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Abstract—This paper presents the optimal guaranteed per-
formance for a multiple-antenna wireless compound channel with
M antennas at the transmitter and N antennas at the receiver
on a Ricean fading channel with a static specular component.
The channel is modeled as a compound channel with a Rayleigh
component and an unknown rank-one deterministic specular
component. The Rayleigh component remains constant over a
block of T symbol periods, with independent realizations over
each block. The rank-one deterministic component is modeled as
an outer product of two unknown deterministic vectors of unit
magnitude. Under this scenario, to guarantee service, it is required
to maximize the worst case capacity (min-capacity). It is shown
that for computing min-capacity, instead of optimizing over the
joint density of T · M complex transmitted signals, it is sufficient
to maximize over a joint density of min{T , M} real transmitted
signal magnitudes. The optimal signal matrix is shown to be
equal to the product of three independent matrices—a T × T
unitary matrix, a T × M real nonnegative diagonal matrix, and
an M × M unitary matrix. A tractable lower bound on capacity
is derived for this model, which is useful for computing achievable
rate regions. Finally, it is shown that the average capacity
(avg-capacity) computed under the assumption that the specular
component is constant but random with isotropic distribution is
equal to min-capacity. This means that avg-capacity, which, in
general, has no practical meaning for nonergodic scenarios, has a
coding theorem associated with it in this particular case.

Index Terms—Capacity, compound channel, information
theory, multiple antennas, Ricean fading.

I. INTRODUCTION

THE need for higher rates in wireless communications has
never been greater than in the present. Due to this need

and the derth of extra bandwidth available for communica-
tion, multiple antennas have attracted considerable attention
[6], [7], [16], [20], [21]. Multiple antennas at the transmitter
and the receiver provide spatial diversity that can be exploited to
improve spectral efficiency of wireless communication systems
and to improve performance.
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Two kinds of models widely used for describing fading in
wireless channels are the Rayleigh and Ricean models. For
wireless links in Rayleigh fading environment, it has been
shown by Foschini and Gans [6], [7] and Telatar [20] that with
perfect channel knowledge at the receiver, for high signal-to-
noise ratio (SNR), a capacity gain of min(M,N) bits/s/Hz,
where M is the number of antennas at the transmitter and
N is the number of antennas at the receiver, can be achieved
with every 3-dB increase in SNR. The assumption of complete
knowledge about the channel might not be true in the case of
fast mobile receivers and large number of transmit antennas be-
cause of insufficient training. Marzetta and Hochwald [16] con-
sidered the case when neither the receiver nor the transmitter
has any knowledge of the fading coefficients. They considered
a model where the fading coefficients remain constant for T
symbol periods and instantaneously change to new independent
realizations after that. They derived the structure of capacity
achieving signals and also showed that under this model, the
complexity for capacity calculations is considerably reduced.

In contrast, the attention paid to Ricean fading models has
been fairly limited. Ricean fading components traditionally
have been modeled as independent Gaussian components with
a deterministic nonzero mean [1], [4], [5], [12], [17], [19].
Farrokhi et al. [5] used this model to analyze the capacity of
a MIMO channel with a specular component. They assumed
that the specular component is deterministic and unchanging
and unknown to the transmitter but known to the receiver. They
also assumed that the receiver has complete knowledge about
the fading coefficients (i.e., has knowledge about the Rayleigh
component as well). They worked with the premise that since
the transmitter has no knowledge about the specular compo-
nent, the signaling scheme has to be designed to guarantee a
given rate irrespective of the value of the deterministic specular
component. They concluded that the signal matrix has to be
composed of independent circular Gaussian random variables
of mean 0 and equal variance to maximize the rate.

Godavarti et al. [13] considered a nonconventional ergodic
model for the case of Ricean fading where the fading channel
consists of a Rayleigh component, modeled as in [16] and an
independent rank-one isotropically distributed specular compo-
nent. The fading channel is assumed to remain constant over a
block of T consecutive symbol periods but take a completely
independent realization over each block. They derived similar
results on optimal capacity achieving signal structures as in
[16]. They also established a lower bound to capacity that
can be easily extended to the model considered in this paper.
The model described in [13] is applicable to a mobile-wireless
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link where both the direct line of sight component (specular
component) and the diffuse component (Rayleigh component)
change with time.

