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Abstract—In this paper a minimax methodology is presented amount of blurring is inversely proportional to the observed
for combining information from two imaging modalities having  Fisher information at that spatial location; 2) use an iterative

dlff_ere_nt intrinsic spatial resolutions. The focus ap_pllcatlon is penalized maximum likelihood method to fuse the regions in
emission computed tomography (ECT), a low-resolution modality

for reconstruction of radionuclide tracer density, when sup- the images having high Fisher information.

plemented by high-resolution anatomical boundary information Emission computed tomography (ECT) is a functional imag-
extracted from a magnetic resonance image (MRI) of the same ing modality which reconstructs the radionuclide spatial distri-
imaging volume. The MRI boundary within the two-dimensional 1, tjon from gamma rays emitted from a patient after injection
(2-D) slice of interest is parameterized by a closed planar curve. - . .
The Cramér—Rao (CR) lower bound is used to analyze estimation of a radioactive 'Fracer.. The tracer _uptake over a region-
errors for different boundary shapes. Under a spatially inhomoge- Of-interest (ROI) is defined as the integral over the ROI
neous Gibbs field model for the tracer density a representation for of the radionuclide distribution. Tracer uptake estimation is
the minimax MRI-enhanced tracer density estimator is obtained. g essential tool in medicine and biological sciences for

It is shown that the estimator is asymptotically equivalent to a . : . - .
penalized maximum likelihood (PML) estimator with resolution- evaluating metabolic function of living systems. Magnetic

selective Gibbs penalty. Quantitative comparisons are presented fésonance imaging (MRI) is an anatomical imaging modality
using the iterative space alternating generalized expectation maxi- which images tissue structures based on proton spin transverse

mization (SAGE-EM) algorithm to implement the PML estimator  magnetization differences. ECT and MRI are complementary
with and without minimax weight averaging. modalities. MRI has very high spatial resolution and produces
Index Terms—Asymptotic marginalization, Cramér—Rao (CR) exquisitely detailed images of anatomical structures, such as
bound, expectation maximization (EM) algorithm, Fisher infor-  grgan boundaries. ECT has far lower spatial resolution than
B?Zﬂg?'cﬂqui'é'fssggtti';?y'T:r?;??'ﬁﬁgil'fzigﬂ ?%’gg}um likelihood, MRI but can track a large number of different .bic.)chemical
compounds as they are metabolized by organs within the body.
Recently, it has been recognized that when functional and
. INTRODUCTION anatomical organ boundaries are spatially correlated, MRI and
HIS paper is concerned with the following questiofeCT data can be combined to improve the accuracy of uptake
arising in multiresolution imaging. How should informa-estimates [1]-[6].
tion from two imaging sensors with different intrinsic spatial The simplest method for merging the high-resolution MRI
resolutions and noise statistics be combined in order to bett@ta, which we call side information, into the low resolution
estimate some common feature of the images? It is intuitivdRCT data is postreconstruction integration: simply integrate
reasonable that a feature in a noisy high-resolution imatiee reconstructed ECT image within a boundary extracted
should be forced onto the lower resolution image only ffom the MRI image. This is the approach taken in [7] and
the feature can be estimated with sufficiently small varianc] for quantification of radiotracer uptake in functional brain
This paper provides a theoretical basis for this intuition iinaging. However, resolution mismatch can produce severe
the context of minimax optimal fusion of high- and low-bias due to blurring of an organ’s tracer intensity across the
resolution image information for the multimodality medicabrgan boundary. To avoid such bias it is better to incorporate
imaging application described below. The minimax procedufge MRI side information as an integral part of the ECT
can be viewed as a simple two step process: 1) apply a spatigiiage reconstruction process. One of the principal algorithms
variant blur function to the high-reSOIUtion image, where ﬂ’ﬁ‘oposed for this purpose is iterative maximmposteriori
(MAP), equivalently penalized maximum likelihood (PML),
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MAP/PML methods can also produce bias in uptake esperformance, both nearly achieving the CR bound. However,
mates when noisy or poorly registered side information leads the CNR decreases below a certain threshold the EF
to boundary mismatch between the ECT and MRI images [1Estimator error increases more quickly than that of the ML
Various methods for reducing these mismatch errors have bestimator.
proposed including: line site blurring [12]; line site weighting In Section IV the focus is turned to the problem of radio-
according to correlation with functional boundaries [13]; jointracer reconstruction for the case of perfect side information.
estimation of tracer intensity and line sites, [14], [15]; joinPerfect side information occurs when the MRI-derived bound-
estimation of tracer intensity and anatomical tissue labels [1@Fy estimator resolution is uniformly higher than ECT spatial
and robustification via subquadratic potential functions [17jesolution. In ECT the measurements are noisy projections
While more accurate than simpler methods like [12], joirmif the object’s radiotracer density onto a series of detectors
estimation methods [15], [16] have the disadvantage of highirrounding the object. The ECT problem differs from MRI in
computational complexity due in part to the presence of locao important ways: 1) the ECT measurement noise is Poisson
extrema in the likelihood function. This paper develops distributed while for MRI it is Gaussian; 2) even without
simply implemented minimax approach to uptake estimationeasurement noise the ECT reconstruction problem is ill-
with organ boundary side information that provides protectiagpnditioned unless a smoothness constraint is imposed on the
against boundary mismatch. radiotracer density. Direct optimization of the Poisson likeli-

There are several important elements that distinguish theod function is intractable and requires an iterative estimation
approach described in this paper from previous approachagproach. The ill-conditioning is handled in Section IV-A
First, a smooth continuously parameterizable boundary mod¢i a set of weights in a Gibbs penalty which enforces
is used which permits subpixel boundary resolution. Secorsinoothness everywhere in the object except across the organ
the boundary Fisher information matrix (FIM) [18] is used tdoundary. This leads to an iterative penalized maximum
specifya priori boundary estimator accuracy. The FIM speciikelihood (PML) reconstruction algorithm, equivalently a
fies a lower bound on the covariance of the boundary estim&éP algorithm with Gibbs prior, implemented using the space
and also plays a key role in simplifying the implementation gflternating generalized expectation maximization (SAGE-EM)
the minimax uptake estimator. Third, a minimum probabilityersion of the EM algorithm [19].
of error criterion is adopted to robustify radiotracer estimation In Section 1V-C the PML algorithm with perfect side infor-
errors to boundary mismatch. We show that the minimaxation is generalized to the case of noisy boundary estimates.
radiotracer estimate is equivalent to a PML reconstruction witteere the MRI-derived boundary estimator resolution may be
nonquadratic averaged Gibbs penalty, where the averagindoiwer than ECT spatial resolution in some regions of the
performed over a “least-favorable” distribution of the boundmage. To deal with imperfect side information a minimax
ary. Using the smooth parametric boundary model we shd®@construction algorithm is defined which minimizes the worst
that the averaged Gibbs penalty is asymptotically equivalent@@se probability of reconstruction error. A solution to this
a standard quadratic Gibbs penalty implemented with blurretinimax problem is given in Section IV-C which takes the
penalty weights where the blurring kernel is inversely relatddrm of a modified PML estimator with nonquadratic penalty.
to the FIM. This approach is illustrated for a particularly simUnfortunately this estimator is not suited to iterative imple-
ple boundary parameterization using periodic B-splines whiofentation since this would require repeated multidimensional
like all polar parametric boundary models, apply only to stantegration of a nonlinear function of the Gibbs penalty over a
shaped organs, i.e., organs whose boundary can be descrlbegt favorable boundary distribution. Using a Bernstein \Von-
by a radius function which is a scalar function of angle. Thilises asymptotic theorem on the least favorable densities,
class includes a wide range of complex nonconvex shapes tjuection IV-D it is shown that the minimax reconstruction
would not include, for example, kidney shaped regions.  can be approximated by a PML algorithm with a resolution-

In Section Il the problem statement along with principagelective Gibbs penalty function. This is a quadratic Gibbs
simplifying assumptions are given. In Sections Ill-A and IlI-Bpenalty implemented with a blurred or smoothed weight map.
the standard additive Gaussian statistical model for highhe blurring is performed via space-variant convolution of
resolution MRI measurements is given and a periodic BRe weight map with a multidimensional Gaussian density
spline representation for star-shaped regions is presented. TWying local covariance equal to the inverse observed Fisher
boundary estimators are then presented, one implementedrgrmation matrix [20].
the maximum likelihood principle and the other a simpler edge Finally in Section V numerical results are presented. Rep-
filtering (EF) implementation. In Section I1I-C an expressiofiésentative reconstructed concentration density images are
for the FIM is given for the B-spline parameters and the matrBhown which indicate significant qualitative improvements us-
CR bound is used to explore the estimator covariance. Atg the PML algorithm with resolution-selective Gibbs penalty.
interesting conclusion is that for sufficiently high MRI spatialhese improvements are quantitatively supported with bias-
resolution the CR bound is minimized for disk shapes. Thiriance tradeoff curves.
agrees with intuition that, for fixed MRI spatial resolution,
smooth rounded shapes should be the easiest to estimate.

