A local dependence measure and its application to
screening for high correlations in large data sets

Kumar Sricharah Alfred O. Hero I, Bala Rajaratnam,

*Department of EECS, University of Michigan, Ann Arbor, M| 4@
TDepartment of Statistics, Stanford University, Stanfd@@d, 97331
Email: {kksreddy, herp@umich.edu, brajarat@stanford.edu

Abstract—Correlation screening is frequently the only practical In this paper, we propose an asymptotically consistent
way to discover dependencies in very high dimensional datdn  estimator forJ and determine the limiting distribution of our
correlation screening a high threshold is applied to the maix estimator to be normal. We use our estimate.oto test
of sample correlation coefficients of the multivariate data The ) . . .
variables having coefficients that exceed the threshold arealled for dependence between var!ablles and_ to determine suitable
discoveries and are classified to be dependent. The mean nuetb  Screening thresholds for achieving desired false alarmsrat
of discoveries and the number of false discoveries in corration in correlation screening problems. The rest of the paper is
screening problems depend on a information-theoretic mease  organized as follows: In Section 2, we introduce prelimiggr
J, a novel type of information divergence that is a function of anq gescribe the correlation screening procedure in Sectio
the joint density of pairs of variables. It is therefore important to . . . . .
estimate J in order to determine screening thresholds for desired 3. We |nt-r0duce the estl_mator of J _|n Section 4 ar!d provide
false alarm rates. In this paper, we propose a kemnel estimat for ~ asymptotic analysis of bias and variance of the estimater. W
J, establish asymptotic consistency and determine the asyrggic  also establish a central limit theorem for the estimator. We
distribution of the estimator. These results are used to mimize experimentally validate the results in Section 5. Furthaen
the MSE of the estimator and to determine confidence interva |\o |;se the theoretical results to obtain confidence inteival
on J. We use these results to test for dependence betweer&h 3 and sub | h fid . |
variables in both simulated data sets and also between email "€ Méasure J and subsequently use the confidence |nteryas
spam harvesters. Finally, we use the estimate of to determine {0 test for dependence between variables and to determine

screening thresholds in correlation screening problems wolving  thresholds in correlation screening. We conclude in Sactio

gene expression data. 6.
Keywords: Dependence measure, correlation screening,
Information theory, estimation, CLT. Il. PRELIMINARIES
. INTRODUCTION The asymptotic expressions for the mean number of dis-

beFoveries in correlation screening will be a function of save

Consider the problem of screening among a large nu o
b g g g P guantities introduced below.

of variables for those having significant correlations. fapées

of such high dimensional data sets include gene express'i&)n

arrays, traffic over the internet and multivariate finantirale '

series. Screening can be used to discover a small number dDefine theSpherical cap probabilityo be

variables which are strongly correlated to each other.ddde L

in high dimensional settings when the number of samplés Py(p.n) = an/ (1- uz)nT*‘ldu_

very small compared to the number of variablescreening p

out all but the highest sample correlations may be the Onv%erea is

practical approach to discovering such dependencies. "
Hero and Rajaratnam [4] showed that the threshold used 2I'((n —1)/2)

to screen the sample correlation matrix must be carefully Val((n —2)/2)

chosen due to an abrupt phase transitions phenomenon: when

the threshold falls below a certain critical value, the nemb The quantity P,(p,n)/2 is equal to_the proportional area

of discoveries increases rapidly. They further estabtisiat ©f the spherical capof radiusr = /2(1 — p) on S, . It

for |arge P the number of discoveries follows an asympi.s the probablllty that a Uniformly distributed pOIIII on the

totic Poisson-type distribution, with a mean parametercivhi Sphere lies in the pair of hyper spherical cones symmetric

depends on an information theoretic measurelf J were about the origin [8]. Application of the mean value theorem

known these asymptotic results could be used to select tRethe integral in the definition of spherical cap probapilit

screening threshold to control Type | error and specify pields the relation

values. However, in many practical exampléss unknown an 2\(n—2)/2 )

and must be estimated empirically. Polp,n) = m(l =) (1+0Q-p%).

Relevant definitions

ap = |Sn—2| =



For random variable®J and V with joint density fy; v on
Sn_2 X S,_o with marginalsfy and fy define

Pr (U= V|| <20-p))

PO(pvn) ’

Jp(fU,V =
and the limit

J(fuv) = gl_% Jp(fuv) = |Sn2|/s fuv(u,u)du.

The authors of [4] have shown that the number of dis-
coveries in correlation screening are related to the measur
J. The limit is equa| tol whenU andV are independent (&) Z-scores for multivariate sample with diagonal covarianrix.
and uniformly distributed Ol’ﬂn_g. Thus J(fU,V) “1isa The Z-scores are uniformly distributed over the unit sph&pe_».
measure of the deviation of the joint density from uniform
fuv(u,v) =[S, 2

We give an intuitive interpretation of (fy,v) as a measure
of dependence betwed, V. It is equal to the Bhattacharyya
affinity between the product of the marginal distributions
mu,v(w) = fu(w)fv(w) and the product of the conditional
distributionscy v (w) = fujv(wlw) fvju(w|w) :

J(fuv) = [Sn—2| / \/mU,V(w)CU,V(w)dw

1/2 1/2
< |Sn-2| (/ mU,V(w)dw) (/ cU,V(w)dw) ,
(b) Z-scores for multivariate sample with non-diagonal cowace

where equality occurs ifo V(U u) — fU (U)fU (U) matrix. The Z-scores are concentrated in clumps over thesphiere
. YA ) Sp_a.
The measureJ is maximized when fyv(u,u) = 2
fu(u) fv(u) and therefore measurémscal dependence along Figure 1. The z-scores associated with= 4 realizations of 1000 variables are—1-

H _ lement vectors that lie on the umit- 2 dimensional spher§,, —> . Shown are Z-scores
the dlagonalu - U'_ In cont_rast, the Shanpon Mi Capture%r a multivariate normal sample with diagonal and non-dizaj covariance structure.
global dependence information over the entire range, of In Pairs of Z-scores that are close to each other, as measurBddiiglean distance, have
correlation screening with a high threshold global depenyle Mgh associated sample correlations.