In [12], Godavarti and Hero considered the standard Ricean
fading model. The capacity calculated for the standard Ricean
fading model is a function of the specular component since
the specular component is deterministic and known to both the
transmitter and the receiver. The authors established asymptotic
results for capacity and conclude that beamforming is the op-
timum signaling strategy for low SNR, whereas for high SNR,
the optimum signaling strategy is the same as that for purely
Rayleigh fading channels.

In this paper, we consider a quasi-static Ricean model where
the specular component is nonchanging while the Rayleigh
component is varying over time. The only difference between
this model and the standard Ricean fading model is that in this
model, the specular component is of single rank and is not
known to the transmitter. We can also contrast the formulation
here to that in [13] where the specular component is also mod-
eled as stochastic and the ergodic channel capacity is clearly
defined. In spite of a completely different formulation, we
obtain surprisingly similar results as in [13].

Modeling the specular component to be of rank one is fairly
common in the literature [14], [15], [18]. The rank of the
specular component is determined by the number of direct line
of sight paths between the transmitter and the receiver, which is
typically much lower than the number of transmit and receive
antennas leading to ill-conditioned specular components [10],
[11]. Furthermore, if the distance between the transmit and
receive antennas is much greater than the distance between
individual antenna elements, then the rank of the specular
component can only be one [3], [4].

The Ricean channel models considered in [12], [13] and in
this paper are all extensions of the Rayleigh model considered
in [16] in the sense that all models reduce to the Rayleigh model
of [16] when the specular component goes to zero.

The channel model considered here is applicable to the case
where the transmitter and receiver are either fixed in space
or are in motion but sufficiently far apart with a single direct
path so that the specular component has single rank and is
practically constant while the diffuse multipath component
changes rapidly. This can be contrasted with the channel model
in [13] where the specular component is changing as rapidly
as the diffuse multipath component. This allows modeling the
channel in [13] as an ergodic channel. On the other hand, the
channel model in [12] is almost exactly the same as the model
proposed in this paper except that in [12], it is assumed that
there is a feedback path from the receiver to the transmitter
and as a result the transmitter can be modeled to have complete
knowledge of the specular component.

In this paper, since the transmitter has no knowledge about
the specular component, the transmitter can either maximize the
worst case rate over the ensemble of values that the specular
component can take or maximize the average rate by estab-
lishing a prior distribution on the ensemble. We address both
approaches in this paper. Note that when the transmitter has
no knowledge about the specular component, knowledge of it
at the receiver makes no difference on the worst case capacity

[2]. We however assume the knowledge as it makes it easier to
analyze the fading channel.

Similar to [5], the specular component is an outer product
of two vectors of unit magnitude that are nonchanging and
unknown to the transmitter but known to the receiver. The
difference between our approach and that of [5] is that in [5],
the authors consider the channel to be known completely to
the receiver. We assume that the receiver’s extent of knowledge
about the channel is limited to the specular component. That is,
the receiver has no knowledge about the Rayleigh component
of the model. Considering the absence of knowledge at the
transmitter, it is important to design a signal scheme that guar-
antees the largest overall rate for communication irrespective of
the value of the specular component. This is formulated as the
problem of determining the worst case capacity in Section II.
This is followed by derivation of upper and lower bounds on the
worst case capacity in Section III and optimum signal properties
in Section IV. In Section V, the average capacity is considered
instead of the worst case capacity, and it is shown that both
formulations imply the same optimal signal structure and the
same maximum possible rate. In Section VI, we use the results
derived in this paper to compute capacity regions for some
Ricean fading channels. For interested readers, we show the
existence, in the Appendix, of a coding theorem corresponding
to the worst case capacity for the fading model considered here.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Let there be M transmit antennas and N receive antennas.
It is assumed that the fading coefficients remain constant over
a block of T consecutive symbol periods but are independent
from block to block. Keeping that in mind, the channel is
modeled as carrying a T × M signal matrix S over an M × N
MIMO channel H , producing X at the receiver according
to the model

X =
√

ρ

M
SH + W (1)

where the elements, wtn of W are independent circular com-
plex Gaussian random variables with mean 0 and variance 1
[CN (0, 1)].

The MIMO Ricean model for the matrix H is H =
(1 − r)1/2G + (rNM)1/2αβ† where G consists of indepen-
dent CN (0, 1) random variables and α and β are deterministic
vectors of length M and N , respectively, such that α†α = 1
and β†β = 1. The parameter r, 0 ≤ r ≤ 1 denotes the frac-
tion of the energy propagated via the specular component.
r = 0 and r = 1 correspond to purely Rayleigh and purely
specular fading, respectively. Irrespective of the value of r, the
average variance of the elements of H is 1, that is, H satisfies
E[tr{HH†}] = M · N .