Simulations are also given showing that for high MRI contrast- IIl. MRI-AIDED ECT UPTAKE ESTIMATION
to-noise ratio (CNR), both the ML and the EF boundary Consider a square slic§& = [-W, W] x [-W, W] of
estimators have virtually identical mean square error (MSBh object volume which contains an organ or tumor that
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Fig. 1. Radionuclide tracer concentration estimation with and without anatomical side informationd Hderetes an arbitrary parameterization of the
anatomical boundary.

tization within a two—dimensional (2-D) slice. The magne-
tization depends on relaxation parameters which differ for
different tissue types and thus MRI can give high contrast
and high-resolution images of anatomical tumor or organ
boundaries.

Many nonparametric approaches to boundary estimation
have been proposed, e.g., morphological transforms such as
medial axis, skeleton, thinning algorithms, active contours, and
Laplacian edge extraction operators [21]. An example of the
latter approach is to perform edge detection by thresholding
the gradient image followed by an algorithm which connects
and smooths the detected edges to form a closed contour. An
Fig. 2. Ellipsoidal cold spot phantom with a contrast of 66.67%. origin is selected interior to the boundary, e.g., by computing

the centroid of the image plane, and the MRI slice is trans-
. : . formed to polar coordinate@p, ») with respect to this origin,
zﬂzgg\;ely abt:sorbs a _radlor]:ucllde. The MRI b_oundaryf 3 e [-m,m),r>0. The row index of the image matrix then
problem consists o _generatln_g an estimate 0 t %rresponds to angular position and the column index to radial
organ boundary fronty;, a noisy MRI image of the slice. Iposition of a pixel. The Canny [22] or Marr—Hildreth [23] edge
The ECT tracer uptake estimation problem with boundal etection gradient operator is then applied to each row of the

S'd: n:tc;rrgatlon Cgrc]lsfltsv(;it[heizt;?atrmgi tze ft?:iu rradtlolguoclll olar image to extract a coarse estimate of the boundary radius
concentratiorygo; A dz dy e region-of-interest (ROI) ;' qnction of angle. The coarse estimate is smoothed using

contained inside the boundary, whexe= {A(z,y): (¢,4) € ;[ hiinear median filter to eliminate small scale variations in

S} is the radionuclide concentration density. A block diagra e radial estimate. The median filter is applied to the angular

Pf the ge neral tracer-uptgke problem W't.h and W'thOl.Jt Si%%riodic extension of the image to preserve continuity and
information is shown in Fig. 1 for a generic parameterizati

o .
uarantee that the smoothed estimate corresponds to a closed
0 of the boundary. 8 b

S . contour, i.e.(¢,7) = 27, 7), in Cartesian coordinates.
To maintain focus on the principal features of the ap- ($7) = (¢ +2m7)

proach, the following simplifying assumptions are made. First,

out-of-plane septal penetration and bleed-through effects afeg_gpjine Boundary Model
neglected so that all detected radionuclide emissions can be L .
assumed to originate from the slice Second, the image is /\Nother approach to boundary extraction is to impose
assumed to consist of a single organ, which might be a hot®rParametric. boundary model followed by formulation of

a cold tumor, in a uniform background. Third, the anatomicd Parametric estimation problem. Some .Of the Welll—kn_own
boundary is assumed to be star shaped with respect to s¢RR§€!s used to represent closed boundaries are periodic pla-
point within the ROI, i.e., with respect to that point an>;1ar curve models such as Fourier descriptors, fitting of line

directed ray intersects the boundary exactly once. In Section>§9Ments, cubics, Bezier curves, Beta-splines and B-splines
the ellipsoidal cold spot phantom shown in Fig. 2 will b(£24]' In_thls paper we adopt the Bispllne b‘?!mdary model.
used to demonstrate and compare performance. Finally, it\sB-spline c.on5|st.s of a set ofC fixed posmonsf, Ca”e‘?'
assumed that the MRI and ECT images are perfectly registerEH?ts’ and piecewise smooth curves, called basis functions,

i.e., they correspond to the same slice of image data withd@necting each of the knot positions. For wah order B-
relative shift. scale or rotation spline these curves are specified by polynomial functions of

degreem. To ensure smoothness at each knot the curve is
constrained to have continuous derivatives up to order 1.
B-splines can track local shape deformations using a small
MRI produces an image of tissue which is essentially mumber of parameters, unlike Fourier descriptors which require
noisy, discretized estimate of proton spin transverse magmeany parameters and can have spurious oscillations. This

I1l. ANATOMICAL BOUNDARY EXTRACTION
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the measurement noise is additive zero mean white Gauss-
ian [26] we have the following representation for the MRI

measurements
R, Yu(z,y) = lg(z,y) +e(z,y), Y(z,y) € Ry  (5)
e S where
(Boundary) I3 = (lg % +H)(x, ) (6)
H(z,y) = 12em>Lﬂ?+51 ™
Coc 2ro 202

{ Backpround ¥

and in (6) the 2-D convolution is denoted by. Note that the

full-width-half-max (FWHM) spatial resolution of the MRI

Fig. 3. Representation of a two-level MRI image. scanner is proportional to the width, of the symmetric (2-

D) Gaussian-shaped point spread functiéfi, 4). Note also

o enli . . that for practical systems, < 2W which is the width of the
localization property of B-splines is due to their compac#éld of view (FOV).

support. . . . .
For an origin fixed inside the region of interest, the bounda{gki gd;reié?riuzfs':nngg;; Z:ffggfggg;?:sggtﬁgg?tw of

is represented by a radial functief¢) continuously indexed

by polar angle € (—m,n]. The mth order B-spline model 0 = argmaxln fo(Y'n)
specifies the boundary(¢) as a linear combination of basis o )
functions B;(¢) = argmin [[Yy — lo ++H|[". (8)

K A conjugate gradient least squares algorithm can be used
r(¢) = ro(p) = Z9iBi(</>), ¢ € (—m,7] (1) to minimize the squared norm with respect to the spline

i=1 parameter® and the intensity level€ror and Cgg. Partial
volume effects can be dealt with by performing subpixel

whered, is a spline coefficient{ B;}X , are basis functions . . : 4 X X
P {Bitina interpolation. Details of such a ML estimator implementation

m41 o m can be found in [27].
max (0, ¢ — ¢
Bi(¢) = (bimsr — i) Y [ m+1( x = 0l (2)
J=0 H (hits — Pigt) C. Craner—Rao Bound for Boundary Estimation
5;——59 It is well known that under broad conditions [28] the
? covariance matrixcove (6) = Eo[(6 — 6)(6 — 1] of any
andi =1,---,K —m and{¢;} are K angular knot locations. unbiased estimato# = 8(Y ;) of a nonrandom parameter
B-spline basis functions (2) are polynomials functiong@nd vector® = (6:,-- -, 05 )T satisfies the matrix CR bound
fast recursive numerical computation algorithms are available A 1
[25]. coveg () > Iy
It_WiII be convenient to represent the spline representatifhich is shorthand notation for: CQ?))—F;I is a nonnegative
(1) in vector form definite matrix.Fy is the Fisher information matrix [18], [28]
ro(¢) = BT (4)0 3) Fo=FEg[Vg In f(Y\;0)Veln f(Y;0)]

where = FEo[—VIn f(Y1;0)]

where V, is a row gradient vector ani¥; = V; Vg is a
Hessian matrix. Under the MRI measurement model (5) and
the B-spline model (3) we derive the following expression for
Fy in Appendix A:

B(¢) = [Bi(¢),-- -, B()]".

