for the case of perfect side information.
Perfect side information occurs when the MRI-derived bound-
ary estimator resolution is uniformly higher than ECT spatial
resolution. In ECT the measurements are noisy projections
of the object’s radiotracer density onto a series of detectors
surrounding the object. The ECT problem differs from MRI in
two important ways: 1) the ECT measurement noise is Poisson
distributed while for MRI it is Gaussian; 2) even without
measurement noise the ECT reconstruction problem is ill-
conditioned unless a smoothness constraint is imposed on the
radiotracer density. Direct optimization of the Poisson likeli-
hood function is intractable and requires an iterative estimation
approach. The ill-conditioning is handled in Section IV-A
by a set of weights in a Gibbs penalty which enforces
smoothness everywhere in the object except across the organ
boundary. This leads to an iterative penalized maximum
likelihood (PML) reconstruction algorithm, equivalently a
MAP algorithm with Gibbs prior, implemented using the space
alternating generalized expectation maximization (SAGE-EM)
version of the EM algorithm [19].

In Section IV-C the PML algorithm with perfect side infor-
mation is generalized to the case of noisy boundary estimates.
Here the MRI-derived boundary estimator resolution may be
lower than ECT spatial resolution in some regions of the
image. To deal with imperfect side information a minimax
reconstruction algorithm is defined which minimizes the worst
case probability of reconstruction error. A solution to this
minimax problem is given in Section IV-C which takes the
form of a modified PML estimator with nonquadratic penalty.
Unfortunately this estimator is not suited to iterative imple-
mentation since this would require repeated multidimensional
integration of a nonlinear function of the Gibbs penalty over a
least favorable boundary distribution. Using a Bernstein Von-
Mises asymptotic theorem on the least favorable densities,
in Section IV-D it is shown that the minimax reconstruction
can be approximated by a PML algorithm with a resolution-
selective Gibbs penalty function. This is a quadratic Gibbs
penalty implemented with a blurred or smoothed weight map.
The blurring is performed via space-variant convolution of
the weight map with a multidimensional Gaussian density
having local covariance equal to the inverse observed Fisher
information matrix [20].

Finally in Section V numerical results are presented. Rep-
resentative reconstructed concentration density images are
shown which indicate significant qualitative improvements us-
ing the PML algorithm with resolution-selective Gibbs penalty.
These improvements are quantitatively supported with bias-
variance tradeoff curves.

II. MRI-A IDED ECT UPTAKE ESTIMATION

Consider a square slice of
an object volume which contains an organ or tumor that
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Fig. 1. Radionuclide tracer concentration estimation with and without anatomical side information. Here��� denotes an arbitrary parameterization of the
anatomical boundary.

Fig. 2. Ellipsoidal cold spot phantom with a contrast of 66.67%.

selectively absorbs a radionuclide. The MRI boundary es-
timation problem consists of generating an estimate of the
organ boundary from a noisy MRI image of the slice.
The ECT tracer uptake estimation problem with boundary
side information consists of estimating the total radionuclide
concentration within the region-of-interest (ROI)
contained inside the boundary, where

is the radionuclide concentration density. A block diagram
of the general tracer uptake problem with and without side
information is shown in Fig. 1 for a generic parameterization

of the boundary.
To maintain focus on the principal features of the ap-

proach, the following simplifying assumptions are made. First,
out-of-plane septal penetration and bleed-through effects are
neglected so that all detected radionuclide emissions can be
assumed to originate from the slice Second, the image is
assumed to consist of a single organ, which might be a hot or
a cold tumor, in a uniform background. Third, the anatomical
boundary is assumed to be star shaped with respect to some
point within the ROI, i.e., with respect to that point any
directed ray intersects the boundary exactly once. In Section V
the ellipsoidal cold spot phantom shown in Fig. 2 will be
used to demonstrate and compare performance. Finally, it is
assumed that the MRI and ECT images are perfectly registered,
i.e., they correspond to the same slice of image data without
relative shift, scale or rotation.

III. A NATOMICAL BOUNDARY EXTRACTION

MRI produces an image of tissue which is essentially a
noisy, discretized estimate of proton spin transverse magne-

tization within a two–dimensional (2-D) slice. The magne-
tization depends on relaxation parameters which differ for
different tissue types and thus MRI can give high contrast
and high-resolution images of anatomical tumor or organ
boundaries.

Many nonparametric approaches to boundary estimation
have been proposed, e.g., morphological transforms such as
medial axis, skeleton, thinning algorithms, active contours, and
Laplacian edge extraction operators [21]. An example of the
latter approach is to perform edge detection by thresholding
the gradient image followed by an algorithm which connects
and smooths the detected edges to form a closed contour. An
origin is selected interior to the boundary, e.g., by computing
the centroid of the image plane, and the MRI slice is trans-
formed to polar coordinates with respect to this origin,

The row index of the image matrix then
corresponds to angular position and the column index to radial
position of a pixel. The Canny [22] or Marr–Hildreth [23] edge
detection gradient operator is then applied to each row of the
polar image to extract a coarse estimate of the boundary radius
as a function of angle. The coarse estimate is smoothed using
a nonlinear median filter to eliminate small scale variations in
the radial estimate. The median filter is applied to the angular
periodic extension of the image to preserve continuity and
guarantee that the smoothed estimate corresponds to a closed
contour, i.e., in Cartesian coordinates.

