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Abstract—Correlation screening is frequently the only practical
way to discover dependencies in very high dimensional data.In
correlation screening a high threshold is applied to the matrix
of sample correlation coefficients of the multivariate data. The
variables having coefficients that exceed the threshold arecalled
discoveries and are classified to be dependent. The mean number
of discoveries and the number of false discoveries in correlation
screening problems depend on a information-theoretic measure
J , a novel type of information divergence that is a function of
the joint density of pairs of variables. It is therefore important to
estimateJ in order to determine screening thresholds for desired
false alarm rates. In this paper, we propose a kernel estimator for
J , establish asymptotic consistency and determine the asymptotic
distribution of the estimator. These results are used to minimize
the MSE of the estimator and to determine confidence intervals
on J . We use these results to test for dependence between
variables in both simulated data sets and also between email
spam harvesters. Finally, we use the estimate ofJ to determine
screening thresholds in correlation screening problems involving
gene expression data.
Keywords: Dependence measure, correlation screening,
Information theory, estimation, CLT.

I. I NTRODUCTION

Consider the problem of screening among a large numberp
of variables for those having significant correlations. Examples
of such high dimensional data sets include gene expression
arrays, traffic over the internet and multivariate financialtime
series. Screening can be used to discover a small number of
variables which are strongly correlated to each other. Indeed,
in high dimensional settings when the number of samplesn is
very small compared to the number of variablesp, screening
out all but the highest sample correlations may be the only
practical approach to discovering such dependencies.

Hero and Rajaratnam [4] showed that the threshold used
to screen the sample correlation matrix must be carefully
chosen due to an abrupt phase transitions phenomenon: when
the threshold falls below a certain critical value, the number
of discoveries increases rapidly. They further established that
for large p the number of discoveries follows an asymp-
totic Poisson-type distribution, with a mean parameter which
depends on an information theoretic measureJ . If J were
known these asymptotic results could be used to select the
screening threshold to control Type I error and specify p-
values. However, in many practical examplesJ is unknown
and must be estimated empirically.

In this paper, we propose an asymptotically consistent
estimator forJ and determine the limiting distribution of our
estimator to be normal. We use our estimate ofJ to test
for dependence between variables and to determine suitable
screening thresholds for achieving desired false alarm rates
in correlation screening problems. The rest of the paper is
organized as follows: In Section 2, we introduce preliminaries
and describe the correlation screening procedure in Section
3. We introduce the estimator of J in Section 4 and provide
asymptotic analysis of bias and variance of the estimator. We
also establish a central limit theorem for the estimator. We
experimentally validate the results in Section 5. Furthermore,
we use the theoretical results to obtain confidence intervals on
the measure J and subsequently use the confidence intervals
to test for dependence between variables and to determine
thresholds in correlation screening. We conclude in Section
6.

II. PRELIMINARIES

The asymptotic expressions for the mean number of dis-
coveries in correlation screening will be a function of several
quantities introduced below.

A. Relevant definitions

Define theSpherical cap probabilityto be

Po(ρ, n) = an

∫ 1

ρ

(1− u2)
n−4

2 du.

wherean is

an = |Sn−2| =
2Γ((n− 1)/2)√
πΓ((n− 2)/2)

.

The quantityPo(ρ, n)/2 is equal to the proportional area
of the spherical capof radius r =

√

2(1− ρ) on Sn−2. It
is the probability that a uniformly distributed pointU on the
sphere lies in the pair of hyper spherical cones symmetric
about the origin [8]. Application of the mean value theorem
to the integral in the definition of spherical cap probability
yields the relation

Po(ρ, n) =
an

n− 2
(1 − ρ2)(n−2)/2(1 +O(1− ρ2)).



For random variablesU andV with joint densityfU,V on
Sn−2 × Sn−2 with marginalsfU andfV define

Jρ(fU,V) =
Pr
(

||U−V|| ≤
√

2(1− ρ)
)

Po(ρ, n)
,

and the limit

J(fU,V) = lim
ρ→1

Jρ(fU,V) = |Sn−2|
∫

Sn−2

fU,V(u, u)du.

The authors of [4] have shown that the number of dis-
coveries in correlation screening are related to the measure
J . The limit is equal to1 when U and V are independent
and uniformly distributed onSn−2. Thus J(fU,V) − 1 is a
measure of the deviation of the joint density from uniform
fU,V(u, v) = |Sn−2|2.