B. MRI Measurement Model

The noiseless and unblurred MRI image is assumed to be a 7 . . )
two-level function in the plane Fo :CCN// exp {_||7o(</))4—a;e(7)|| ro(é)re(+)B()
lo(x,4) = Crot - IRy (#,) + Ca - (IR, (@,) = Irg(, 1)) o |
(4) B~ (v)dody 9)
where Iz, and Iz, denote indicator functions for the fielg-where

of-view R; and the ROIRg, respectively (see Fig. 3). The
contrast of the MRI image is given b¥ro1 — Cra, Where
Cror, Csa 2 0. : .

Under the assumptions that the MRI scanner has spaé:se-the normalized contrast. In (9)
invariant Gaussian point spread functidf(z,y) and that 7a(p) = [r(¢) cos ¢, r(¢) sin g]*

(Cror — Crg)?

Cen =
4dmwo2o?
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denotes the vector in the plane describing the Cartesian coor-
dinates of the boundary at angfe

While the bound (9) gives a useful performance limit on un-
biased estimators of the spline parameterthe performance
of unbiased estimator&g of the boundaryrg = {re(¢): ¢ €
[, n)} will be of greater interest in the sequel. Under the B-
spline model (3) the boundary functieg(¢), ¢ € [, ), is
constrained to be in the span of the spline bdsjs- - -, By
Using a generalization of the constrained CR bound [29] to 3)
function estimation, the covariance functiasv,. ¢(#(¢), #(y))
of any unbiased boundary estimatéf-) can be shown to
satisfy the following bound stated in terms of a nonnegative
definiteness (n.n.d.) condition (see Appendix B)

2)

covre(7(¢),7(7)) — CRBrgo(¢,7),  isnnd.  (10) ==
where CRB ¢(¢,~) is the CR lower bound
CRByo(¢,7) = B' (¢)F B(7). (11)

In particular, the bound (10) implies that for any integrable
scalar functiong(-)

JRC

), 7 (Y D]a(v) dp dy

COV,. (,\

2 ]

Define the constantr as
o =20,/ min \[ro(@) + [ry ()]

wherery(¢) = dre(¢)/0¢. The parametew decreases to zero

as the MRI scanner spatial resolution increases (smalbr as

the boundary shape is magnifiéeh — arg, a > 1). Roughly

speaking g is small when the resolution of the scanner is high

enough to resolve the smallest details in the boundary function.
It is shown in Appendix C that the constrained CR bound

(11) has the smallv representation

¢)CRByo(¢,7)g(v) dpdy.  (12)
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the CR bound predicts that among all possible objects,
large and high contrast objects can be estimated most
accurately.

Since the CR bound depends on the actual contrast
Cror — Cpg only through its square vidoy, the
bound predicts that optimal estimator performance is
independent of whether the ROI is a hot spot (positive
contrast) or a cold spot (negative contrast).

An interesting question is: what is the shape of the
boundary curve that minimizes the CR bound? Consider
the following:

™

9(¢)CRB; ¢(p,7)g(v) de dy

= m/} 9(¢)BT

" ro(t)

/_W \/1+ <8d 1mo<w>)2

- B(v)g(v) de dy
\/l—i- < g Inre (e )

ro(1))

-1

B(y)B" () dyp

1
min

>
2/mo,Con &

I

" BB () dw}  B()g(y) dp .

B0
where the inequality follows from the nonnegative def-
initeness of the matrix™ _ B(y))B” (1)) dip (see Ap-
pendix B). Note that equality is attained if and only
if (1/re(10))\/1+ ((9/0v) Inre(¢))? is independent of
1. Sincerg(1)) describes a closed curve, the only way
for this to occur is if in fact(d/9v)lnre(zp) = 0,

e., r¢(¢) is constant [30]. Thus disk shaped objects

CRB,¢(¢,7) minimize the CR bound.
B 1 BT 4) The worst case boundary shape which maximizes the
T 2ymo,Con (¢) constrained CR bound (13) is more difficult to specify. A
-1 basic property of such shapes is that the radius function
re¢(p) have rapid variations as a function of
T 7’0(1/)) T
B(4)B
/_7T 9 W)B™ () dp E. Boundary Estimator Performance Comparison
1+ <Wh”"(z/’)> Simulations of the ML and EF boundary algorithms dis-
- B(y) + o(a). (13) cussed above were performed for a range of contrast-to-noise

ratios Con and compared to the constrained CR bound (13)
. for the blurred B-spline phantom in Fig. 2. Quadratic B-
D. CR Bound Properties splines with 16 uniformly spaced knots were used for ML
The following comments pertain to the smallapproxima- estimation. The sample bias and sample standard deviation of
tion (13) to the CR bound the perimeters of the ML and EF boundary estimators were
1) The CR bound decreases as the boundary radius functimrmalized by the true perimeter and were plotted against
re(¢) is scaled up (magnification). It also decreases #ise normalized noise standard deviati®g/|Cror — Crg| In
the normalized contras€cy increases. This contrastFig. 4. Fig. 4(a) is the plot of bias of the estimators. The ML
increases when either the point spread resolution widgistimates are virtually unbiased with absolute bias less than
o, or the power level of the noise? decrease. Thus 0.2% of ground truth for all but the noisiest data. The bias of
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Bias of Boundary Estimates vs. MRI Noise lexicographically ordered from one t&. The discretized
16 ‘ ; spatial density is denoted by the vectdr= [A;,---, Ap]?
14+ of integrated intensities within each pixel. The measured
1ol | emission data is a vector of coun¥sg, each element of
& * EF method . . .
8 o ML method which corresponds to the number of counts falling into a
%10» ) detector element. These counts are assumed to be statistically
g 8 independent Poisson random variables with mean vector
(o]
g ° E[Yg] = AA+b
g4
g 2 where A is the ECT system matrix andlrepresents spurious
E O T I S & B SO B detected counts originating from ambient background radioac-
! 2*« * ¥ kb + + T tivity, septal penetration effects, cosmic rays, scatter, or, in
h + positron emission tomography (PET), random coincidences.
_4f .
0 Noise std (%% of contr;s?) 15 A. Penalized Maximum Likelihood Reconstruction
@) The most common method for reconstructing ECT images
_ . from projections is the noniterative filtered back projection
50 Stdev. of Boundary Estimates vs. MRI Noise (FBP) algorithm [31], [32] which does not account for Poisson
statistics, scattering, or attenuation. An iterative maximum
45¢ ] likelihood (ML) image reconstruction algorithm was imple-
S0l } mented with expectation-maximization in [33] which accounts
* EF method for Poisson statistics and is easily modified to account for
S ael o ML method | y
535 — CR Bound attenuation and scattering. However, the ML algorithm suffers
£ 30} 8 from slow convergence and is not well suited to incorpo-
":225_ | ration of image smoothness or anatomical side information.
S + Penalized ML (PML) image reconstruction can enforce image
220 smoothness by introducing roughness penalty functions into
845l $ | the log likelihood objective function [19], [34]. The PML
g ¥ ' reconstruction is the maximizer ovar of
] Py w) =In f(Y 3 A) — BRAw).  (14)

O 1 I 1 i i 1 I X . ) X A
0 2 4 6 8 10 12 14 16 Here,ln f(Y'g; A) is the loglikelihood function of given the
Noise std (% of contrast) : . .
ECT measurement®, w is a vector of weightsR(A, w) is
Q) a quadratic penalty
Fig. 4. (a) Bias of ML and EF boundary estimates versus the MRI noise
level. (b) Performance of the ML and EF boundary extraction methods relative

to constrained CR bound versus MRI noise level. Vertical error bars shown R\ w) = wor - (A — A)2 15
cover = one standard deviation. ( ) ) Z Jk ( J k) ( )

EF estimator is smfaller than 2% for n(_)ise sta_ndard deviatigﬂdﬁ is a smoothness parameter—a large valug sfrongly
less than 10% but increases to a maximum bias of about ¥fyphasizes the penalty, and hence encourages smoothness in
above this noise threshold. In Fig. 4(b), the variance of theﬁ,ewh"e a small3 only weakly emphasizes the penalty.
estimators are compared to the constrained CR bound. Thg, (15) N, is the pixel neighborhood of theth pixel
ML estimates come quite close to achieving the CR bound fggfining the spatial extent of the dependency structugg.is
noise standard deviation less than 10%. The EF estimator Bagejghting function which can be used to enforce or relax the
variance which uniformly exceeds that of the ML estimatorgyghness penalty by selectively penalizing differences);,
especially above the threshold of 10%. over a neighborhood.