A. B-Spline Boundary Model

Another approach to boundary extraction is to impose
a parametric boundary model followed by formulation of
a parametric estimation problem. Some of the well-known
models used to represent closed boundaries are periodic pla-
nar curve models such as Fourier descriptors, fitting of line
segments, cubics, Bezier curves, Beta-splines and B-splines
[24]. In this paper we adopt the B-spline boundary model.
A B-spline consists of a set of fixed positions, called
knots, and piecewise smooth curves, called basis functions,
connecting each of the knot positions. For anth order B-
spline these curves are specified by polynomial functions of
degree To ensure smoothness at each knot the curve is
constrained to have continuous derivatives up to order
B-splines can track local shape deformations using a small
number of parameters, unlike Fourier descriptors which require
many parameters and can have spurious oscillations. This
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Fig. 3. Representation of a two-level MRI image.

localization property of B-splines is due to their compact
support.

For an origin fixed inside the region of interest, the boundary
is represented by a radial function continuously indexed
by polar angle The th order B-spline model
specifies the boundary as a linear combination of basis
functions

(1)

where is a spline coefficient, are basis functions

(2)

and and are angular knot locations.
B-spline basis functions (2) are polynomials functions ofand
fast recursive numerical computation algorithms are available
[25].

It will be convenient to represent the spline representation
(1) in vector form

(3)

where

B. MRI Measurement Model

The noiseless and unblurred MRI image is assumed to be a
two-level function in the plane

I I I I

(4)

where I and I denote indicator functions for the field-
of-view and the ROI respectively (see Fig. 3). The
contrast of the MRI image is given by where

Under the assumptions that the MRI scanner has space-
invariant Gaussian point spread function and that

the measurement noise is additive zero mean white Gauss-
ian [26] we have the following representation for the MRI
measurements

I (5)

where

I (6)

(7)

and in (6) the 2-D convolution is denoted by Note that the
full-width-half-max (FWHM) spatial resolution of the MRI
scanner is proportional to the width of the symmetric (2-
D) Gaussian-shaped point spread function Note also
that for practical systems which is the width of the
field of view (FOV).

Under a Gaussian noise assumption the ML estimator of
takes the form of a nonlinear least squares estimator

I (8)

A conjugate gradient least squares algorithm can be used
to minimize the squared norm with respect to the spline
parameters and the intensity levels and Partial
volume effects can be dealt with by performing subpixel
interpolation. Details of such a ML estimator implementation
can be found in [27].

C. Cramèr–Rao Bound for Boundary Estimation

It is well known that under broad conditions [28] the
covariance matrix of any
unbiased estimator of a nonrandom parameter
vector satisfies the matrix CR bound

which is shorthand notation for: cov is a nonnegative
definite matrix. is the Fisher information matrix [18], [28]

where is a row gradient vector and is a
Hessian matrix. Under the MRI measurement model (5) and
the B-spline model (3) we derive the following expression for

in Appendix A:

(9)

where

is the normalized contrast. In (9)
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denotes the vector in the plane describing the Cartesian coor-
dinates of the boundary at angle

While the bound (9) gives a useful performance limit on un-
biased estimators of the spline parametersthe performance
of unbiased estimators of the boundary

will be of greater interest in the sequel. Under the B-
spline model (3) the boundary function is
constrained to be in the span of the spline basis
Using a generalization of the constrained CR bound [29] to
function estimation, the covariance function
of any unbiased boundary estimator can be shown to
satisfy the following bound stated in terms of a nonnegative
definiteness (n.n.d.) condition (see Appendix B)

CRB is n.n.d. (10)

where CRB is the CR lower bound

CRB (11)

In particular, the bound (10) implies that for any integrable
scalar function

CRB (12)

Define the constant as

where The parameter decreases to zero
as the MRI scanner spatial resolution increases (smallor as
the boundary shape is magnified Roughly
speaking, is small when the resolution of the scanner is high
enough to resolve the smallest details in the boundary function.

It is shown in Appendix C that the constrained CR bound
(11) has the small representation

CRB

(13)

D. CR Bound Properties

The following comments pertain to the smallapproxima-
tion (13) to the CR bound

1) The CR bound decreases as the boundary radius function
is scaled up (magnification). It also decreases as

the normalized contrast increases. This contrast
increases when either the point spread resolution width

or the power level of the noise decrease. Thus

the CR bound predicts that among all possible objects,
large and high contrast objects can be estimated most
accurately.

2) Since the CR bound depends on the actual contrast
only through its square via the

bound predicts that optimal estimator performance is
independent of whether the ROI is a hot spot (positive
contrast) or a cold spot (negative contrast).

3) An interesting question is: what is the shape of the
boundary curve that minimizes the CR bound? Consider
the following:

CRB

where the inequality follows from the nonnegative def-
initeness of the matrix (see Ap-
pendix B). Note that equality is attained if and only
if is independent of

Since describes a closed curve, the only way
for this to occur is if in fact ,
i.e., is constant [30]. Thus disk shaped objects
minimize the CR bound.