We give an intuitive interpretation ofJ(fU,V) as a measure
of dependence betweenU, V. It is equal to the Bhattacharyya
affinity between the product of the marginal distributions
mU,V(w) = fU(w)fV(w) and the product of the conditional
distributionscU,V(w) = fU|V(w|w)fV|U(w|w) :

J(fU,V) = |Sn−2|
∫

√

mU,V(w)cU,V(w)dw,

≤ |Sn−2|
(
∫

mU,V(w)dw

)1/2(∫

cU,V(w)dw

)1/2

,

where equality occurs ifffU,V(u, u) = fU(u)fU(v).
The measureJ is maximized when fU,V(u, u) =

fU(u)fV(u) and therefore measureslocal dependence along
the diagonalu = v. In contrast, the Shannon MI captures
global dependence information over the entire range ofu, v. In
correlation screening with a high threshold global dependency
(MI) is not as relevant as local dependency (J) since only those
variables who are highly correlated will likely be discovered.

B. Z-score representation

Let X = [X1, ..., Xp]
T be a vector of random variables with

meanµ andp×p covariance matrixΣ. Denote the correlation
matrix Γ = DΣ

−1/2
ΣDΣ

−1/2 whereDΣ = diagi(Σii) is
the diagonal matrix of variances of components ofX. Assume
thatn independent identically distributed (i.i.d.) samples ofX

are available and arrange these samples in an×p data matrix

X = [X1, . . . ,Xp] = [XT
(1), . . . ,X

T
(n)]

T ,

where Xi = [X1i, . . . , Xni]
T and X(i) = [Xi1, ..., Xip]

denote thei-th column and row, respectively, ofX .
Define the sample mean of thei-th column Xi =

n−1
∑n

j=1 Xji, the vector of sample meansX =

[X1, . . . , Xp], the p × p sample covariance matrixS =
(n − 1)−1(X(i) − X)T (X(i) − X), and thep × p sample
correlation matrix

R = DS
−1/2

SDS
−1/2,

whereDS = diagi(Sii) is the diagonal matrix of compo-
nent sample variances. Let theij-th entry of the ensemble
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(a) Z-scores for multivariate sample with diagonal covariancematrix.
The Z-scores are uniformly distributed over the unit sphereSn−2.
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(b) Z-scores for multivariate sample with non-diagonal covariance
matrix. The Z-scores are concentrated in clumps over the unit sphere
Sn−2.

Figure 1. The Z-scores associated withn = 4 realizations of 1000 variables aren−1-
element vectors that lie on the unitn−2 dimensional sphereSn−2 . Shown are Z-scores
for a multivariate normal sample with diagonal and non-diagonal covariance structure.
Pairs of Z-scores that are close to each other, as measured byEuclidean distance, have
high associated sample correlations.

covarianceI be denotedγij and theij-th entry of the sample
covarianceR be rij .

We now define the Z-scores,U = [U1, . . . ,Up], Ui ∈
Rn−1 as follows. The Z-scores are constructed to lie on
the (n − 2)-sphereSn−2 ∈ Rn−1 and are determined by
projecting away the components ofXi orthogonal to then−1
dimensional hyperplaneu ∈ Rn : 1T

u = 0, i = 1, . . . , p. The
Z-scores can be computed fromX using a Gramm-Schmidt
procedure. The Z-scores satisfy the relation

R = UTU .
Furthermore, the sample correlation betweenXi andXj can
be computed using the inner product or the Euclidean distance
between associated Z-scores

rij = U
T
i Uj = 1− ||Ui −Uj ||2

2
.

Pairs of Z-scores that are close to each other, as measured
by Euclidean distance, therefore have high associated sample
correlation. The Z-score lives in a geometry, the(n−2)-sphere
of co-dimension1 shown in Fig. 1. It is well known that when
the rows of the data matrixX follow a diagonal elliptical
distribution the Z-scores are uniformly distributed onSn−2 [1].



In the case of non-diagonalΣ elliptical distributions the
distribution of the Z-scores over the sphereSn−2 will generally
be far from uniform (Fig. 1). The Z-score representations of
the sample correlation will be a key ingredient for deriving
the asymptotic results in this paper.

III. C ORRELATION SCREENING

Consider an experiment to comparep variables under a
treatment, calledX. This experiment produces the data matrix
X , which is an× p matrix. From this data matrix, extract the
Z-score matrixU . We then construct the sample correlation
matrix R = UTU .