Fig. 5 shows the second-order neighborhood structure that
is used for this paper. The pixel of interest is the grey

In emission computed tomography (ECT) a radionuclide pxel in the center. The neighborhoad; is the set of eight
injected into a patient and gamma-ray photon emissions guigels, called second-order neighbors, labeled by black dots.
counted by an array of collimated detectors oriented aroumitie weightsw,;, are chosen to be symmetfi@;; = ws,;) and
the patient. The objective is to use these detected coutitke on a positive value between piyeand its neighbors and
to estimate or reconstruct the radionuclide spatial conceare zero otherwise. By making the weights;, also depend
tration density in a square slic. The slice is discretized on a boundary estimatkit is possible to eliminate or reduce
into P pixels at locations{(xz, ¥ )}i,m and the pixels are smoothing across the estimated boundary.

IV. ESTIMATION OF RADIONUCLIDE CONCENTRATION
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O O O O O C. Gibbs Field Model and a Minimax Estimator
UL U UR The PML estimator (14) is identical in form toraaximum
O @ @ ® O a posteriori (MAP) estimator ofA when X is taken to be a
oo s random vector with a Gaussian prior [35], [3], [36]
OL@ () @O fw(A) = p(w) - exp (=AR(A w)) (18)
| wherep(w) is a normalization constant depending only on the
O ] ‘ @ O weight mapw and /3 > 0. The prior is known as a Gibbs prior
DL D DR and a simulation of from the prior is called a Gibbs random
O 0O O 0O O field with potential functionR(A, w).

Lete > 0 be a specified estimation error tolerance. Under the
Fig. 5. Second-order neighborhood for a 2-D discrete image. The neighb&@sbbs prior, the average probability of error associated with

(black) of the center pixel (gray) are labeled according to their relation to tl%ﬁ’ly estimatoﬁ\ _ )\(Y) based on the ECT/MRI measurements
center, with D for down, U for up, L for left, and R for right. Y {Y Y } is
= XYE M

B. Weight Assignments Fe(Aw) = Pu([[]A = Al > ¢)

Here several weight assignments are briefly described. :// dY dAf(Y|N) fw(x)  (19)
These will be compared in Section V. . {Y A |[AQY) =Xl >e}
1) Ideal Weights:When exact errorless estimat#s = \yhere f(Y|A) denotes the conditional density given the Gibbs

0, (6, = the true parametgrof the MRI boundary spline fg|q A.
parameters are available, the boundary can be forced into thg s well known, e.g., [37, Ch. 2] or [38, Ch. 4], that
weights by settingw;x(6) = 1 if pixels j and k are both ¢ mal ¢ the minimum probability of error estimatok”

within the boundary specified b or if they are completely g equivalent to the MAP estimator
outside of the boundary. Otherwisg, is set to zero wheri R

andk are on opposite sides of the boundary. This assignment X =X (w) = argmax { f(Y|) fw(X)}.
completely decouples pixels on either side of the boundar A ) ]
yet still encourages smoothness within and exterior to tiféhen the true bounda@ = @, is known, one can incorporate

boundary. A mathematical definition of this assignment is It into the weightsw = w(@,) of the PML and be ensured
of minimum probability of error performance. Assume that

11 N1 1 Y andY; are conditionally independent givea Then the
w;x(0,) :{ s Lrg, () = Iry, (K) (16) following factorization holds:

0, oww.
TN fuwio,)(A) = F(YEIA) fw@,)(X) fo,(Y M) (20)

where, as in (4)lr, (j) =1r, (z;,y;) is the indicator func- As fo.(Yn) does not depend ok the MAP estimator
tion of the interior of the boundary at thi¢gh lexicographically maximizing the log of (20) is equivalent to the PML estimator
ordered pixel located afx;,y;). given by (14) with ideal weights (16).

2) Plug-In Weights: When only an imperfect estimatkis Of course, for an unknown boundary the ideal weights are
available the simplest approach is to use it in plac#ofn notimplementable. The alternative explored here is to replace
the weight assignment (16). This estimate-and-plug techniqiee estimation criterion (19) with the worst case probability
which we call the plug-in weight mapping, gives weight®f estimation error
w;1,(#) which encourage smoothing without accounting for max P.(\, w(0)). (21)
the distribution of errors in the boundary estimate. We will
later refer to these as unsmoothed weights. The estimatorA” which minimizes the worst case prob-

3) Variance-Corrected WeightsA  refinement  of the apijity of error is a minimax estimator which is robust to
estimate-and-plug technique is to average the weights Wificertainty in the boundary parametésAn implicit form
respect to an empirically determined multivariate densify this minimax estimator can be specified under compact-
of 'the esumgtee. This produces the “variance-correctethass and continuity assumptions [39, Theorem 2.9.2]. The
weight mapping” following is proven in Appendix D.

Proposition 1: For specified weight mapping and param-
-7 A eter@ let P.(A,w(@)) be the risk function for an estimatox.
Wy (6) = /RK w;n(8)1(6;0) 46 (47 Assume thagt the( c)(znditions of [39, Theorem 2.9.2] are satis-
fied. Assume in addition that the functigitY r|A) fuwe)(A) is

where f(9; 9) is a multidimensional density function in theContlnuous and has a strict global maximum oxefhen

argumentf which is indexed by the estimafeandw,y, is as min max Pyg)(||A — Al| > €)

given in (16). We will later refer to these as smoothed weights. A

In the next section this method is theoretically justified from - max / P,,,(o)(||5\*(dP) > OdP®)  (22)
a minimax perspective. dr - Jgx
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where the maximum on the right side of (22) is over all Integrating both sides of (26) with respect@&and taking
probability measures/P on the Borel subsets d®’, and the logarithm, we obtain from (24) that the estimaloris the

K

A (dP) has the representation vector A which maximizes
X*(dP) = argmax {/ FY|X) fwey(X) dP(o)} + O(e). In {/[RK FYIN) fuo) (D) dP"(H)}
A RE N
(23) =lnf(YEAN)+Inf"Ym)
The notationd P(8) in the proposition denotes the differential +1n {/RK fuw(oy(N) dP*(0|Y1\'T)}' (27)

of a probability measurd®, and whenP is absolutely con-
tinuous with respect to Lebesgue measuiE(8) = f(6) 46
where f(#) is a probability density. In the propositich (dP)
is a Bayes estimator which minimizes the average pro
ability of error; averaged with respect to the probability . ) = o AV ald) -1 / P
measurelP. By [39, Theorem 2.10.2], the minimax estimator minimax(A) = 10 f(¥[A) + In p(w(0))
is extended-Bayes, i.e., given arbitrafy-0 there exists a ~exp (—BRAw(0))dP*(0)Yv).  (28)
probability measurelP* for which [z Py (||A (dP*) — . . . L
Al| > €) dP*(8) comes to withing of the maximum value on The second additive term in (28) is a penalty which is a
the right-hand side of (22). The measut®* is called the nonguadratic function ofA. Its evaluation involves a com-

. . . . I’ .
least favorable distributionThe minimax estimator thus haspl'c*ated mtegra_tlon °VeT.a” values df eh_R ' tE which il
an average probability of error which is essentially attainab?leP (6]Ynr) assigns positive measure. This makes (28) ill-

. S suited for iterative numerical maximization, e.g., by Fisher
by the Bayes estimatox (4P"). Furthermore, by (23) scoring, coordinate ascent, or the EM algorithm, since the

ok . integral would have to be evaluated at every iteration. A
A= argrnax /RK FY X fu@ (N dP™(0)  (24) practical algorithm is given by the approximation in the next
section.

is, to ordere, a minimax estimator of\. The intuition behind the approximation is as follows. When
Observe that the least favorable distributiéf™ is a func- the MRI measurement¥; are of high quality, e.g., due to

tion of the weight mapping scheme(-) but is independent merging multiple scans, the posteritP*(8|Y ;) concentrates

of A. Note that since? is nonrandomiP* cannot be strictly as a function of at or near the true paramet@s. Thus as

interpreted as a probability measure of a random variabife data quality improves the posterior concentrates in the