4) The worst case boundary shape which maximizes the
constrained CR bound (13) is more difficult to specify. A
basic property of such shapes is that the radius function

have rapid variations as a function of

E. Boundary Estimator Performance Comparison

Simulations of the ML and EF boundary algorithms dis-
cussed above were performed for a range of contrast-to-noise
ratios and compared to the constrained CR bound (13)
for the blurred B-spline phantom in Fig. 2. Quadratic B-
splines with 16 uniformly spaced knots were used for ML
estimation. The sample bias and sample standard deviation of
the perimeters of the ML and EF boundary estimators were
normalized by the true perimeter and were plotted against
the normalized noise standard deviation in
Fig. 4. Fig. 4(a) is the plot of bias of the estimators. The ML
estimates are virtually unbiased with absolute bias less than
0.2% of ground truth for all but the noisiest data. The bias of
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(a)

(b)

Fig. 4. (a) Bias of ML and EF boundary estimates versus the MRI noise
level. (b) Performance of the ML and EF boundary extraction methods relative
to constrained CR bound versus MRI noise level. Vertical error bars shown
cover� one standard deviation.

EF estimator is smaller than 2% for noise standard deviation
less than 10% but increases to a maximum bias of about 9%
above this noise threshold. In Fig. 4(b), the variance of these
estimators are compared to the constrained CR bound. The
ML estimates come quite close to achieving the CR bound for
noise standard deviation less than 10%. The EF estimator has
variance which uniformly exceeds that of the ML estimator,
especially above the threshold of 10%.

IV. ESTIMATION OF RADIONUCLIDE CONCENTRATION

In emission computed tomography (ECT) a radionuclide is
injected into a patient and gamma-ray photon emissions are
counted by an array of collimated detectors oriented around
the patient. The objective is to use these detected counts
to estimate or reconstruct the radionuclide spatial concen-
tration density in a square slice The slice is discretized
into pixels at locations and the pixels are

lexicographically ordered from one to The discretized
spatial density is denoted by the vector
of integrated intensities within each pixel. The measured
emission data is a vector of counts each element of
which corresponds to the number of counts falling into a
detector element. These counts are assumed to be statistically
independent Poisson random variables with mean vector

where is the ECT system matrix andrepresents spurious
detected counts originating from ambient background radioac-
tivity, septal penetration effects, cosmic rays, scatter, or, in
positron emission tomography (PET), random coincidences.

A. Penalized Maximum Likelihood Reconstruction

The most common method for reconstructing ECT images
from projections is the noniterative filtered back projection
(FBP) algorithm [31], [32] which does not account for Poisson
statistics, scattering, or attenuation. An iterative maximum
likelihood (ML) image reconstruction algorithm was imple-
mented with expectation-maximization in [33] which accounts
for Poisson statistics and is easily modified to account for
attenuation and scattering. However, the ML algorithm suffers
from slow convergence and is not well suited to incorpo-
ration of image smoothness or anatomical side information.
Penalized ML (PML) image reconstruction can enforce image
smoothness by introducing roughness penalty functions into
the log likelihood objective function [19], [34]. The PML
reconstruction is the maximizer overof

(14)

Here, is the loglikelihood function of given the
ECT measurements is a vector of weights, is
a quadratic penalty

(15)

and is a smoothness parameter—a large value ofstrongly
emphasizes the penalty, and hence encourages smoothness in

, while a small only weakly emphasizes the penalty.
In (15) is the pixel neighborhood of theth pixel

defining the spatial extent of the dependency structure.is
a weighting function which can be used to enforce or relax the
roughness penalty by selectively penalizing differences
over a neighborhood.

Fig. 5 shows the second-order neighborhood structure that
is used for this paper. The pixel of interest is the grey
pixel in the center. The neighborhood is the set of eight
pixels, called second-order neighbors, labeled by black dots.
The weights are chosen to be symmetric and
take on a positive value between pixeland its neighbors and
are zero otherwise. By making the weights also depend
on a boundary estimateit is possible to eliminate or reduce
smoothing across the estimated boundary.
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Fig. 5. Second-order neighborhood for a 2-D discrete image. The neighbors
(black) of the center pixel (gray) are labeled according to their relation to the
center, with D for down, U for up, L for left, and R for right.

B. Weight Assignments

Here several weight assignments are briefly described.
These will be compared in Section V.

1) Ideal Weights:When exact errorless estimates
the true parameterof the MRI boundary spline

parameters are available, the boundary can be forced into the
weights by setting if pixels and are both
within the boundary specified by or if they are completely
outside of the boundary. Otherwise, is set to zero when
and are on opposite sides of the boundary. This assignment
completely decouples pixels on either side of the boundary
yet still encourages smoothness within and exterior to the
boundary. A mathematical definition of this assignment is

(16)

where, as in (4), is the indicator func-
tion of the interior of the boundary at theth lexicographically
ordered pixel located at

2) Plug-In Weights:When only an imperfect estimateis
available the simplest approach is to use it in place ofin
the weight assignment (16). This estimate-and-plug technique,
which we call the plug-in weight mapping, gives weights

which encourage smoothing without accounting for
the distribution of errors in the boundary estimate. We will
later refer to these as unsmoothed weights.

3) Variance-Corrected Weights:A refinement of the
estimate-and-plug technique is to average the weights with
respect to an empirically determined multivariate density
of the estimate This produces the “variance-corrected
weight mapping”

(17)

where is a multidimensional density function in the
argument which is indexed by the estimateand is as
given in (16). We will later refer to these as smoothed weights.
In the next section this method is theoretically justified from
a minimax perspective.