We are primarily interested in the casen << p so that
the matrix will be rank deficient. Let theij-th element of
this matrix be denoted asrij . The objective is to screen the
p variables for those whose maximal magnitude correlation
exceeds a given thresholdρ. Specifically, fori, j = 1, . . . , p,
the i-th variable passes the screen ifmaxj 6=i |rij | > ρ.

For this test a discovery is declared if an indexi passes the
screen and we denote byN , the total number of discoveries.
In previous work done by one of the authors, it was shown
that the number of discoveries satisfy the following properties.
Assume that the correlation thresholdρ depends on the number
of variablesp as

lim
p→∞

p(p− 1)(1− ρ2)(n−2)/2 = dn

for some finite constantdn. Then the expected number of
discoveries satisfy

lim
p→∞

E[N ] = κnJ(fU.,U∗−.
), (1)

whereκn = andn/(n− 2), f s
U,V(u, v) = (1/2)(fU,V(u, v)+

fU,V(u,−v)) and

fU.,U∗−.
(u, v) =

1

p(p− 1)

p
∑

i=1

p
∑

j 6=i

(

f s
Ui,Uj

(u, v)
)

,

is the average Z-score. Furthermore, under a suitable weak
dependency condition [4], the variableN also satisfies the
following Poisson-type limit

lim
p→∞

Pr(N > 0) = e−λ/2, (2)

whereλ = κnJ(fU.,U∗−.
) is the limiting mean.

Contribution: We note that when the variables are inde-
pendent, the value ofJ is identically equal to1. For variables
which are weakly dependent, Hero et.al. [4] use this fact to
determine screening thresholds for desired false alarm rates
using Eq. 2 by approximating the valueJ as 1. However, if
the dependency is stronger, the value ofJ can significantly
differ from 1 and it therefore becomes vital to estimateJ
to determine screening thresholds. The rest of this paper is
concerned with the estimation ofJ .

IV. ESTIMATION OF J

Consider ap dimensional joint densityfU1,...,Up
defined on

Sn−2 × . . .× Sn−2. Now define the average pairwise density

fU.,U∗−.
(u,v) =

1

p(p− 1)

p
∑

i=1

p
∑

j 6=i

(

f s
Ui,Uj

(u, v)
)

.

We are interested in estimatingJ(fU.,U∗−.
) from a single

sample[U1, . . . ,Up] which is drawn from the joint density
fU1,...,Up

. Note that

J(fU.,U∗−.
) =

1

p(p− 1)

p
∑

i=1

p
∑

j 6=i

J(fUi,Uj
).

In order to estimateJ(fU.,U∗−.
), we build an uniform

kernel estimatorĴ , which we describe below. We will show
that the estimatorĴ is asymptotically unbiased and consis-
tent. Finally, we will show that the estimator, when suitable
normalized, converges weakly to a normal distribution.

A. Estimate ofJ

For variable sizep and corresponding screening thresh-
old ρ, let ρs be the estimation threshold which satisfies (i)
limp→∞ ρs = 1, and (ii) limp→∞(1− ρ)/(1− ρs) = 0.

Define A(r, v) = C(r, v) ∪ C(r,−v) to be the union of
spherical cap regions centered atv and−v with radiusr =
√

2(1− ρs). Let bij denote the event thatUj ∈ A(r,Ui).
Note that there arep(p− 1)/2 distinct combinations of{i, j}.
Therefore the cardinality of the setB = {bij, i < j} is p(p−
1)/2.

We sample from the setB without replacement to obtain a
finite sequence of random variablesV = {v1,v2, . . . ,vm},
where m = p(p − 1)/2. We now define our estimator of
Jρ(fU.,U∗−.

) to be

Ĵ =
1

Po(ρs, n)

(

1

m

m
∑

i=1

vi

)

. (3)

B. Intuition

Before stating the theoretical results, we provide some
intuition behind the requirement(1− ρ)/(1− ρs) → 0 which
translates to the condition that the estimation thresholdρs
approaches 1 slower than the screening thresholdρ.

The conditionρs → 1 guarantees that the radiusr =
√

2(1− ρs) of the regionA(r, v) decays to0, which in turn
implies that the bias of̂J should decay to 0. On the other
hand, the conditionρs → 1 slower thanρ → 1 guarantees
that the average number of pointsUj which fall in A(r,Ui)
grows to∞ asp → ∞, which implies that the variance should
decay to 0.