It is assumed that α and β are known to the receiver. Since
the receiver is free to apply a coordinate transformation by post-
multiplying X by a unitary matrix, without loss of generality,
β can be taken to be identically equal to [1 0 . . . 0] T. We
will sometimes write H as Hα to highlight the dependence of
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H on α. G remains constant for T symbol periods and takes on
a completely independent realization every T th symbol period.

The problem in this section is to find the distribution p∗(S)
that attains the maximum in the following maximization defin-
ing the worst case channel capacity

C∗ = max
p(S)

I∗(X;S) = max
p(S)

inf
α∈A

Iα(X;S)

and also to find the maximum value C∗.

Iα(X;S) =
∫

p(S)p(X|S, αβ†)

× log
p(X|S, αβ†)∫

p(S)p(X|S, αβ†) dS
dS dX

is the mutual information between X and S when the specular

component is given by αβ† and A
def= {α : α ∈ CM and α†α =

1}. Since A is compact the “inf” in the problem can be replaced
by “min.” For convenience, we will refer to I∗(X;S) as the
min-mutual information and C∗ as min-capacity.

The above formulation is justified for the Ricean fading
channel considered here because there exists a corresponding
coding theorem that we prove in the Appendix. However,
the existence of a coding theorem can also be obtained from
[2, chap. 5, pp. 172–178]. The min-capacity defined above
is just the capacity of a compound channel. We will use
the notation in this paper to briefly describe the concept of
compound channels given in [2]. Let α ∈ A denote a candidate
channel. Let C∗ = maxp(S) minα Iα(X;S) and P ∗(e, n) =
maxα Pα(e, n), where Pα(e, n) is the maximum probability of
decoding error for channel α when a code of length n is used.
Then for every R < C∗, there exists a sequence of (2nR, n)
codes such that

lim
n→∞

P ∗(e, n) = 0.

It is also shown in [2, Prob. 13, p. 183] that min-capacity
does not depend on the receiver’s knowledge of the channel.
Hence, it is not necessary for us to assume that the specular
component is known to the receiver. However, we do so be-
cause it facilitates easier computation of min-capacity and avg-
capacity in terms of the conditional probability distribution
p(X|S).

Note that since A is unitarily invariant, it means that no
preference is attached to the direction of the line of sight
component and, therefore, it is intuitive to expect the optimum
signal to attach no significance to the direction of the line of
sight component as well. Moreover, since all α ∈ A have the
same strength, it is intuitive to expect the optimum signal to be
such that it generates the same mutual information irrespective
of the choice of the specular component. This intuition is made
concrete in the following sections.

III. CAPACITY UPPER AND LOWER BOUNDS

Theorem 1: Min-capacity C∗
H when the channel matrix H is

known to the receiver but not to the transmitter is given by

C∗
H = TE log det

[
IN +

ρ

M
H†

e1
He1

]
(2)

where e1 = [1 0 . . . 0] T is a unit vector in CM . Note that
e1 in (2) can be replaced by any α ∈ A without changing the
answer.

Proof: The idea for this proof has been taken from the
proof of Theorem 1 in [20]. First note that for T > 1, given H ,
the channel is memoryless, and hence, the rows of the input
signal matrix S are independent of each other. That means
the mutual information Iα(X;S) =

∑T
i=1 Iα(Xi;Si) where

Xi and Si denote the ith row of X and S, respectively. The
maximization over each term can be done separately, and it
is easily seen that each term will be maximized individually
for the same density on Si. That is, p(Si) = p(Sj) for i �= j
and maxp(S) Iα(X;S) = T maxp(S1) Iα(X1;S1). Therefore,
WLOG assume T = 1.

Given H , the channel is an AWGN channel, therefore, capac-
ity is attained by Gaussian signal vectors. Let ΛS be the input
signal covariance. Since the transmitter does not know α, ΛS

cannot depend on α and the min-capacity is given by

maxΛS :tr{ΛS}≤M F(ΛS) = maxΛS :tr{ΛS}≤M minα∈A E

× log det
[
IN +

ρ

M
H†

αΛSHα

]
(3)

where F(ΛS) is implicitly defined in an obvious manner. First
note that F(ΛS) in (3) is a concave function of ΛS . (This
follows from the fact that log det K is a concave function of
K.) Also, F(Ψ†ΛSΨ) = F(ΛS) for any M × MΨ : Ψ†Ψ =
IM since Ψ†α ∈ A for any α ∈ A and G has independent
identically distributed (i.i.d.) zero mean complex Gaussian
entries. Let Q†DQ be the singular value decomposition (SVD)
of ΛS , then we have F(D) = F(Q†DQ) = F(ΛS). Therefore,
we can choose ΛS to be diagonal. Moreover, F(P †

kΛSPk) =
F(ΛS) for any permutation matrix Pk, k = 1, . . . ,M !. There-
fore, if we choose Λ′

S = (1/M !)
∑M !

k=1 P †
kΛSPk, then by con-

cavity and Jensen’s inequality, we have

F (Λ′
S) ≥ 1

M !