C. Gibbs Field Model and a Minimax Estimator

The PML estimator (14) is identical in form to amaximum
a posteriori (MAP) estimator of when is taken to be a
random vector with a Gaussian prior [35], [3], [36]

(18)

where is a normalization constant depending only on the
weight map and The prior is known as a Gibbs prior
and a simulation of from the prior is called a Gibbs random
field with potential function

Let be a specified estimation error tolerance. Under the
Gibbs prior, the average probability of error associated with
any estimator based on the ECT/MRI measurements

is

(19)

where denotes the conditional density given the Gibbs
field

It is well known, e.g., [37, Ch. 2] or [38, Ch. 4], that
for small the minimum probability of error estimator
is equivalent to the MAP estimator

When the true boundary is known, one can incorporate
it into the weights of the PML and be ensured
of minimum probability of error performance. Assume that

and are conditionally independent given Then the
following factorization holds:

(20)

As does not depend on the MAP estimator
maximizing the log of (20) is equivalent to the PML estimator
given by (14) with ideal weights (16).

Of course, for an unknown boundary the ideal weights are
not implementable. The alternative explored here is to replace
the estimation criterion (19) with the worst case probability
of estimation error

(21)

The estimator which minimizes the worst case prob-
ability of error is a minimax estimator which is robust to
uncertainty in the boundary parametersAn implicit form
of this minimax estimator can be specified under compact-
ness and continuity assumptions [39, Theorem 2.9.2]. The
following is proven in Appendix D.

Proposition 1: For specified weight mapping and param-
eter let be the risk function for an estimator
Assume that the conditions of [39, Theorem 2.9.2] are satis-
fied. Assume in addition that the function is
continuous and has a strict global maximum overThen

(22)
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where the maximum on the right side of (22) is over all
probability measures on the Borel subsets of , and

has the representation

(23)

The notation in the proposition denotes the differential
of a probability measure and when is absolutely con-
tinuous with respect to Lebesgue measure:
where is a probability density. In the proposition
is a Bayes estimator which minimizes the average prob-
ability of error; averaged with respect to the probability
measure By [39, Theorem 2.10.2], the minimax estimator
is extended-Bayes, i.e., given arbitrary there exists a
probability measure for which

comes to within of the maximum value on
the right-hand side of (22). The measure is called the
least favorable distribution. The minimax estimator thus has
an average probability of error which is essentially attainable
by the Bayes estimator Furthermore, by (23)

(24)

is, to order a minimax estimator of
Observe that the least favorable distribution is a func-

tion of the weight mapping scheme but is independent
of Note that since is nonrandom cannot be strictly
interpreted as a probability measure of a random variable.
Rather is a probability measure which is induced by the
minimax criterion. Determination of the necessary for
implementation of the estimator (24) is generally difficult but
not infeasible, at least in principle. A sufficient condition for
a distribution to be least favorable is that it equalize the
risk of the PML estimator over For some simple examples
see [39]–[42]. Fortunately, for this paper the abstract repre-
sentation (24) will be sufficient without explicit determination
of

The estimator (24) can be related to a modified PML estima-
tor with Gibbs-like penalty as follows. Under the conditional
independence of MRI and ECT data the factorization (20)
holds and the integrand of the right side of (24) has the
representation

(25)

where is the marginalized MRI density

and is the induced least favorable posterior

(26)

Integrating both sides of (26) with respect toand taking
the logarithm, we obtain from (24) that the estimatoris the
vector which maximizes

(27)

Using the Gibbs prior distribution (18) and the relation (27),
and neglecting constants independent of, the estimator
of (24) is seen to maximize the following PML objective:

(28)

The second additive term in (28) is a penalty which is a
nonquadratic function of Its evaluation involves a com-
plicated integration over all values of to which

assigns positive measure. This makes (28) ill-
suited for iterative numerical maximization, e.g., by Fisher
scoring, coordinate ascent, or the EM algorithm, since the
integral would have to be evaluated at every iteration. A
practical algorithm is given by the approximation in the next
section.

The intuition behind the approximation is as follows. When
the MRI measurements are of high quality, e.g., due to
merging multiple scans, the posterior concentrates
as a function of at or near the true parameter Thus as
the data quality improves the posterior concentrates in the
vicinity of and two things happen: 1) the influence of
the induced least favorable prior function on the posterior
dissapears and 2) in (28) the integral
can be approximated by making the
penalty term in (28) quadratic in Furthermore, in a manner
analogous to the mechanism behind the central limit theorem,
the posterior approaches a Gaussian distribution whose mean
and covariance are related to the ML estimator ofand its
Fisher information matrix, respectively.

D. Asymptotic Minimax Approximation

Assume that the experiment giving measurements is
repeated times yielding the i.i.d. observation set

Let be the maximum
likelihood estimate of based on Under general condi-
tions it is well known that smooth posterior densities converge
to Gaussian densities when the maximum likelihood estimator
is consistent. This property was used by Laplace [43] and is
known as the Von-Mises Bernstein Theorem and is commonly
stated in terms of convergence of the posterior probability
measure to a Gaussian measure
where

(29)
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where and are a vector and positive definite matrix,
respectively, possibly depending on but not on We state
the following general version of this convergence result which
is discussed in [44, Sections XII-D and XVII-G].

Theorem 1: Let be the true value of the -dimensional
real parameter vector and let be a prior distribution.
Assume that the likelihood and are smooth in

in the sense of satisfying the regularity conditions (B1)–(B7)
of [44, Section XVII-G]. Then the posterior probability distri-
bution satisfies

1) For any open ball
centered at of radius (i.p.).