For notational convenience, henceforth denotePo(ρs, n) by
Po. Note thatPo = an

n−2 (1 − ρ2)(n−2)/2(1 + O(|1 − ρ|2)),
which implies thatp(p − 1)Po → andn/(n − 2), as p →
∞. Also let ps correspond toρs according to the relation
limp→∞ ps(ps − 1)(1 − ρ2s)

(n−2)/2 = dn. Then ps satisfies
the following conditions:ps/p → 0, 1/ps → 0 as p → ∞.
We will now state results on the bias, variance and asymptotic



distribution of the estimator̂J . The proofs for these results
can be found in our technical report [9].

C. Bias

Define the maximal gradient of the average pairwise density
to be

∇M = sup
u,v∈Sn−2

||∇vfU.,U∗−.
(u, v)|u=v||.

The bias ofĴ is bounded by

|E[Ĵ ]− J(fU.,U∗−.
)| ≤ 2a2n∇M

√

2(1− ρs)

= 2
√
2a2nd

(2−n)
n ∇M

(

1

ps

)
2

n−2

(1 + o(1)), (4)

which implies that the estimator̂J is asymptotically unbiased.

D. Variance

Define

M =

[

avg
i6=j 6=k

√

V[fUj |Ui
(Ui|Ui)]V[fUk|Ui

(Ui|Ui)]

]

.

Also define,

δijkl = fUi,Uj ,Uk,Ul
(ui, uj , uk, ul)

−fUi,Uj
(ui, uj)fUk,Ul

(uk, ul),

and

δp = avg
i6=j 6=k 6=l

(

sup
ui,uj ,uk,ul

|δijkl |
)

,

and further assumeδp → 0 asp → ∞. Specifically, letδp =
O(1/pα) for someα > 0. The variance ofĴ is then bounded
by

V[Ĵ ] = (Po(ρs, n))
−2

V

[

(1/m)

m
∑

i=1

vi

]

= ((Po(ρs, n))
−2/m)V[v1]

+(Po(ρs, n))
−2(1− 1/m)C[v1,v2]

≤ 2J(fU.,U∗−.
)

κn

(

ps
p

)2

(1 + o(1))

+

(

2M

3

(

1

p

)

+ a2nδp

)

(1 + o(1)), (5)

and the variance of our estimator tends to0 asp → ∞.

E. Optimization of MSE

Note that our intuition behind choosing(1−ρ)/(1−ρs) → 0
is verified by our expressions for the MSE.ρs approaches1
slower thanρ, which then implies thatps/p → 0, which in turn
implies that our estimator is consistent. We will now optimize
the choice ofps for minimum MSE.

1) General case:: When all the variates are significantly
correlated,∇M = O(1) which implies that the bias is
O(p

−2/(n−2)
s ). We note that the overall MSE is then given by

O(ps
−4/(n−2))+O(p2s/p

2)+O(1/p)+O(1/pα). Optimizing
this expression overps gives the relationps = O(p(n−2)/n)
which then gives the optimized M.S.E to beO(p−4/n) +
O(1/p) +O(1/pα).

2) r-sparse case:: We consider the more realistic scenario
when only a small fixed numberr of thep variates are strongly
correlated and the rest are weakly correlated. This impliesthat
the corresponding Z-scores of thep− r uncorrelated variables
are fairly uniformly distributed on the sphereSn−2, which in
turn implies that∇M = O(1/p). In this case, the squared
bias is O(ps

−4/(n−2)p−1) and is clearly dominated by the
variance. Also notice that thisr-sparse setting impliesα >> 1.
This implies that the overall M.S.E. for the r-sparse case is
dominated by the variance and is given byO(p2s/p

2)+O(1/p).
In this scenario, our analysis shows thatps should be chosen
to be as small as possible.

F. Asymptotic distribution

Since the set of random variablesV = {v1,v2, . . . ,vm}
are exchangeable [6] for everyp, we can assume thatV =
{v1,v2, . . . ,vm} are a finite segment of an infinite length
exchangeable sequence. Consider the normalized version of
our estimatorĴ given by

J̃ =
Ĵ − J(fU.,U∗−.