Ratherd P is a probability measure which is induced by thgicinity of 8, and two things happen: 1) the influence of

minimax criterion. Determination of théP* necessary for the induced least favorable prior function on the posterior

implementation of the estimator (24) is generally difficult buissapears and 2) in (28) the integfakxp (—[3R —In o]) dP

not infeasible, at least in principle. A sufficient condition fogan be approximated ykp (— [ [BR — In a] dP) making the

a distributiondP’ to be least favorable is that it equalize thgenalty term in (28) quadratic ik. Furthermore, in a manner

risk of the PML estimator ovef. For some simple examplesanalogous to the mechanism behind the central limit theorem,

see [39]-{42]. Fortunately, for this paper the abstract reprgre posterior approaches a Gaussian distribution whose mean

sentation (24) will be sufficient without explicit determinatiorand covariance are related to the ML estimatodadnd its

of dP*. Fisher information matrix, respectively.
The estimator (24) can be related to a modified PML estima-

tor with Gibbs-like penalty as follows. Under the conditionap. Asymptotic Minimax Approximation
independence of MRI and ECT data the factorization (20)

holds and the integrand of the right side of (24) has thr%peatedn times yielding the i.i.d. observation séty;, =

Using the Gibbs prior distribution (18) and the relation (27),
and neglecting constants independentipfthe estimatorA
8[ (24) is seen to maximize the following PML objective:

RK

Assume that the experiment giving measuremafiis is

representation n -—M
{Yi1,---, Y1} Letd = argmaxe fo(Y7y) be the maximum
FY|X) fwio)(X) dP*(0) likelihood estimate of based orlY'y;. Under general condi-
= F(Y 5N fw@)(N) fo(Y r1) dP* () tions it is well known that smooth posterior densities converge
. e to Gaussian densities when the maximum likelihood estimator
= f(YE|A) fuw@) X dP*0Y M) f*(Ym)  (25)  ig consistent. This property was used by Laplace [43] and is

known as the Von-Mises Bernstein Theorem and is commonly
stated in terms of convergence of the posterior probability

. . measuredP(8|Y};) to a Gaussian measuéG(0|T,,,I",)
J"@w) = [ Jo(Yn)dP™(0). where T

dG(O|T, Ty =

where f* is the marginalized MRI density

"
anddP*(8|Y ) is the induced least favorable posterior (2m)K/2 |, |12

fo(Y 1) dP*(0) 26) cexp {20 - T.)" 17,10~ T,)} do

dP*(0]Y 1) = = .
Oy =20 )
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whereT’,, and I, are a vector and positive definite matrixA-independent additive constart, the minimax objective
respectively, possibly depending ®; but not oné. We state function®,,iimax(A; w) defined in (28) converges from above
the following general version of this convergence result whidb the PML objective function®py.(A;w) defined in (14)
is discussed in [44, Sections XII-D and XVII-G]. in the sense that

Theorem 1:Let @, be the true value of th& -dimensional -
real parameter vectdt and letd’(#) be a prior distribution. PryL (X w) < Pusimismax(A; w) — C
Assume that the likelihoodig(Yy,) anddP(6) are smooth in S PemeL (A w) + 7 (33)

8 in the sense of satisfying the regularity conditions (B1)—-(B7 . .
of [44, Section XVII-G]. Then the posterior probability distri—\'?'here the sequencg, > 0 converges o zero in probability.

buti " o It follows from the above that, if the ML estimatdf
ution dP(6|Y7};) satisfies . : o . ; :
— is consistent, the minimax estimator &fis asymptotically
1) For any open balB = B(6,,¢) = {6: Uf = 0|l <<} equivalent to a PML estimatoA implemented via Gibbs
centered a#, of radiuse >0, [z fiP(0|YM) — 1 (i.p.). penalty with smoothed weights
2) For any Borel subseV of RX: |[, dP(O]YY,) —
Jv dG0|[T,,I,)| — 0 (i.p.) when, in (29),T, is .. P .
a matrix which converges in probability to the Fishe%‘Pl\'IL:argf\naX In f(YEp‘)_ﬁZ Z Wik () (A = Ar)?
information Fg, = Eg,[-V3 In fo,(Y})], and T, is J=LREN;
an estimator which converges in probability . (34)
_ The practic_al ir_lterpretatio_n of Ass_ertipn 2 _of the Theore“v?/herewjk(é) is the K -dimensional convolution
is that a multivariate Gaussian distribution with mean vector . )
T, and covariance matrif’, is an asymptotically accurate Wk (0) = (wj * g)(0) (35)
approximation to the posterior distribution. Note that the
Theorem applies to a large class of sequefiteandrl’,. Note and
also that the asymptotic form of the posteriorinslependent |F,»,-|1/2 17,4
of the explicit form of the priordP(6). This is the key to 9(0) = Wex}j {_50 Fy 0}'
simplification of the modified PML criterion (28).
An important special case of Theorem 1 is obtainednlike the nonasymptotic minimax estimatbr in (28) which
when T, is taken as the maximum likelihood estimatevould require averaging tha-dependent Gibbs prior den-
8 = argmaxg fo(Y3y) and I, is taken as thebserved Fisher sity, the asymptotic minimax estimatdky,,, in (34) only

information evaluated a# requires averaging the weights in the Gibbs prior. Since the
1 weights do not depend oxthis computation can be computed
Fy, = —gvg In f(Y},]0). (30) prior to computingApyr.. Furthermore, by discretization of

the convolution, (35) can be efficiently computed via the
Use of these assignments’Bf, andI’, in Theorem 1 give an multidimensional FFT [30].
asymptotic approximation to the posterior which is identical to
the profile posterior approximation proposed in [45]. Another V. NUMERICAL RESULTS
common proposal is to také’, in Theorem 1 to be the

expected Fisher information The ellipsoidal 64x 64 pixel gray level phantom shown

in Fig. 2 was smoothed using a Gaussian kernel with width
Fy=Eo[-Vzln f(Y410)]l,—s (31) os = 0.75 pixels, which is 15% of the average radius of
the inscribed ellipsoidal boundary (the ROI), and additive
which is simply the Fisher information formula (9) evaluategsaussian noise was added to form the MRI image. Parallel
at 6. In terms of the asymptotic theorem, the use of eithgjojections of the phantom typical of a positron emission
of the information matrices (30) or (31) in the GaUSSiaﬂ)mography (PET) geometry were Computed with 64 radial
approximation (29) is equivalent. However, there have begks and 60 angles uniformly spaced over 18Poisson noise
studies showing that the observed information has better finj{eis then added with rates equal to the average intensities in
sample approximation properties in certain situations [20]. TRgch of the projection bins plus a 15% uniform background.
observed Fisher information matrix for the B-spline boundamttenuation was not included. The scan time for PET was

model is derived in Appendix F. adjusted to obtain 1000000 detected counts not including
Theorem 1 allows us to obtain the following key resultyackground events. PML reconstructions of the phantom were
proven in Appendix E. implemented using 60 iterations of SAGE3 (space alternating
Proposition 2: Let the assumptions underlying Theorem eneralized EM [19]) with a quadratic penalty and second
be satisfied and define the smoothed weights order Gibbs weights. The reconstructions were performed
R on 400 independent realizations of emission data to obtain

w;(0) = /RK w;i(0) dG(0|T,, I') (32) empirical estimates of bias and variance.

We first illustrate a spatially variant resolution property of
where dG(6;T,,I",) is a multivariate Gaussian distri-the minimax averaged Gibbs weighting scheme. Fig. 6 shows
bution with mean vectorT’,, and covariance matrix’, a typical realization of the weight maps for ideal weights
specified in Assertion 2 of Theorem 1. Then, to within axtracted directly from the noiseless phantom, unsmoothed
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[Left, Up; Up-Right, Up-Left] weight matrices Unsmoothed

(@) (b)

Smoothed weights

(©

Fig. 6. For each of these three types of weights, namely, (a) ideal, (b) unsmoothed, and (c) smoothed weights, four images are given corresponding to
wjp for j = (2;,y;) and the four cases: = (z;_1,y;) (left), k = (x;,y;41) P), k¥ = (2j41,yj+1) (up-right), andk = (aj_1,y;41) (up-left),
respectively. In each figure a location where the pixel is black indicates that the weight is zero, and a location where the pixel is white denotes a weigh
value of one. The MRI additive noise parametersis = 0.5 in Fig. 6(b) and (c).