2) For any Borel subset of
(i.p.) when, in (29), is

a matrix which converges in probability to the Fisher
information , and is
an estimator which converges in probability to

The practical interpretation of Assertion 2 of the Theorem
is that a multivariate Gaussian distribution with mean vector

and covariance matrix is an asymptotically accurate
approximation to the posterior distribution. Note that the
Theorem applies to a large class of sequencesand Note
also that the asymptotic form of the posterior isindependent
of the explicit form of the prior This is the key to
simplification of the modified PML criterion (28).

An important special case of Theorem 1 is obtained
when is taken as the maximum likelihood estimate

and is taken as theobserved Fisher

information evaluated at

(30)

Use of these assignments of and in Theorem 1 give an
asymptotic approximation to the posterior which is identical to
the profile posterior approximation proposed in [45]. Another
common proposal is to take in Theorem 1 to be the
expected Fisher information

(31)

which is simply the Fisher information formula (9) evaluated
at In terms of the asymptotic theorem, the use of either
of the information matrices (30) or (31) in the Gaussian
approximation (29) is equivalent. However, there have been
studies showing that the observed information has better finite
sample approximation properties in certain situations [20]. The
observed Fisher information matrix for the B-spline boundary
model is derived in Appendix F.

Theorem 1 allows us to obtain the following key result,
proven in Appendix E.

Proposition 2: Let the assumptions underlying Theorem 1
be satisfied and define the smoothed weights

(32)

where is a multivariate Gaussian distri-
bution with mean vector and covariance matrix
specified in Assertion 2 of Theorem 1. Then, to within a

-independent additive constant the minimax objective
function defined in (28) converges from above
to the PML objective function defined in (14)
in the sense that

(33)

where the sequence converges to zero in probability.
It follows from the above that, if the ML estimator

is consistent, the minimax estimator of is asymptotically
equivalent to a PML estimator implemented via Gibbs
penalty with smoothed weights

(34)

where is the -dimensional convolution

(35)

and

Unlike the nonasymptotic minimax estimator in (28) which
would require averaging the-dependent Gibbs prior den-
sity, the asymptotic minimax estimator in (34) only
requires averaging the weights in the Gibbs prior. Since the
weights do not depend onthis computation can be computed
prior to computing Furthermore, by discretization of
the convolution, (35) can be efficiently computed via the
multidimensional FFT [30].

V. NUMERICAL RESULTS

The ellipsoidal 64 64 pixel gray level phantom shown
in Fig. 2 was smoothed using a Gaussian kernel with width

pixels, which is 15% of the average radius of
the inscribed ellipsoidal boundary (the ROI), and additive
Gaussian noise was added to form the MRI image. Parallel
projections of the phantom typical of a positron emission
tomography (PET) geometry were computed with 64 radial
bins and 60 angles uniformly spaced over 180Poisson noise
was then added with rates equal to the average intensities in
each of the projection bins plus a 15% uniform background.
Attenuation was not included. The scan time for PET was
adjusted to obtain 1 000 000 detected counts not including
background events. PML reconstructions of the phantom were
implemented using 60 iterations of SAGE3 (space alternating
generalized EM [19]) with a quadratic penalty and second
order Gibbs weights. The reconstructions were performed
on 400 independent realizations of emission data to obtain
empirical estimates of bias and variance.

We first illustrate a spatially variant resolution property of
the minimax averaged Gibbs weighting scheme. Fig. 6 shows
a typical realization of the weight maps for ideal weights
extracted directly from the noiseless phantom, unsmoothed
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(a) (b)

(c)

Fig. 6. For each of these three types of weights, namely, (a) ideal, (b) unsmoothed, and (c) smoothed weights, four images are given corresponding to
wj;k for j � (xj ; yj) and the four cases:k = (xj�1; yj) (left), k = (xj ; yj+1) (up), k = (xj+1; yj+1) (up-right), andk = (xj�1; yj+1) (up-left),
respectively. In each figure a location where the pixel is black indicates that the weight is zero, and a location where the pixel is white denotes a weight
value of one. The MRI additive noise parameter is�n = 0:5 in Fig. 6(b) and (c).

(plug-in) weights extracted from the noisy phantom using the
ML estimation technique described in Section III, and the cor-
responding smoothed (variance-corrected) weights. An outer
elliptical boundary guard region and a hard-limit were added
to the weight averaging in order to prevent the reconstruction
of from leaking mass accross the estimated boundary. The
hard-limit boundary is obtained by assigning zero weights
to pairs of pixels that have the smallest magnitude averaged
Gibbs weights. In each panel in Fig. 6, a location where the
pixel is black indicates that the weight is zero, and a location
where the pixels is white denotes a weight value of one. For
example, in the upper left panel of Fig. 6(a) no smoothing of
is enforced in the “left” direction at pixel locations which are
labeled in black. The ideal weight maps in Fig. 6(a) capture
the boundary of the ellipsoidal phantom without error. The

unsmoothed weight maps in Fig. 6(b) show significant errors
in the estimated boundary, especially on the left side. The
smoothed weight maps in Fig. 6(c) resemble blurred versions
of the ideal weight maps, the blurring being highest where the
error of the unsmoothed weights is predicted by the observed
Fisher information to be highest.