)

(ps/p)
√

2J(fU.,U∗−.
)/κn

. (6)

We will show thatJ̃ is asymptotically normal in distribution.
SetXi = Po(ρs, n)

−1
vi and consider the sum

Sp =
√
m

m
∑

i=1

X i −E[X i]
√

V[X i]
=

√
m

m
∑

i=1

Yi,

where Y i are the normalized exchangeable
random sequence (X i − E[X i])/

√

V[X i]. Be-
cause |J(fU.,U∗−.

) − Jρs
(fU.,U∗−.

)| → 0 and
|V[X i]/m − (ps/p)

22J(fU.,U∗−.
)/κn| → 0, it follows

that J̃ has the same asymptotic distribution asSp. We will
now show thatSp converges weakly to a standard normal
distribution.

From our analysis of the variance of̂J and using the fact
that bij are binomial, we see that the correspondingYi satisfy

C[Y 1, Y 2] = ((P−2
o κn)/(p

2
sJ(fU.,U∗−.

)))C[v1,v2] → 0,

asp → ∞. It is similarly possible to show thatC[Y 1
2, Y 2

2] →
0 asp → ∞. Then, using our central limit theorem for asymp-
totically uncorrelated interchangeable processes (Theorem 3.
[10]), it follows that

lim
p→∞

Pr{J̃ ≤ α} = lim
p→∞

Pr{Sp ≤ α} = φ(α), (7)

whereφ(.) is the distribution function of a Gaussian random
variable with mean0 and variance1. Bounds on the Wassertein
distance between the distribution ofJ̃ and the standard normal
distribution can be found in [10].

V. EXPERIMENTS

The first set of experiments deal with verifying the theoret-
ical results on bias, variance and asymptotic distributionfor
the estimator̂J . In the second set of experiments, we use these
results to test if the hypothesisH0 : J = 1 holds, i.e., if the
variates are independent. IfJ = 1, we can then use the theory
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Figure 2. Variation of experimentally observed MSE of̂J and theoretical bound
with varying ps for a n = 10, p = 1000, r = 5 multivariate normal sample. The
MSE indeed decreases with decreasingps as predicted by our theory in Sec. IV-E2.
Furthermore, there is good agreement between the predictedbound and the observed
MSE for ps > 10 (see Sec. V-A for explanation.)

in [4] to set appropriate thresholds for false alarm rates. The
third set of experiments deal with ther-sparse scenario, i.e.
J 6= 1. In this case, we show that using our estimate ofJ
to determine screening thresholds for desired false alarm rates
works better than using the approximationJ = 1.

A. Verification of theory

We simulaten = 10 i.i.d. samples from a multivariate
Gaussian distribution withp = 1000 where all butr = 5
variables are uncorrelated. Clearly, this situation corresponds
to the r-sparse scenario in Sec. IV-E2. In the first experiment,
we vary ps from 1 to 1000 and compare the experimentally
observed M.S.E. and the theoretically predicted bound on the
M.S.E. This is shown in Fig. 2.

As predicted by our theoretical bound, the MSE decreases
with decreasingps in this r − sparse case (Sec. IV-E2).
Furthermore, we see that there is close agreement between the
theoretical bound and the experimental MSE in the regime
ps > 10. This can be explained by observing that for large
values ofps, the term(2J(fU.,U∗−.

)/κn) (ps/p)
2 dominates

the MSE and this term is exact. On the other hand, for small
values of ps, the MSE is dominated by the upper bound
2M/3p.

Alternative estimator:From Eq. 1 (proposition 1 in [4]),
one can propose the following alternative estimator forJ :
J̌ = 2N/andn, where N is the number of discoveries at
thresholdρ. We note that the estimator̂J for ps = p is identical
to J̌ . From our theory in Sec. IV-E2 and the corresponding
simulation results in Fig. 2, we see that the MSE performance
of J̌ is indeed significantly worse when compared toĴ for
small values ofps.

In our next experiment, we fixps and obtain repeated
estimates ofĴ and use these to obtain a q-q plot of the
quantiles ofJ̃ . The q-q plot in Fig. 3 shows that the asymptotic
distribution of J̃ is indeed standard normal.
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Figure 3. q-q plot of normalized quantiles of̂J and standard normal quantiles. The
linear agreement between the quantiles corroborates that the asymptotic distribution of
J̃ is indeed standard normal.