M !∑
k=1

F
(
P †

kΛSPk

)
= F(ΛS).

Therefore, it can be concluded that the maximizing input
signal covariance ΛS is a multiple of the identity matrix.
It is quite obvious to see that to maximize the expres-
sion in (3), we need to choose tr{ΛS} = M or ΛS = IM ,
and since E log det[IN + (ρ/M)H†

α1
Hα1 ] = E log det[IN +

(ρ/M)H†
α2

Hα2 ] for any α1, α2 ∈ A, (2) easily follows. �
By the data processing theorem, additional information at

the receiver does not decrease capacity, hence, the following
propositions.
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Proposition 1: An upper bound on the channel min-capacity
when neither the transmitter nor the receiver has any knowledge
about the channel is given by

C∗ ≤ T · E log det
[
IN +

ρ

M
H†

e1
He1

]
. (4)

Now, we establish a lower bound.
Proposition 2: A lower bound on min-capacity when the

transmitter has no knowledge about H and the receiver has no
knowledge about G is given by

C∗ ≥C∗
H − NE

{
log2 det

[
IT + (1 − r)

ρ

M
SS†

]}
(5)

≥C∗
H − NM log2

[
1 + (1 − r)

ρ

M
T

]
. (6)

Proof: Proof is a slight modification of the proof of
Theorem 3 in [13], therefore, only the essential steps will be
shown here.

First note that

Iα(X;S) = I(X;S|α)

= I(X;S,H|α) − I(X;H|S, α)

= I(X;H|α) + I(X;S|H,α) − I(X;H|S, α)

≥ I(X;S|H,α) − I(X;H|S, α)

where the last inequality follows from the fact that I(X;
H|α) ≥ 0. Therefore

C∗(X;S) ≥ max
p(S)

min
α

[I(X;S|H,α) − I(X;H|S, α)].

The lower bound is obtained by observing that the second
term is the mutual information between the “input” H =
(1 − r)1/2G + (rNM)1/2αe†1, and the “output” X through the
“channel” X =

√
(ρ/M)SH + W . Since α is fixed and α and

S are known at the “receiver,” the mutual information between
H and X is the same as the mutual information between G and
X ′, where X ′ = X − (ρ/M)1/2(rNM)1/2Sαe†1. Therefore,
the second term can be evaluated, irrespective of the value
of α, as

NE
{

log2 det
[
IT + (1 − r)

ρ

M
SS†

]}

and the first term can be maximized by choosing p(S) such
that the elements of S are independent CN (0, 1) random
variables. �

Notice that the second term at right-hand side of the lower
bound is

NE
{

log2 det
[
IT + (1 − r)

ρ

M
SS†

]}

instead of NE[log2 det(IT + (ρ/M)SS†)], which occurs in
the lower bound derived for the model in [13]. The second term
I(X;H|S) is the mutual information between the output and
the channel given the transmitted signal. In other words, this
is the information carried in the transmitted signal about the
channel. Therefore, the second term in the lower bound can
be viewed as a penalty term for using part of the available
rate to learn the channel. When r = 1 or when the channel

is purely specular, it can be seen that the penalty term for
training goes to zero. This makes perfect sense because the
specular component is known to the receiver and the penalty for
learning the specular component is zero in the current model as
contrasted to the model in [13].

Combining (4) and (6) gives us the following.
Corollary 1: The normalized min-capacity, C∗

n = C∗/T in
bits per channel use as T → ∞ is given by

C∗
n = E log det

[
IN +

ρ

M
H†

e1
He1

]
.

Note that this is the same as the capacity when the receiver
knows H , so that as T → ∞, perfect channel estimation can
be performed.

IV. PROPERTIES OF CAPACITY ACHIEVING SIGNALS

In this section, the optimum signal structure for achieving
min-capacity is derived. The optimization is being done under
the power constraint E[tr{SS†}] ≤ TM .