Fig. 7 shows representative reconstructions obtained by
applying filtered back projection (FBP), PML without side
information, PML with ideal side information, PML with
unsmoothed weights (estimate-and-plug), and PML with min-
imax smoothed weights. Observe that the boundary of ROI
is severely blurred for both FBP and PML without side
information. This is because the spatial smoothing associated
with these two algorithms is spatially invariant. One thus
would expect the tracer uptake estimates for these recon-
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(a) (b)

(c) (d)

(e)

Fig. 7. Reconstructed images using (a) FBP with Hamming window, (b) uniform weight, (c) ideal weights, (d) unsmoothed weights, and (e) smoothed
weights, for the same realization of MRI and PET data with MRI noise�n = 0:36 (6% of contrast). The PML-SAGE3 method with� = 1 was
used for (c)–(e).

structions to have high negative bias. The PML with ideal
side information enforces the high-resolution ideal weight
map in Fig. 6(a) into the ECT reconstruction which virtually
eliminates smoothing of radiotracer across the boundary. The
PML with unsmoothed weights does better than the FBP and
PML without side information but considerably worse than
the PML with ideal weights due to the enforcement of the
erroneous high-resolution weight map into ECT. The PML
with smoothed weights appears to have recovered the ROI
almost as well as the PML with ideal weights.

We next turn to the bias and standard deviation of total
uptake estimates derived from the ECT image reconstructions.
Total uptake was estimated for each of the ideal, unsmoothed,
and smoothed PML weighting algorithms by simply summing
the reconstructed pixel values within each of the estimated

ROI’s determined by the respective weight maps. For FBP
and PML without side information, the ROI’s were estimated
by thresholding the reconstructed image. We compared the
minimax smoothing technique using true Fisher information,
expected Fisher information, and observed Fisher information.

In Fig. 8 the average RMS error of the uptake estimates is
shown as a function of the smoothing parameterfor the ECT
reconstructions: FBP, PML without side information, PML
with EF extracted side information (unsmoothed weights),
and PML with ML extracted side information (unsmoothed
weights). These figures clearly indicate the benefit of side
information. Note also that, as expected from the MRI bench-
mark studies presented in Section III-E, use of ML boundary
estimates in the weights gives better uptake estimates than
using suboptimal EF boundary estimates.
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Fig. 8. Average RMS reconstruction error for various emission reconstruc-
tion methods.

In Fig. 9 the percent standard deviation is plotted against
percent bias of total uptake asranges from small (upper part
of curves) to large (lower part of curves). The FBP and PML
without side information algorithms performed off scale and
are not shown. The improvement in bias-variance tradeoff due
to minimax smoothing with ideal, expected, or observed Fisher
information is obvious from the figure. The bias-variance
curves using three different types of Fisher information are
quite close to each other and to the ideal curve. On the
other hand, as contrasted with the results reported in [20],
Fig. 10 gives clear indication that smoothing with expected
Fisher information significantly outperforms smoothing with
observed Fisher information smoothing as the MRI noise
variance increases.

VI. CONCLUSION AND FUTURE WORK

We have presented an asymptotically minimax tracer uptake
estimation algorithm for merging high-resolution MRI bound-
ary information into low-resolution ECT data. The algorithm
merges the MRI boundary information into the ECT recon-
struction by a penalized maximum likelihood method with a
resolution selective Gibbs penalty implemented with a set of
smoothed weights. Here the amount of smoothing is spatially
variant and inversely proportional to the Fisher information.
The effect of this spatially variant blurring is that the Gibbs
penalty forces a segment of the estimated boundary into the
ECT reconstruction only if the boundary estimate has high
resolution, i.e., low variance as measured by the inverse Fisher
information. In this way the penalty accomplishes resolution
matching between the ECT and MRI data.

Several restrictive assumptions were made in this paper to
maintain focus on the fundamentals. The PML structure of the
asymptotic minimax approximation, given by Proposition 2,
holds for any continuous boundary parameterization. As a
consequence, while the implementation details will differ,
the general method is applicable to any continuously pa-
rameterizable nonstar shaped organ in two dimensions (2-D)
or three dimensions (3-D). The 3-D parameterizations under

investigation include: thin plate splines, spherical harmonics,
and 3-D prolate spheroidal functions. With the addition of
continuously variable translation, scale, and rotation variables
into the unknown parameter vector the method can also
be extended to the case of imperfectly registered images. In
principle, the approach could also be extended to multiple
organs, although this would require conditioning on their
number and multiple hypothesis testing.

APPENDIX

A. Fisher Information Matrix for B-Spline Coefficients

Under the linear Gaussian model (5) the loglikelihood of the
noisy MRI data is given by Girsanov’s formula [46, ch. 13]

(36)

where is a term independent of and
is the square domain of the MRI image. The Hessian

matrix of the loglikelihood is

(37)

Since, for equal to the true parameter,
is zero mean the expectation of the second term on the

right-hand side is zero and thus

(38)

Now, using (4) and (7)

A change of variable in the above integral from rectangular
to polar coordinates, and the definition
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Fig. 9. Percent Std versus percent bias of total uptake estimate for MRI noise�n = 0:36:

give

(By Leibnitz’s rule)

Now use , substitute the above into (38),
complete the square in the exponent of the integrand, and
identify

to obtain

(39)

where

and

Under the assumption that the integral over
can be performed by integration of the unnormalized bivariate
Gaussian probability density resulting in the expression

(40)

which is readily verified to be identical to the expression (9).