B. Test for independence

In this set of experiments, we are interested in verifying
if the variates in a given data set are independent or not,
i.e. to test ifJ = 1. We first consider two training data sets:
(i) a multivariate normal sample where all the variates are
independent, and (b) a multivariate normal sample where a
fraction of5% of the variates are dependent. We show the95%
confidence intervals onJ for increasing dimensionp for these
two cases in Fig. 4(a) and Fig. 4(b) respectively. As expected,
the confidence intervals tightly sandwich aroundJ = 1 in the
first case and a valueJ > 1 in the second case.

Given the above result, we use the central limit theorem ofJ̃
to determine the p-value that the hypothesisH0 : J = 1 holds.
We generate 2 sets of100 training samples each ofn = 10
i.i.d. samples from a multivariate Gaussian distribution with
p = 1000 with all the variates being independent in the first
set andr = 5 variates being dependent in the second set. The
resulting p-values are shown in histograms in Fig. 5(a) and
Fig. 5(b) respectively. In the case of independent variates, 1%
of the training sets have p-value less than 0.01. On the other
hand,90% of the training sets have p-value less than 0.01 in
the dependent variates scenario. The estimateĴ can therefore
be used as a test statistic to determine if all the variates ina
given sample are independent or not.

C. Correlations between spam harvesters

In this experiment, we analyze email spam data collected
via Project Honey Pot [7], a web-based network for moni-
toring harvesting and spamming activity by using trap email
addresses. Project Honey Pot is a distributed system for
monitoring harvesting and spamming activity via a network of
decoy web pages with trap email addresses, known as honey
pots. For every spam email received at a trap email address,
the Project Honey Pot data set provides us with the IP address
of the harvester that acquired the recipientâs email address.

We are specifically interested in studying the correlation
between harvesters in a given month. Using data from Project
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(a) 95% confidence intervals onJ for independent variates. The
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(b) 95% confidence intervals onJ for dependent variates. The
confidence intervals sandwich a valueJ 6= 1.

Figure 4. Confidence intervals onJ with increasing dimensionp. The confidence
intervals for independent and dependent variates sandwicharound valuesJ = 1 and
J 6= 1 respectively. For sufficiently large dimensionp, the estimated confidence intervals
can therefore be used to tightly boundJ with high probability.

Honey Pot, for each of the 24 months between January 2006
and December 2007, we build a coincidence matrix where the
columns correspond to harvesters and the rows correspond to
each day of the month. Each entry in the matrix therefore
corresponds to the number of emails collected by a particular
harvester in a given day of the month.

We treat the number of emails harvested on each day to
be independent and identically distributed, i.e. we treat each
coincidence matrix as an × p data matrixX , where the
dimensionp is the number of harvesters andn is the number
of days in a given month. The average number of harvesters
each month is approximatelypavg ≈ 1500. We now estimate
the dependence measureJ for each of the 24 months along
with 95%confidence intervals. This is shown in the Fig. 6.

A stronger dependence measureJ indicates greater correla-
tion among the harvesters, which can be viewed as an indicator
of more co-ordinated harvesting activity. Our premise is partly
corroborated by the fact that there is a increase in harvester
dependence in October 2006 (corresponding to time point 10
in Fig. 6) which coincides with media reports [2] suggesting
that there was a spam outbreak in October 2006.
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(a) Histogram of p-values for independent variates. A fractionof 1%
of the p-values are below 0.01.
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(b) Histogram of p-values for dependent variates.90% of the p-values
are below 0.01.

Figure 5. Histograms ofp-values for the hypothesis testing problemH0 : J = 1.
A very small fraction of p-values are smaller than 0.01 in theindependent variates case
as opposed to a fraction of90% in the dependent variates case. The statisticĴ can
therefore be used to test for independence of the variates.
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Figure 6. Dependence measureJ between harvesters for each of the 24 months
between January 2006 and December 2007 with confidence intervals. The dependence
measure indicates increasing co-ordinated harvester activity with time.

D. Correlation screening for dependent variates

In [4], the authors used the Poisson-type limit in Eq. 2 to
set screening thresholds for desired false positive rates.To do
so, the authors use examples where the data sets are sparsely
dependent and subsequently approximate the value ofJ by 1.