The results in this section theoretically establish what can
be gauged intuitively. It has already been established in [16]
that when the specular component is zero, the optimum signal
density is invariant to unitary transformations. This is no longer
true if the specular component is nonzero. However, if the set
of nonzero specular components (called A in this paper), from
which the worst case specular component is selected and the
corresponding performance maximized, is invariant to unitary
transformations, then it is natural to expect the optimum signal
to be invariant to unitary transformations as well.

The basic ideas for showing invariance of optimum signals
to unitary transformations in this section, and also in the next,
have been taken from [16].
Lemma 1: I∗(X;S) as a functional of p(S) is concave

in p(S).
Proof: First, note that Iα(X;S) is a concave functional

of p(S) for every α ∈ A. Let I∗(X;S)p(S) denote I∗(X;S)
evaluated using p(S) as the signal density. Then

I∗(X;S)δp1(S)+(1−δ)p2(S)

= min
α∈A

Iα(X;S)δp1(S)+(1−δ)p2(S)

≥ min
α∈A

[
δIα(X;S)p1(S) + (1 − δ)Iα(X;S)p2(S)

]

≥ δ min
α∈A

Iα(X;S)p1(S) + (1 − δ)min
α∈A

Iα(X;S)p2(S)

= δI∗(X;S)p1(S) + (1 − δ)I∗(X;S)p2(S).

�
Lemma 2: For any T × T unitary matrix Φ and any M ×

M unitary matrix Ψ, if p(S) generates I∗(X;S), then so does
p(ΦSΨ†).

Proof:
1) Note that p(ΦX|ΦS) = p(X|S), therefore, Iα(X;

ΦS) = Iα(X;S) for any T × T unitary matrix Φ and
all α ∈ A.

2) Also, Ψα ∈ A for any α ∈ A and any M × M unitary
matrix Ψ. Therefore, if I∗(X;S) achieves its minimum
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value at α0 ∈ A, then I∗(X;SΨ†) achieves its minimum
value at Ψα0 because Iα(X;S) = IΨα(X;SΨ†) for α ∈
A and Ψ an M × M unitary matrix.

Combining 1) and 2), we get the lemma. �
Lemma 3: The min-capacity achieving signal distribution,

p(S) is unchanged by any pre- and postmultiplication of S by
unitary matrices of appropriate dimensions.

Proof: It will be shown that for any signal density p0(S)
generating min-mutual information I∗0 , there exists a density
p1(S) generating I∗1 ≥ I∗0 such that p1(S) is invariant to pre-
and postmultiplication of S by unitary matrices of appropriate
dimensions. By Lemma 2, for any pair of permutation ma-
trices, Φ (T × T ) and Ψ (M × M) p0(ΦSΨ†) generates the
same min-mutual information as p(S). Define uT (Φ) to be
the isotropically random unitary density function of a T × T
unitary matrix Φ. Similarly, define uM (Ψ). Let p1(S) be a
mixture density given as follows

p1(S) =
∫ ∫

p0(ΦSΨ†)u(Φ)u(Ψ) dΦdΨ.

It is easy to see that p1(S) is invariant to any pre- and postmul-
tiplication of S by unitary matrices and if I∗1 is the min-mutual
information generated by p1(S), then from Jensen’s inequality
and concavity of I∗(X;S), we have I∗1 ≥ I∗0 . �
Corollary 2: p∗(S), the optimal min-capacity achieving sig-

nal density lies in P = ∪I>0PI where

PI = {p(S) : Iα(X;S) = I ∀α ∈ A} . (7)

Proof: This follows immediately from Lemma 3 because
any signal density that is invariant to pre- and postmultiplication
of S by unitary matrices generates the same mutual information
Iα(X;S) irrespective of the value of α. �

The above result is intuitively obvious because all α ∈ A
are identical to each other except for unitary transformations.
Therefore, any density function that is invariant to unitary
transformations is expected to behave the same way for all α.

Theorem 2: The signal matrix that achieves min-capacity
can be written as S = ΦV Ψ†, where Φ and Ψ are T × T and
M × M isotropically distributed matrices independent of each
other, and V is a T × M real nonnegative diagonal matrix,
independent of both Φ and Ψ.