B. Cramèr–Rao Bound for Boundary Estimation

The CR bound for finite dimensional parameters subject to
constraints has been studied in [29], [47], and [48]. While
proof of the general extension theorem is outside of the scope
of this paper, it can be shown that the theory in [29] extends
to continuously indexed parameters, e.g., functions such as

In particular, the CR bound for
unbiased estimates ofsubject to the linear constraint (3) can
be stated as: CRB is a symmetric
nonnegative definite (n.n.d.) kernel where, analogously to [29,
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(a)

(b)

Fig. 10. (a) Percent bias of total uptake estimate versus MRI noise�n: (b) Percent Std of total uptake estimate versus MRI noise�n:
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Lemma 2, (19)] or [48, Theorem 1, (6)], CRB is the
symmetric positive definite kernel

CRB

(41)

In the above equation the integral inner product operator
has been introduced to simplify

notation. The symmetric function is the (uncon-
strained) Fisher information corresponding to unconstrained
estimation of which can be shown to have the form

(42)

(43)

In view of the form of the FIM for derived in the previous
Appendix, it is evident that
Thus we have

Lemma 1: Let be a vector function and
let be a scalar function on which is constrained to have
the form for some Assume that the
likelihood function satisfies conditions (15)–(19) of
[29]. Then any unbiased estimatorof the function satisfies
the following constrained CR bound

CRB is n.n.d. (44)

where

CRB

Proof of Lemma 1:Define the matrix

This matrix is nonsingular since is
a column vector of linearly independent functions. Indeed,
there exists a nonsingular lower triangular Gramm–Schmidt
orthogonalization matrix such that is a
vector of orthonormal functions and therefore

which is obviously nonsingular.
Thus we can define the projection operator

which projects square integrable functions on onto the
linear span of the functions In particular, for any
such function lying in the span of these functions

and therefore

for all where is a dirac delta
function.

Now let be an arbitrary unbiased estimator of the
B-spline boundary where lies in the span of

Then is also an unbiased
estimator since

Furthermore, the covariance function of cannot exceed
that of

is n.n.d. (45)

This is easily shown by substitution of the orthogonal decom-
position

into
Now as the estimator lies in the span of

there exists a vector such that

Thus the covariance function of is

(46)

where is the covariance matrix of Further-
more, as is an unbiased estimator of the true is
an unbiased estimator of the trueThis can be seen from the
sequence of equalities

so that Hence

which implies that as is a nonsingular
matrix.

Finally, as is unbiased, application of the CR bound to
the covariance of gives: Using this in (46)
obtain

is n.n.d.

Therefore, using the above and (46)

is n.n.d.

which is the form of the CR bound claimed in (44).

C. Asymptotic Form of CR Bound

In this appendix the small (high MRI spatial resolution)
representation (13) is established for the boundary estimation
CR bound (11). We state this result as the following.
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Lemma 2: Assume that for all and
are bounded. Then

CRB

(47)

where

(48)

Proof of Lemma 2:First, the following simple identi-
tities are easily established using the definition

In particular the assumed boundedness of and
implies that and are also bounded.

The next step is to derive the following asymptotic form
(9) for the FIM :

(49)

(50)

To show this start with the Taylor series with remainder for
the vector
where is a point in and

This gives

(51)

Now separate the integral of (49) overand to obtain
the representation

(52)

where

It will next be shown that

(53)

where is defined as

(54)

Substitute (51) into the exponent of the integrand of
and make a change of variable to obtain
the representation

(55)

where is a standard zero mean unit variance Gaussian
random variable and is the indicator function of the
interval See the equation at the
bottom of the page. Using the definition (54) of

Since the second derivative of the function is bounded,
expansion of the left-hand side of the previous equation in
a Taylor series with remainder about and substitution
into (55) yields

where as given in (48), and

where is a point in
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Since this establishes
relation (53). Plugging (53) into (52) one obtains (40). Using
the identity and the continuity
of matrix inverses for invertible matrices:

, finishes the proof.

D. Proof of Proposition 1

First, note that for a fixed function the maximization over
in (21) is equivalent to maximization over probability

distributions on

To see this, define and let denote
the probability distribution which assigns probability one to
a single point Now, since the space of probability
distributions on contains the space of single point
distributions on we have

On the other hand, as

Hence and (21) is equiv-
alent to

Second, under the assumptions of [39, Theorem 2.9.2] the
solution to the minimax problem occurs at a saddlepoint so that

Third, for fixed the integral on the right-hand side of
the above equation is simply the average probability of error,
which by Fubini, has the equivalent form

As the above expression is
minimized when is selected as the midpoint of the
sphere of radius which maximizes the integral

[40, Corollary 4.1.1]. From the assumed continuity of
it follows that this integral is continuous

and therefore by the mean value theorem

(56)

where denotes the volume of the unit sphere in Since
the expression in brackets has a strict maximum and is
continuous in the solution to (56) is

as claimed. This establishes the proposition.

E. Proof of Proposition 2

Only a sketch of the salient parts of the proof is given.
We eliminate the index in the following for simplicity.
Define the conditional expectation operator

Then we have from (28)

Since the exponential function is convex (equivalently the
log function is concave) Jensen’s inequality applied to the
right-hand side of the above equation gives

(57)

where

(58)

Hence which establishes
the lower inequality in (33).

We next show the upper inequality in (33). Under the
assumption that is smooth, we can apply Theorem
1. Assertion 2 of Theorem 1 implies that for integrable

and any Borel subset of the Lebesgue–Steiltjes
integral converges in probability to

where is the Gaussian probability
measure (29) cited in Theorem 1. On the other hand, we have
by Assertion 1 of Theorem 1 that for any open ball of
radius centered at the true parameter,

(59)

where converges to zero in probability. Now specializing
to since is arbitrary and
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is a continuous function, we have

(60)

where goes to zero as goes to zero. Combining (59), (60)
and the definition (28) of

where is given in (58) and converges to zero in
probability. From (14) and (15) the first two terms on the right-
hand side of the inequality can be recognized as
which finishes the proof.