In our first experiment, we use this limit in Eq. 2 and the
value ofJ = 1 to determine screening thresholds in an = 10,
p = 1000 multivariate normal sample where all the variates



are independent. There is very good agreement between the
desired and observed false alarm rates as shown in Table I.
Next, we consider two sets of an = 10, p = 1000 multivariate

False alarm rates for independent variates;J = 1

Desired .20 .10 .05 .02 .01
Observed .18 .111 .043 .016 .010

Table I
DESIRED AND CORRESPONDING OBSERVED FALSE ALARM RATES IN CORRELATION

SCREENING EXPERIMENT FOR INDEPENDENT VARIATES. THRESHOLDS ARE

DETERMINED USING THE VALUE J = 1. THERE IS GOOD AGREEMENT BETWEEN

DESIRED AND OBSERVED FALSE ALARM RATES.

normal samples wherer = 5 of the p = 1000 variates are
dependent. In previous experiments, we have shown that the
value ofJ significantly differs from1 in this case. The first
data set is used as training sample to estimateJ . We now
repeat the correlation screening experiment on the second data
set, with two sets of thresholds - the first set of thresholds are
determined with the valueJ = 1 and the second set of values
are determined by the upper95% confidence interval onJ
as determined previously in Fig. 4(b). Using the upper95%
confidence intervalJu should guarantee that the observed false
rate is always less than or equal to the desired false alarm rate.
The desired and corresponding observed false alarm rates are
shown in Table II. We see that the observed false alarm rates

False alarm rates for r-spare variates;J 6= 1

Desired .20 .10 .05 .02 .01
Observed (J = 1) .300 .180 .063 .033 .020

Observed (J = Ju) .216 .123 .043 .026 .013

Table II
DESIRED AND CORRESPONDING OBSERVED FALSE ALARM RATES IN CORRELATION

SCREENING EXPERIMENT FOR R-SPARSE VARIATES. THRESHOLDS ARE DETERMINED

USING (I) J = 1 AND (II ) J = Ju . WHILE THERE IS GOOD AGREEMENT BETWEEN

DESIRED AND OBSERVED FALSE ALARM RATES USINGJ = Ju , THE OBSERVED

FALSE ALARM RATES WITH THRESHOLDS USINGJ = 1 ARE SIGNIFICANTLY HIGHER

THAN THE DESIRED RATES. USING THE DEPENDENCY ADJUSTED THRESHOLDS WITH

J = Ju THEREFORE HELPS REMOVE SPURIOUS FALSE POSITIVE DISCOVERIES.

are significantly higher than the desired rates when setting
thresholds using the approximationJ = 1. On the other
hand, there is very good agreement between the desired and
observed false alarm rates when setting the screening threshold
using the upper95% confidence intervalJu. Using dependency
adjusted thresholds determined by usingJ = Ju helps remove
additional false positives that are otherwise discovered when
screening at thresholds determined by using the approximation
J = 1. This result underlines the contribution of this paper.

E. Correlation screening on gene expression data

We applied the correlation screening theory to a dataset
downloaded from the public Gene Expression Omnibus (GEO)
NCBI web site [3]. The dataset consists of 108 Affymetrix
HU133 Genechips containing p = 22, 283 gene probes hy-
bridized from peripheral blood samples taken from 6 indi-
viduals at 5 time points (0,1,2, 4 and 12 hours) on four

independent days underm = 4 treatments: intake of alcohol,
grape juice, water, or red wine. After removing samples taken
at pretreatment baseline (time 0) there remainedn = 87
samples distributed over the treatments as:n1 = 20 (alcohol),
n2 = 22 (grape juice),n3 = 23 (water), andn4 = 22 (wine).

Fig. 7 gives a visualization of the Z-scores for each treat-
ment in the training data. Observe that the Z-scores display
non-uniformity on the sphereS2. Using the results in this
paper, we are able to characterize this non-uniformity by
estimatingJi, i = 1, 2, 3, 4 from the data and subsequently
determining the p-value that the hypothesisH1 : Ji = 1
holds. Under the r-sparse assumption in Sec. IV-E2, the lower
and upper95% confidence intervalsJl, Ju for each of the4
treatments is shown in Table III below.

For comparison, we also compute the lengthl(MST) of the
minimal spanning tree graphs constructed on the Z-scores,
which is a test of randomness [5] of the Z-scores. The length
of the MST graphs were normalized by the corresponding
MST lengths on Z-scores of independent variates onSni−2 to
account for the different dimensionni−2 of the4 treatments.
From the results in Table III, we can infer a monotonic
relationship between the MST lengths and the confidence
intervals onJi. Furthermore, we found the p-values that the
hypothesisH1 : Ji = 1 is true and the p-values based on
minimal spanning tree lengths that the hypothesis: ’the Z-
scores are a uniform draw onSni−2’ holds to be extremely
small(∼ 10−15). It is clear from these results that the Z-scores
are not uniformly distributed on the spheresSni−2.