Proof: From the SVD, we can write S = ΦV Ψ†, where
Φ is a T × T unitary matrix, V is a T × M nonnegative real
diagonal matrix, and Ψ is an M × M unitary matrix. In general,
Φ, V , and Ψ are jointly distributed. Suppose S has probability
density p0(S) that generates min-mutual information I∗0 . Let
Θ1 and Θ2 be isotropically distributed unitary matrices of size
T × T and M × M independent of S and of each other. Define
a new signal S1 = Θ1SΘ†

2, generating min-mutual information
I∗1 . Now conditioned on Θ1 and Θ2, the min-mutual infor-
mation generated by S1 equals I∗0 . From the concavity of the
min-mutual information as a functional of p(S) and Jensen’s
inequality, we conclude that I∗1 ≥ I∗0 .

Since Θ1 and Θ2 are isotropically distributed, Θ1Φ and
Θ2Ψ are also isotropically distributed when conditioned on Φ

and Ψ, respectively. This means that both Θ1Φ and Θ2Ψ are
isotropically distributed making them independent of Φ, V , and
Ψ. Therefore, S1 is equal to the product of three independent
matrices, a T × T unitary matrix Φ, a T × M real nonnegative
matrix V , and an M × M unitary matrix Ψ.

Now, it will be shown that the density p(V ) on V is un-
changed by rearrangements of diagonal entries of V . There
are min{M !, T !} ways of arranging the diagonal entries of
V . This can be accomplished by pre- and postmultiplying
V by appropriate permutation matrices PTk and PMk, k =
1, . . . ,min{M !, T !}. The permutation does not change the
min-mutual information because ΦPTk and ΨPMk have the
same density functions as Φ and Ψ. By choosing an equally
weighted mixture density for V , involving all min{M !, T !}
arrangements, a higher value of min-mutual information can
be obtained because of concavity and Jensen’s inequality. This
new density is invariant to the rearrangements of the diagonal
elements of V . �

V. AVERAGE CAPACITY CRITERION

In this section, we will investigate how much worse the worst
case performance is compared to the average performance.
To find the average performance, we maximize IE(X;S) =
Eα[Iα(X;S)], where Iα is defined earlier and Eα denotes
expectation over α ∈ A under the assumption that all α are
equally likely. That is, under the assumption that α is unchang-
ing over time, isotropically random and known to the receiver.
Note that this differs from the model considered in [13] where
the authors consider the case of a piecewise constant time
varying i.i.d. specular component.

Therefore, the problem can be stated as finding pE(S) the
probability density function on the input signal S that achieves
the following maximization

CE = max
p(S)

Eα [Iα(X;S)] (8)

and also to find the value CE . We will refer to IE(X;S) as
avg-mutual information and CE as avg-capacity.

Like in the previous section, we would expect the optimum
signal to be such that it generates the same mutual information
irrespective of the choice of the specular component because
the density function attaches no significance to any particular
α ∈ A. In other words, since the set of nonspecular components
A and the density function on A are such that the density
function is invariant under unitary transformations, we would
expect the optimum signal density to be invariant to unitary
transformations as well. Moreover, since all α ∈ A are identical
to each other except for unitary transformations, intuition tells
us that Corollary 2 should hold here also. Therefore, the average
mutual information over all α should be equal to the mutual
information for a single α. That is, the average performance
should be equal to the worst case performance.

Formally, it will be shown that the signal density p∗(S) that
attains C∗ also attains CE . For that, we need to establish the
following lemmas. We omit some of the proofs because the
proofs are very similar to the proofs in Section IV.
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Lemma 4: IE(X;S) is a concave functional of the signal
density p(S).

Lemma 5: For any T × T unitary matrix Φ and any M ×
M unitary matrix Ψ, if p(S) generates IE(X;S), then so does
p(ΦSΨ†).

Proof: We want to show that if p(S) generates IE(X;S),
then so does p(ΦSΨ†). Now since the density function of α,
p(α) = (Γ(M)/πM )δ(α†α − 1), we have

IE(X;S) =
πM

Γ(M)

∫
Iα(X;S) dα.

Note that Iα(X; ΦS) = Iα(X;S). Therefore

I ′E(X;S) =
πM

Γ(M)

∫
Iα(X; ΦSΨ†) dα

=
πM

Γ(M)

∫
Iα(X;SΨ†) dα.