(plug-in) weights extracted from the noisy phantom using thensmoothed weight maps in Fig. 6(b) show significant errors
ML estimation technique described in Section Ill, and the coim the estimated boundary, especially on the left side. The
responding smoothed (variance-corrected) weights. An ousgnoothed weight maps in Fig. 6(c) resemble blurred versions
elliptical boundary guard region and a hard-limit were addeaf the ideal weight maps, the blurring being highest where the
to the weight averaging in order to prevent the reconstructienror of the unsmoothed weights is predicted by the observed
of A from leaking mass accross the estimated boundary. Thisher information to be highest.

hard-limit boundary is obtained by assigning zero weights Fig. 7 shows representative reconstructions obtained by
to pairs of pixels that have the smallest magnitude averagagblying filtered back projection (FBP), PML without side
Gibbs weights. In each panel in Fig. 6, a location where theformation, PML with ideal side information, PML with
pixel is black indicates that the weight is zero, and a locatiamsmoothed weights (estimate-and-plug), and PML with min-
where the pixels is white denotes a weight value of one. Fionax smoothed weights. Observe that the boundary of ROI
example, in the upper left panel of Fig. 6(a) no smoothing ofis severely blurred for both FBP and PML without side
is enforced in the “left” direction at pixel locations which arenformation. This is because the spatial smoothing associated
labeled in black. The ideal weight maps in Fig. 6(a) captuseith these two algorithms is spatially invariant. One thus
the boundary of the ellipsoidal phantom without error. Thevould expect the tracer uptake estimates for these recon-
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(e)

Fig. 7. Reconstructed images using (a) FBP with Hamming window, (b) uniform weight, (c) ideal weights, (d) unsmoothed weights, and (e) smoothed
weights, for the same realization of MRI and PET data with MRI naise = 0.36 (6% of contrast). The PML-SAGE3 method with = 1 was
used for (c)—(e).

structions to have high negative bias. The PML with ide®Ol's determined by the respective weight maps. For FBP
side information enforces the high-resolution ideal weiglnd PML without side information, the ROI's were estimated
map in Fig. 6(a) into the ECT reconstruction which virtuallyoy thresholding the reconstructed image. We compared the
eliminates smoothing of radiotracer across the boundary. Timnimax smoothing technique using true Fisher information,
PML with unsmoothed weights does better than the FBP amgpected Fisher information, and observed Fisher information.
PML without side information but considerably worse than In Fig. 8 the average RMS error of the uptake estimates is
the PML with ideal weights due to the enforcement of thehown as a function of the smoothing paramgtéor the ECT
erroneous high-resolution weight map into ECT. The PMteconstructions: FBP, PML without side information, PML
with smoothed weights appears to have recovered the R@ith EF extracted side information (unsmoothed weights),
almost as well as the PML with ideal weights. and PML with ML extracted side information (unsmoothed

We next turn to the bias and standard deviation of totaleights). These figures clearly indicate the benefit of side
uptake estimates derived from the ECT image reconstructiomgormation. Note also that, as expected from the MRI bench-
Total uptake was estimated for each of the ideal, unsmoothethrk studies presented in Section IlI-E, use of ML boundary
and smoothed PML weighting algorithms by simply summingstimates in the weights gives better uptake estimates than
the reconstructed pixel values within each of the estimateding suboptimal EF boundary estimates.
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Image Reconstruction Performance investigation include: thin plate splines, spherical harmonics,
- ‘ ; and 3-D prolate spheroidal functions. With the addition of
60r 5 1 continuously variable translation, scale, and rotation variables
: x FBP « into the unknown parameter vectérthe method can also
50t + PlLnoside " 1 be extended to the case of imperfectly registered images. In
[ o . . .
5 N Etx::: ::32 E;i)) " principle, the approach could also be extended to multiple
th40F x organs, although this would require conditioning on their
2 X number and multiple hypothesis testing.
®30 g x *
o +F
Z20f TEL % R APPENDIX
2. o
- m .,+. - . - . . .
10 Sl A. Fisher Information Matrix for B-Spline Coefficients
0 , , , , Under the linear Gaussian model (5) the loglikelihood of the
-10 -5 0 5 10 15 i is i i '
log2(beta) noisy MRI data is given by Girsanov’s formula [46, ch. 13]
Fig. 8. Average RMS reconstruction error for various emission reconstruc- 1
tion methods. In f(Yn;0) = <——2> / [Yni(z,y) — (Lo % +H) (2, )]
2071 Rf
In Fig. 9 the percent standard deviation is plotted against ~dedy+C (36)

percent bias of total uptake @sranges from small (upper part
of curves) to large (lower part of curves). The FBP and PML
without side information algorithms performed off scale an
are not shown. The improvement in bias-variance tradeoff due
to minimax smoothing with ideal, expected, or observed Fisher
information is obvious from the figure. The bias-variance

curves using three different types of Fisher information areV; In f(Yy; 0)

hereC is a term independent &, and Rf = [-W, W] x
—W, W] is the square domain of the MRI image. The Hessian
matrlx of the loglikelihood is

quite close to each other and to the ideal curve. On the 1 T s
other hand, as contrasted with the results reported in [20], — _g// Ve lo(x,y) - Velg(x,y) dr dy
Fig. 10 gives clear indication that smoothing with expected R
Fisher information significantly outperforms smoothing with 1 / s 2rs
: . . . . — Y ! I .
observed Fisher information smoothing as the MRI noise n@,y) = Lo(w. )] Volo(x y) do dy

variances? increases.
37)

VI. CONCLUSION AND FUTURE WORK

We have presented an asymptotically minimax tracer uptakénce, foré equal to the true paramet@fy(z,y) —I3(z, y) =
estimation algorithm for merging high-resolution MRI bounds(z, ) is zero mean the expectation of the second term on the
ary information into low-resolution ECT data. The algorithnfight-hand side is zero and thus
merges the MRI boundary information into the ECT recon-
struction by a penalized maximum likelihood method with a w
resolution selective Gibbs penalty implemented with a set of . _ %// Vi lo(x,y) - Velg(x,y) du dy. (38)
smoothed weights. Here the amount of smoothing is spatially
variant and inversely proportional to the Fisher information.

The effect of this spatially variant blurring is that the Gibbs
penalty forces a segment of the estimated boundary into tNew. using (4) and (7)
ECT reconstruction only if the boundary estimate has high

resolution, i.e., low variance as measured by the inverse Fisher (Crot — Cra)
information. In this way the penalty accomplishes resolutio olg(r.y) = T
matching between the ECT and MRI data. ’ (z — 10)2+(y — 1)?
Several restrictive assumptions were made in this paper to // exp {— 502 dry dro.

maintain focus on the fundamentals. The PML structure of the
asymptotic minimax approximation, given by Proposition 2,
holds for any continuous boundary parameterization. As a
consequence, while the implementation details will diffeE
the general method is applicable to any continuously pa-
rameterizable nonstar shaped organ in two dimensions (2-D)

or three dimensions (3-D). The 3-D parameterizations under C, = (Cror — Cra)/(2r0?)

A change of variable in the above integral from rectangular
b polar coordinates, and the definition
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Performance Plot for Total Uptake (MRI noise = 036)
4_5_ ......... R R R R CE R .