95% confidence intervals onJ for gene expression data
Treatments MST length Lower level (Jl) Upper level (Ju)

Alcohol 0.81 1.87 1.88
Grape Juice 0.76 1.81 1.83

Water 0.73 2.01 2.03
Wine 0.69 2.50 2.52

Table III
NORMALIZED MST LENGTHS AND 95% CONFIDENCE INTERVALS ON DEPENDENCE

MEASURE J FOR EACH OF THE4 TREATMENTS. THERE IS GOOD AGREEMENT

BETWEEN THE MST LENGTH STATISTIC AND THE ESTIMATES OFJ .

In our experiment, we are interested in discovering de-
pendencies between the genes under the alcohol treatment.
Because we do not have training data to estimateJ1 for the
alcohol treatment, we take the following approach. We test
the hypothesis that the effects of alcohol and grape juice on
the genes are similar. Specifically, we test the null hypothesis
H0 : J1 = J2 whereJ1 andJ2 are theJ-values for alcohol
and grape juice respectively. The p-value for the above test
was found to be 0.4192. Because the p-value is fairly high,
we do not reject our null hypothesisH0.

We now detect dependent genes in the alcohol data set
using correlation screening at a false alarm rate of 0.01. We
again use two thresholds: the first threshold is determined
under the alternative hypothesisH1 : J1 = 1 and the second
threshold is determined under the null hypothesisH0 by using
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Figure 7. 3-dimensional projections of the Z-scores for the experimental beverage
data under each of the 4 treatments: alcohol, grape juice, water and wine (clockwise
from top left). For visualization the 22,283 variables (gene probes) were down sampled
by a factor of 8 and a randomly selected set of four samples in each treatment were
used to produce these figures. These projections show that the Z-scores are not uniformly
distributed on the sphereS2.

J1 = Ju, where Ju is the upper95% confidence interval
on J2. Determining the dependency adjusted higher screening
threshold usingJ1 = Ju reduces the number of false positive
gene pairs discovered at a desired false alarm rate as compared
to using the naive threshold determined by approximatingJ1
as 1. Using the valueJ1 = Ju to determine the screening
threshold in place of the approximationJ1 = 1 reduced the
number of discovered gene pairs from 671 to 468. This is
further illustrated via dependency graphs in Fig. 8(a) and
Fig. 8(b).

VI. CONCLUSION

Estimating the dependence measureJ is vital to choosing
appropriate thresholds in correlation screening problems. In
this paper, we introduced a simple kernel estimator and
developed asymptotic analysis of the bias and variance for
the estimator. We also established that the estimator converges
weakly to a normal distribution. We used our analysis of the
MSE to optimally choose free parameters in the estimator.
We subsequently used the central limit theorem to obtain
confidence intervals onJ and to test for independence of
the variates. We used the confidence intervals to test for
dependence between variables in simulated data sets and to
analyze interactions between email spam harvesters. Finally,
we used the estimate ofJ to determine screening thresholds
in correlation screening problems for achieving desired false
alarm rates. We applied our results on a gene expression data
set to detect dependencies between genes at a desired false
alarm rate.
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(a) Dependency graph at false alarm rate 0.01 using the approxima-
tion J1 = 1 to determine screening threshold. Spurious discoveries
using this naive screening threshold are shown in black.
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(b) Dependency graph at false alarm rate 0.01 using the value
J1 = Ju to determine screening threshold. Spurious false positives
are eliminated by using this lower screening threshold.

Figure 8. Dependency graph between 50 of the 22,283 genes in the data set under the
alcohol treatment. The genes are represented by the red dots. An edge between two genes
indicates that the corresponding gene pair under the alcohol treatment was discovered in
the correlation screening experiment at a false alarm rate of 0.01. Spurious discoveries
due to a naive lower screening threshold obtained by using the approximationJ1 = 1 are
eliminated by using a dependency adjusted lower screening threshold computed using
the upper95% confidence envelopeJ1 = Ju. The upper confidence levelJu was
determined using an independent set of gene expression dataunder grape juice treatment.
Using the dependency adjusted threshold in place of the naive threshold therefore helps
reduce the number of false positives that are discovered at any given false alarm rate.
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