Also note that IΨα(X;SΨ†) = Iα(X;S), which means
IΨ†α(X;S) = Iα(X;SΨ†). Therefore

I ′E(X;S) =
πM

Γ(M)

∫
IΨ†α(X;S) dα

=
πM

Γ(M)

∫
Iω(X;S) dω

= IE(X;S)

where the last two equalities follow from the transformation
ω = Ψ†α and the fact that the Jacobian of the transformation
is equal to 1. �
Lemma 6: The avg-capacity achieving signal distribution

p(S) is unchanged by any pre- and postmultiplication of S by
unitary matrices of appropriate dimensions.
Corollary 3: p∗(S), the optimal avg-capacity achieving sig-

nal density lies in P = ∪I>0PI where PI is defined in (7).
Based on the last corollary, it can be concluded that for

a given p(S) in P , we have I∗(X;S) = minα∈A Iα(X;S)=
Eα[Iα(X;S)] = IE(X;S). Therefore, the maximizing densi-
ties for CE and C∗ are the same and also CE = C∗. Therefore,
designing the signal constellation with the objective of maxi-
mizing the worst case performance is not more pessimistic than
maximizing the average performance.

Finally, we have the following theorem similar to Theorem 2.
Theorem 3: The signal matrix that achieves avg-capacity

can be written as S = ΦV Ψ†, where Φ and Ψ are T × T and
M × M isotropically distributed matrices independent of each
other, and V is a T × M real nonnegative diagonal matrix,
independent of both Φ and Ψ.

VI. NUMERICAL RESULTS

Plotting the upper and lower bounds on min-capacity leads
to similar conclusions as in [13], except for the fact when
r = 1, the upper and lower bounds coincide. A tighter lower
bound can be obtained by first observing that a lower bound on

avg-capacity is also a lower bound on min-capacity and then
optimizing over the number of transmit and receive antennas.
Therefore

C∗= CE

≥ max
m≤M, n≤N

(
TEα′

[
E log2 det

(
In +

ρ

m
H†

α′Hα′

)]
−nE

×
{

log2 det
[
IT + (1 − r)

ρ

m
SmS†

m

]})
.

In the expression above, the expectation in the second term is
over the distribution of the T × m input signal matrix Sm. The
outer expectation in the first term is over the distribution of
m × 1 vector α′, and the inner expectation is over the
distribution of the Rayleigh component of the m × n channel
matrix Hα′ . Hα′ is obtained from Hα by selecting the first
m × n block of the original M × N channel matrix Hα.
Therefore, α′ is simply the vector of the first m elements of the
M × 1 vector α.

In Fig. 1, the min-capacity upper and lower bounds have
been plotted as a function of the Ricean parameter r. It can be
seen that the change in capacity is not drastic for low SNR as
compared to larger SNR values. Also, from Fig. 2, we conclude
that this change in capacity is more prominent for a larger
number of antennas. We also conclude that for a purely specular
channel, increasing the number of transmit antennas has no
effect on the capacity. This is due to the fact that with a rank-
one specular component, only beamforming SNR gains can be
exploited, no multiplexing gains are possible.

VII. DISCUSSION AND CONCLUSION

The idea of maximizing min-capacity can be traced back to
[5] and [7], where intuitive arguments were used to justify the
choice of identity matrix as the optimum input signal covari-
ance matrix. In both works, the channel is assumed to be known
at the receiver, hence, the optimum signal is a Gaussian signal
with only its covariance matrix to be determined. Choosing the
covariance matrix to be identity amounts to choosing a unitarily
invariant density on the input signal.

The model considered in this paper can be extended in
various ways. One way would be to assume the parameter r
to be not fixed. In this case, for min-capacity in addition to
minimizing over α ∈ A, we would also have to minimize over
the parameter r ∈ [0, 1]. For avg-capacity, the average over r
needs to be taken as well, assuming a prior distribution like
the uniform distribution over [0, 1] on r. In both cases, the
optimum signal density would still be unitarily invariant. How-
ever, min-capacity will no longer be equal to avg-capacity.

Another extension would be to assume the specular compo-
nent to be composed of L rank-one components, that is

H =
√

1 − r G +
√

rNM

√
1
L

L∑
l=1

vlαlβ
†
l

where vl ≥ 0 with
∑L

l=1 vl = 1 and αl and βl such that
αl ∈ {α : α†α = 1} and βl ∈ {β : β†β = 1}. Here also, the
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Fig. 1. Capacity upper and lower bounds as the channel moves from purely Rayleigh to purely Ricean fading. (a) ρ = 0 dB. (b) ρ = 15 dB.

Fig. 2. Capacity upper and lower bounds as the channel moves from purely Rayleigh to purely Ricean fading. (a) ρ = 0 dB. (b) ρ = 15 dB.

optimum signal structure turns out to be unitarily invariant with
CE > C∗.