E. Derivation of Observed Fisher Information

The observedFisher information [20] is given by
From the Hessian of the loglikeli-

hood as in (37)

(61)

The first term on the right-hand side of the above equation
can be identified from (38) as thetrue Fisher information
evaluated at We refer to this as theexpectedFisher
information. Therefore

(62)

Now define to be an “estimate” of the noise term
as follows:

then the observed Fisher information can be written in terms
of expected Fisher information as

(63)

Since is linear in its second derivative is
equal to zero. Thus

where

Substituting the above in (63),

(64)

where

We can then write this as

where
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Gärtner, “Expectaion maximization reconstruction of positron emission
tomography images using anatomical magnetic resonance information,”
IEEE Trans. Med. Imag., vol. 16, pp. 129–136, Apr. 1997.

[18] R. A. Fisher, “Theory of statistical estimation,” inProc. Cambridge Phil.
Soc., vol. 22, pp. 700–725, 1925.

[19] J. A. Fessler and A. Hero, “Penalized maximum likelihood image
reconstruction using space alternating generalized EM algorithms,”
IEEE Trans. Image Processing, vol. 4, pp. 1417–1429, Oct. 1995.

[20] B. Efron and D. V. Hinkley, “Assessing the accuracy of the maximum
likelihood estimator: Observed versus expected Fisher information,”
Biometrika, vol. 65, no. 3, pp. 457–487, 1978.

[21] E. R. Dougherty, Ed.,Digital Image Processing Methods. New York:
Marcel Dekker, 1994.

[22] J. Canny, “A computational approach to edge detection,”IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-8, pp. 679–698, Nov. 1986.

[23] D. Marr and E. C. Hildreth, “Theory of edge detection,”Proc. Roy. Soc.
London, vol. 207, pp. 187–217, 1980.

[24] M. Bret, Image Synthesis. Boston, MA: Kluwer, 1992.
[25] C. Chui, Multivariate Splines, SIAM, CBMS-NSF series in applied

mathematics, no. 54, 1988.

[26] W. A. Edelstein, G. H. Glover, C. J. Hardy, and R. W. Redington, “In-
trinsic signal to noise ratio in NMR imaging,”Magn. Reson. Medicine,
vol. 3, pp. 606–618, 1986.

[27] S. R. Titus, “Improved penalized likelihood reconstruction of anatom-
ically correlated emission computed tomography data,” Ph.D. disserta-
tion, Univ. Michigan, Ann Arbor, Dec. 1996.

[28] I. A. Ibragimov and R. Z. Has’minskii,Statistical Estimation: Asymp-
totic Theory. New York: Springer-Verlag, 1981.

[29] J. D. Gorman and A. O. Hero, “Lower bounds for parametric estimation
with constraints,”IEEE Trans. Inform. Theory, vol. 36, pp. 1285–1301,
Nov. 1990.

[30] R. Piramuthu and A. O. Hero, “Theory and implementation of minmax
ECT image reconstruction with MRI side information,” Comm. Signal
Processing Lab. (CSPL), Dept. EECS, Univ. Michigan, Ann Arbor,
Tech. Rep. 317, Aug. 1998.

[31] T. F. Budinger and G. T. Gullberg, “Three dimensional reconstruction
in nuclear medicine emission imaging,”IEEE Trans. Nucl. Sci., vol.
NS-21, pp. 2–20, 1974.

[32] A. C. Kak and M. Slaney,Principles of Computerized Tomographic
Imaging. New York: IEEE Press, 1988.

[33] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for
emission tomography,”IEEE Trans. Med. Imag., vol. MI-1, pp. 113–122,
Oct. 1982.

[34] K. Lange, “Convergence of EM image reconstruction algorithms with
Gibbs smoothing,”IEEE Trans. Med. Imag., vol. 9, pp. 439–446, Dec.
1990.

[35] E. Levitan and G. T. Herman, “Maximuma posteriori probability
expectation maximization algorithm for image reconstruction emission
tomography,”IEEE Trans. Med. Imag., vol. MI-6, pp. 185–192, 1987.

[36] P. J. Green, “Bayesian reconstructions from emission tomography using
a modified EM algorithm,”IEEE Trans. Med. Imag., vol. 11, pp. 81–90,
Mar. 1990.

[37] H. L. Van-Trees,Detection, Estimation, and Modulation Theory: Part I.
New York: Wiley, 1968.

[38] H. V. Poor,An Introduction to Signal Detection and Estimation. New
York: Springer-Verlag, 1988.

[39] T. S. Ferguson,Mathematical Statistics—A Decision Theoretic Ap-
proach. Orlando, FL: Academic, 1967.

[40] E. L. Lehmann,Theory of Point Estimation. New York: Wiley, 1983.
[41] B. Baygun and A. O. Hero, “Optimal simultaneous detection and

estimation under a false alarm constraint,”IEEE Trans. Inform. Theory,
vol. 41, pp. 688–703, 1995.

[42] , “An iterative solution to the min-max simultaneous detection
and estimation problem,” inProc. IEEE Wkshp. Statist. Signal Array
Processing(Corfu, Greece, June 1996), pp. 8–11.
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