Ideal side info.
Unsmoothed

Smoothed (True Fisher) : :
Smoothed (Expected Fisher) AR
Smoothed (Observed Fisher) : :

% Std of total uptake estimate

6 -55 -5 -4.5 -4 -35 -3
% Bias of total uptake estimate

Fig. 9. Percent Std versus percent bias of total uptake estimate for MRI agise 0.36.

give where
Velole) 10,6,7) = xp (~IHOL=FONI
()ro(n) BB ()

¢,7)
=0, Ve //exp|: (z—n)’ +(y_7_2)2:|d7'1d7'2 G0, 6,~) =0
p(z,y)

) 2
32 o) B() B
=Cs- Vo{/¢ /;0(45) - <_i§ [(37— g)2+ <y— g> ])

and

(z — cos$)? + (y — (sing)?
exp [— 53 a =ro() cosd + ro(7) cosy
b =ro(¢)sing + ro(y) sin7.
- Cd¢dg . .
Under the assumption that < W the integral ove(z, y)
2 can be performed by integration of the unnormalized bivariate
=Cs- / Gaussian probability densip(x, y) resulting in the expression
=0
_r 2 o : 2 C2q02 27 27
-exp {— (@ = 7o(¢) cos §) 2+2(y To(¢) sin ¢) } Fo =2 / de / dvq(0, ¢,7)G(8,¢,7)  (40)
O'S 2 0 0
ro(¢)Vere(d)dd  (By Leibnitz’s rule) which is readily verified to be identical to the expression (9).

Now useVere(¢) = B(¢), substitute the above into (38),
complete the square in the exponent of the integrand, alRd Craner-Rao Bound for Boundary Estimation
identify The CR bound for finite dimensional parameters subject to
170 () — 7a(7)|[2 constraints has been studied in [29], [47], and [48]. While
) ) proof of the general extension theorem is outside of the scope
=15(®) +719(7) — 2re(¢)re(7) cos (¢ — ) of this paper, it can be shown that the theory in [29] extends
to continuously indexed parameters, e.g., functions such as
2w o o = {r(¢): ¢ € [—7r,7r)}._ In particular, the CR bound for
: da: / dy / d¢ dyp(z,y) unbiased estimates efsubject to the linear c.onstralnt 3) can
Tn J— be stated as:ov,. (r(¢),7(v)) — CRB,. ¢(¢,~y) is a symmetric
-q(0,9,7)G (39) nonnegative definite (n.n.d.) kernel where, analogously to [29,

to obtain

Fg =
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Fig. 10.
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Lemma 2, (19)] or [48, Theorem 1, (6)], CRB(¢,~) is the for all ¢ € [—7,7), whereéd(¢,~) = 6(¢ — ) is a dirac delta

symmetric positive definite kernel function.
Now let #(¢) be an arbitrary unbiased estimator of the
CRB-o(¢,7) B-spline boundaryr(¢), where »(¢) lies in the span of
= BY(p)[B(-) © Fp(-,%) @ B ()] B(») By, -+, Bk. Thenip(¢p) = P(¢,-) ®#(-) is also an unbiased

estimator since

=B"(¢) E.[fp(¢)] = P(¢,-) ® E[f(-)] = P(¢,-) ®7(-) = r(¢).

// B(w)Fr(ww)BT(n)dwdn] B(y).

(41) Furthermore, the covariance function &#(¢) cannot exceed

In the above equation the integral inner product operatm'at of 7(¢)

g()Of() = /7, 9(w) f(u)du has been introduced to simplify . . _ . . .
notation. The symmetric functiod',.(y,7) is the (uncon- cove(7(@),7()) = cove(Pp($),7r(y)) Is n.nd.  (45)
str?meS) F|s]cherr:pfr(1)rmat|§n ck(])rres?[on:mg :ﬁ ufnconstraln%is is easily shown by substitution of the orthogonal decom-
estimation ofr which can be shown to have the form position

2

7]
Folm) =~ [m n f <YM"‘>} (42)  i(p) = (9) = P(6,) © [7(-) — v + [6(6,) = P(6, )]

402 into cov,(7(¢), #(7)) = E[(F(¢) — r(¢))(F(7) — r(1))]-

In view of the form of the FIM for@ derived in the previous = Now as the estimatofp(¢) lies in the span o3y, - By
Appendix, it is evident thafy = B(-) ® Fy.(-,x) ® B'(x). there exists a vectof such that
Thus we have .
Lemma 1: Let B(¢) be a vector functio®3: R — R* and Pr(¢) = BY(9)6.
letr(¢) be a scalar function oR which is constrained to have
the formr(¢) = B(¢)6 for some# € R*. Assume that the Thus the covariance function @f(¢) is
likelihood function fg(Y'\) satisfies conditions (15)—(19) of . . - .
[29]. Then any unbiased estimatoof the functionr satisfies cove(Pp(9),7r(7)) = B™(¢) cove (0)B(7) (46)

the following constrained CR bound a ) L
wherecovg(0) is the K x K covariance matrix o#. Further-

covy (r(¢),7(7)) — CRB,.o(¢,7), isn.nd.  (44) more, astp(¢) is an unbiased estimator of the trugh), 8 is
an unbiased estimator of the tr@eThis can be seen from the

where sequence of equalities

CRB,.o(¢,7) = BT (¢)Fy " B(v).

Proof of Lemma 1:Define theX x K matrix

BT ($)0 = 1(¢) = Eo[BT (¢)6] = B (¢)Es|8]

so thatB (¢)[0 — Ee[f]] = 0. Hence

BOOB() = [ BB (W) dy. [BC)© B0~ Falo]] = 0.

. o . . B _ o ) _ _
This matrix is nonsingular sincd8 = [Bi,---, Bk]" 1S \yhich implies thatEs[8] = 6 asB(-)® B(-) is a nonsingular
a column vector of linearly independent functions. Indeeg,trix.

there exists a nonsingular lower triangular Gramm—Schmithina”y asd is unbiased, application of the CR bound to

orthogonalization matrixLi such thatB(¢) = LB(¢) iS @ e covariance ob gives: cove (8) > F,*. Using this in (46)
vector of orthonormal functions and therefdsé-) ® BY(.) =

N T obtain
L[B(:) ® B ()]L* = LL" which is obviously nonsingular.
Thus we can define the projection operator covp(Pp(#),7p(v)) — BY(¢)Fy ' B(y) is n.nd.
P(¢,v) = B (¢)[B() @ B" ()] ' B(7) Therefore, using the above and (46)
which projects square integrable functions[enr, =) onto the . . _ BU(O\F-'B is n.n.d
linear span of the functionB,, - - -, Bx. In particular, for any covr(#(¢), 7(7)) (9)Fe B(y) is n.nd.
such functiong(«) lying in the span of these functions which is the form of the CR bound claimed in (44). O
P(¢)09() = /_7T P(¢w)g(u) du = g(9) C. Asymptotic Form of CR Bound
and therefore In this appendix the smch_ (high MRI spatial resolutipn) _
representation (13) is established for the boundary estimation
[6(¢,) — P(¢, )] @g(-)=0 CR bound (11). We state this result as the following.
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Lemma 2: Assume that for allp: 7¢(¢) >0 and re(¢), where