The summary of contributions in this paper is as follows.
A nonergodic but tractable model for Ricean fading channel
different from the one in [13] but along the lines of [5] has
been proposed. For this channel, the worst case capacity was
computed, and it was shown that the optimal signal structure
was unitarily invariant. As a result, the optimization effort is
over a much smaller set of parameters of size min{T,M},
rather than the set of size T × M which we originally began
with. Since the capacity is not in closed form, a useful lower
bound that illustrates the capacity trends as a function of the
parameter r was derived.

Finally, it was shown that the approach of maximizing the
worst case scenario is not pessimistic in the sense that the signal

density maximizing the worst case performance also maximizes
the average performance and the capacity value in both formu-
lations turns out to be the same. The average capacity being
equal to the worst case capacity can also be interpreted in a
different manner: It has been shown that the average capacity
criterion is a quality of service guaranteeing capacity.

APPENDIX

Coding Theorem for Min-Capacity

To make this paper self-sufficient, we will prove the follow-
ing theorem that is specific to the compound channel considered
here. To understand the theorem, the reader is not required to
know the material in [2].
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Theorem 4: For the quasi-static Ricean fading model, for
every R < C∗, there exists a sequence of (2nR, n) codes with
codewords mn

i , i = 1, . . . , 2nR, satisfying the power constraint
such that

lim
n→∞

sup
α

Peα,n = 0

where Peα,n = max2nR

i=1 Pe(mn
i , α) and Pe(mi) is the probabil-

ity of incorrectly decoding the messages mi when the channel
is given by Hα.

Proof: Proof follows if we can show that Peα,n is bounded
above by the same Gallager error exponent [8], [9] irrespective
of the value of α. That follows from Lemma 7 proven at the end
of this section. �

The intuition behind the existence of a coding theorem is that
the min-capacity C∗ achieving signal density is such that the
mutual information C∗ between the output and the input is the
same irrespective of any particular realization of the channel
Hα. Therefore, any codes generated from the random coding
argument designed to achieve rates up to C∗ for any particular
channel Hα achieve rates up to C∗ for all Hα.

For Lemma 7, we first need to briefly describe the Gallager
error exponents [8], [9] for the quasi-static Ricean fading
channel. For a system communicating at a rate R, the upper
bound on the maximum probability of error is given as follows

Peα,n ≤ exp
(
−nmax

p(S)
max
0≤γ≤1

{E0[γ, p(S), α] − γR log 2}
)

where n is the length of the codewords in the codebook used
and E0[γ, p(S), α] is as follows

E0 [γ, p(S), α] = − log
∫ [∫

p(S)p(X|S, α)
1

1+γ dS

]γ

dX

where S is the input to the channel and X is the observed
output and

p(X|S, α)

=
e
−tr

{
[IT +(1−r) ρ

M SS†]−1
(X−

√
ρrNSαβ†)(X−

√
ρrNSαβ†)

†
}

πTN detN
[
IT + (1 − r) ρ

M SS†
]

where β is simply [1 0 . . . 0] T. Maximization over
γ in the error exponent yields a value of γ such that
∂E0[γ, p(S), α]/∂γ = R. Note that for γ=0, ∂E0[γ, p(S),
α]/∂γ = Iα(X;S) [8], [9], where the mutual information has
been evaluated when the input is p(S). If p(S) is the min-
capacity achieving density p∗(S), then ∂E0[γ, p∗(S), α]/∂γ =
C∗. For more information, refer to [8], [9].
Lemma 7: The E0[γ, p∗(S), α] for the quasi-static Ricean

fading model is independent of α.
Proof: First, note that

p∗(S) = p∗(SΨ†)

for any M × M unitary matrix Ψ. Second

E0 [γ, p∗(S), α]

= − log
∫ [∫

p∗(S)p(X|S, α)
1

1+γ dS

]γ

dX

= − log
∫ [∫

p∗(SΨ†)p(X|SΨ†, α)
1

1+γ dS

]γ

dX

= − log
∫ [∫

p∗(S)p(X|S,Ψ†α)
1

1+γ dS

]γ

dX

= E0

[
γ, p∗(S),Ψ†α

]

where the second equation follows from the fact that Ψ is
a unitary matrix and its Jacobian is equal to 1 and the third
equation follows from the fact that p(X|SΨ†, α)1/1+γ =
p(X|S,Ψ†α)1/1+γ . Since Ψ is arbitrary, we obtain that
E0[γ, p∗(S), α] is independent of α. �
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