7;((/)),7;;((/)) are bounded. Then T ||7—»0(¢) _ F0(7)||2
Aly) = — g B(¢)do.
R ()= [ e | RN o0y a0
1 T .
e It will next be shown that
-1 A(y) = V2ma(y)re(7)B() + o(a). (53)
© ralh where o) is defined as
/ o) BB () dv
- 1+ ilnT(,»(z/)) afy) = V27, (54)
Y (17’
-B(7) + o) (47)  Substitute (51) into the exponent of the integrandagf),
where and make a change of variable= (¢ — v)/a(+) to obtain
the representation
a = ma V20, V20, & 1
= aX - = " . (N2 a2
o @ |~ ming VEo@F F160F A =VEra() | h() = 0T g
(48) ) e
UyEsited 5
Proof of Lemma 2:First, the following simple identi- = V2ra(y) /_W/a( )h(o‘“""'y) 27r6_u /% du
tities are easily established using the definitits(¢) = i
[re(¢) cos ¢, e () sin o]~ = \/%OC(V)EUL(O‘U + M1a(U)] (55)
[[75(H)|? =[re()]? + [r($)]? where U is a standard zero mean unit variance Gaussian
11 2 . 2 19,0 ()2 — 2 Y random variable and 4(w) is the indicator function of the
17 ()1l [70((7)3] +2[ ro(9)I" = 2ro(¢)ra(¢) interval A = [—7/a(y),7/a(y)]. See the equation at the
+[re (D). bottom of the page. Using the definition (54) @fv)
!n p_articular the2 assunledQboundednesswfv,,, and ry h(a(7)u + 7)
implies that||7||” and ||7"g||* are also bounded. LT o
The next step is to derive the following asymptotic form = exp <__ [M@(’y)u?’
(9) for the FIM F: 2L I7eM]
L ITOIP 4D
2 = ¢y ) u rela(y)u +y
Fo—CCN// exp [ 7o) = ; @l ro(p)re(v) 8” o(MII? ) olaly) )
75 B(a()u+7)-
'B(¢) Ty )d¢ dy , (49)  Since the second derivative of the functibt) is bounded,
_ 70(7) expansion of the left-hand side of the previous equation in
=2Con /o —= /[re(7) (7)]2B(7) a Taylor series with remainder about= 0 and substitution
BT (y) dy + o(a). (50) into (55) yields
To show this start with the Taylor series with remainder forE[h(a(’y)UJr’V)IA(U)] )
the vectorip(p) = 7a(y) + 7p(V)(¢ — 7) + 1 7F4(E)(d — )2 = h(a(y)u + 7)u=o + e’ (a(y)u + 7)u=0
where ¢ is a point in [—m, 7], 7p(y) = 87(,( )/0~v and ( ) 5
7y(y) = O*7e(7y)/0¥?. This gives E[ULL(U)] + ——h () +7)EULA(U)]
(ORI oot s o)
= [Fo (DI (@ = 7)° + {Fo(1), 75 ()¢ — ) where« = max, () as given in (48), and
ISP =)™ (51) S0
Jo(e)| = | SR (a(y)n + 7) BV La(U)]
Now separate the integral of (49) oveérandy to obtain
the representation ) < %2 max ()]
Fo=Cox [ AGrB ()dy  (62) N
- wheren is a point in[—w/a(y), 7 /a(7))]-
To(7) TH()N¢ — Fe(I* (e —v)*
h(p) = exp <_< 0(1); 75()( 2102 1 IFg(IP (¢ — ) )7,0((7))3((7))
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Since h(a(y)u + v)|lu=o = 7e(v)B(v) this establishes and therefore by the mean value theorem
relation (53). Plugging (53) into (52) one obtains (40). Using
the identity (9/0¢)lnr(¢) = '(¢)/r(¢) and the continuity max / dA [ f(YIA) fuie)(X) dP(0)
of matrix inverses for invertible matrice$® + o(a)]™! = A IB(re) R¥

1 T ; ;
Q7! + o(«), finishes the proof. 0 = max {/ FOYIA) fuoy () dp(g)}VKGIs + oK)

RK

D. Proof of Proposition 1 (56)

First, note that for a fixed functioA the maximization over
0 € R% in (21) is equivalent to maximization over probabilit
distributionsdP on R%

whereVy denotes the volume of the unit spherefifi. Since
Ythe expression in brackefs } has a strict maximum and is
continuous inA the solutionA to (56) is

max P, (A, w(0)) = max /R P w(6) dP ()

g { [ 10 Wsaomar@)} + ot

To see this_, .defir)g(.o) n Pe()".w(o)) "’?”d Ietdé(el). Fienote as claimed. This establishes the proposition. O
the probability distribution which assigns probability one to

a single point?; € R*. Now, since the space of probability .

distributions {dP} on R¥ contains the space of single poimE' Proof of Proposition 2

distributions{dé} on RX we have Only a sketch of the salient parts of the proof is given.
We eliminate the index: in the following for simplicity.

mglxg(o) :H(li%x/ 9(0) d5(6) Smax/ 9(6) dP(6). Define the conditional expectation operatdiy)y,,[Z] =
RK

RK ar Jax Z dP*(0]Y\). Then we have from (28)
On the other hand, agx dP(@) = 1 @ inimax(A, w)
=1In f(YE[X) 4+ In Egy, [exp {—BR(); 0)
e < e - e .
max /[RK g(@) dP(8) < lnéxxg(ﬂ)/ dP(0) m{;xxg(a) + ln p(w(8))}].

Hencemaxp g(8) = maxyp [y 9(8) dP(6) and (21) is equiv- Since the exponential function is convex (equivalently the
alent to log function is concave) Jensen’s inequality applied to the

right-hand side of the above equation gives

dsminimax(Av w)
2 In f(Yg|A) — BEg v, [R(X;0)] + C

minmaXPe(:\,w(ﬂ)):minmax/ P.(\, w(0)) dP(6).
A0 A AP gx

Second, under the assumptions of [39, Theorem 2.9.2] the

. L. . r
solution to the minimax problem occurs at a saddlepoint so that — ln f(YRA) — /32 Z D@ — A2+ C
. j=1keN;,
Hi{n max /RK P.(A,w(0))dP(6) (57)
= max min P, (5\, w(6)) dP(0). where

ar X RK

C=F i ). 58
Third, for fixed dP the integral on the right-hand side of o1y [l p(w(6))] (58)

the above equation is simply the average probability of errofjenced,. ;. .i.ax(A;w) > Spr(A; w) + C, which establishes

which by Fubini, has the equivalent form the lower inequality in (33).
. We next show the upper inequality in (33). Under the
/ P.(A,w(0))dP(9) assumption tha? P(8|Y ;) is smooth, we can apply Theorem
REK

1. Assertion 2 of Theorem 1 implies that for integrable
= / dy / A\ [ F(YIN) fwey(N) dP(@).  h(8) and any Borel subsel’ of R" the Lebesgue-Steiltjes
A )=Al[>¢ RX integral [y, h(6)dP(0)Y) converges in probability to
.. v @) dG@|T,I"), where dG is the Gaussian probability
AS Jar [(Y|X) fue)(X) dP(8) = 0 the above expression isyeaqyre (29) cited in Theorem 1. On the other hand, we have
minimized whenk = A(Y) is selected as the midpoint of thepy Assertion 1 of Theorem 1 that for any open b&il of
sphere of radius which maximizes the integral radiuse centered at the true paramety;

/A A [ FOVIA) fuiey () dP(6) <A (59)
B(Ae) RE

| oo - [ wo)areys)
RK

B

[40, Corollary 4.1.1]. From the assumed continuity ofvhere A converges to zero in probability. Now specializing
F(Y|X) fwie)(A) it follows that this integral is continuousto A(6) = p(w(@)) - exp (—BR(A;8)), sincee is arbitrary and
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exp(-) is a continuous function, we have where
PN ACERE 97
[ m0ar@ys e (<5 [ rovoyarowy S0 o cons 5 psin) — 200
T X COS S11 -7
- - = BB, )1+ ) =rld)]
+/lnpw0 dPaY,>§6 (60) s )
p AN PO oy [ =07 =i
whereé goes to zero as goes to zero. Combining (59), (60) 203
and the definition (28) of,.,inimax(A, w) (i, =1,---,K).
D inimax (A, w) Substituting the above in (63),

< _ . , . Cs [T

<ln f(Yg|A) -3 /RK R(X;0)dPO)Y ) +C + [Fy)i; = [Folp_pli; — = Bi(¢)B;($)
where C is given in (58) andy >0 converges to zero in R 0 l|lx — 7a|?
probability. From (14) and (15) the first two terms on the right- : é(x,y,0) -exp | — 252
hand side of the inequality can be recognize@®ag, (A, w), Ry
which finishes the proof. O . [1 L re(9)wcos+ysing) — 7’3(@}

o3
E. Derivation of Observed Fisher Information
. . . L - dz dy d¢ (64)
The observedFisher information [20]F°, is given by 0—p

—V{ln f(Yn;0)},_s- From the Hessian of the loglikeli-

hood as in (37) where

llz = 7oll” = (& — ro() cos ¢)” + (y — r0() sin §)>.

R 17
Fy= —2// Vals(z,y) - Velg(x,y) dv dy o
T We can then write this as

0=0

Ry
1 = [Fali — AF;;
2] W - Vi ol = Waly = 24

6=6  where
(61)
AF“ = CS
The first term on the right-hand side of the above equation
can be identified from (38) as thigue Fisher information

2
Tn J—x

" Bi$)By(9) // Vi, y) — Tz, )
Ry

~ _ #2012
evaluated a## = 0. We refer to this as thexpectedrisher - exp [—”:527720”}
information. Therefore 75 . )
A i . [1 L re($)(wcos ¢+ ysing) - m(ﬂ
Py =Foloo= 5z [ Wues) =~ Tote.v) o2
fr Cdedydp|
- V3I3(x,y) dx dy (62) =
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