(MI) is not as relevant as local dependengy §ince only those

variables who are highly correlated will likely be discosér

covariancd be denotedy;; and theij-th entry of the sample

covarianceR ber;;.

) ) We now define the Z-score®{ = [U,,...,U,], U, €
LetX = [Xy, ..., X,]" be a vector of random variables withon—1 a5 follows. The Z-scores are constructed to lie on

meany andp x p covariance matrix:. Denote the correlation o (n — 2)-sphereS,_» € R"! and are determined by

i — —1/2 —-1/2 — diao: () i S
matrix I' = Dx ,/ EDs" /" whereDx = diagi(3i) S projecting away the components X orthogonal to the: — 1
the diagonal matrix of variances of componentXofAssume  §imensional hyperplana € R" : 1Tu=0,i = 1,...,p. The

thatn independent identically distributed (i.i.d.) samples0f 7_c.ores can be computed frof using a Gramm-Schmidt
are available and arrange these samplesrirkg data matrix procedure. The Z-scores satisfy the relation

B. Z-score representation

X=Xy, , X, = [X{yy, - X" R =uTU.
where X; = [Xy;,..., X7 and X = [Xa,...,Xip] Furthermore, the sample correlation betwéépand X; can
denote thei-th column and row, respectively, of. be computed using the inner product or the Euclidean distanc
Define the sample mean of théth column X% = between associated Z-scores
El Z;;l_in, the vector of sampl.e mean§(_ = CUTU. -1 U, — Uy2
[X1,...,X,], the p x p sample covariance matri§ = Fijg = Vi Y5 = 2 :
_ T i
(n — 1)_ X - X)" (X(;) — X), and thep x p sample  pajrs of Z-scores that are close to each other, as measured
correlation matrix by Euclidean distance, therefore have high associatedleamp
R = Dg/2SDg /2 correlation. The Z-score lives in a geometry, fhe-2)-sphere

of co-dimensionl shown in Fig. 1. It is well known that when
where Dg = diag;(S;;) is the diagonal matrix of compo-the rows of the data matri’ follow a diagonal elliptical
nent sample variances. Let thig-th entry of the ensemble distribution the Z-scores are uniformly distributed.$n > [1].



In the case of non-diagonal elliptical distributions the V. ESTIMATION OF J

distribution of the Z-scores over the sphéte > will generally Consider @ dimensional joint density, v, defined on

be far from uniform (Fig. 1). The Z-score representations gfn_Q X ... % Sn_». Now define the average pairwise density
the sample correlation will be a key ingredient for deriving

the asymptotic results in this paper. 1 o s
ymp Pap fove (0v) = ——=3"3" (fis 0, (w0)).
plp—1) = =
We are interested in estimating fu u._) from a single

Consider an experiment to compapevariables under a sample[Uy, ..., U,] which is drawn from the joint density
treatment, calleX. This experiment produces the data matriXu.....,u,- Note that
X, which is an x p matrix. From this data matrix, extract the 1 p P
Z-score matrix{. We then construct the sample correlation J(fuu., )=—— ZZ J(fu,u,)-
matrix R = U"U. plp—1) i
We are primarily interested in the case << p so that In order to estimate/(fy u. ), we build an uniform

th_e matri_x will be rank deficient. L_et t_hej'_th element of kernel estimator/, which we describe below. We will show
this matrix be denoted as;. The quecnve Is to screen th_ethat the estimatot/ is asymptotically unbiased and consis-
p variables for those whose maximal magnitude correlathgm_ Finally, we will show that the estimator, when suitabl

excgeds a gven threshojd Spemﬁcglly, fori,j=1,...,p, normalized, converges weakly to a normal distribution.
the i-th variable passes the screemibix;; |ri;| > p.

For this test a discovery is declared if an indepasses the A. Estimate ot/
screen and we denote by, the total number of discoveries. For variable sizep and corresponding screening thresh-
In previous work done by one of the authors, it was showsid p, let p, be the estimation threshold which satisfies (i)
that the number of discoveries satisfy the following proisr lim,,_, .. p, = 1, and (ii) lim,_ (1 — p)/(1 — ps) = 0.
Assume that the correlation threshpldepends on the number  Define A(r,v) = C(r,v) U C(r, —v) to be the union of

IIl. CORRELATION SCREENING

of variablesp as spherical cap regions centeredwatind —v with radiusr =
. 2 (22 V2(1 — ps). Let b;; denote the event thdll; € A(r,U;).
Jim p(p = 1)(1 = p%)" =dy Note that there arg(p — 1)/2 distinct combinations ofi, ;}.

Therefore the cardinality of the s&= {b;;,i < j} is p(p —
for some finite constant,,. Then the expected number ofl)/2.

discoveries satisfy We sample from the séf without replacement to obtain a
finite sequence of random variables= {vi,va,..., v},
1Lm E[N] = knJ(fu u._ ), (1) wherem = p(p — 1)/2. We now define our estimator of
pP—>00

Jy(fu.u._ ) to be

wherer,, = and,/(n—2), frv(u,v) = (1/2)(fu,v(u,v)+ 1 Lo
fuv(u,—v)) and J=or" | =) v . 3
Po(ps,n) \ m ; ®)
1 p_ P i .
fuu. (uwv) = m ZZ (fUi,Uj (Uav)) ) B. Intuition ) ) )
pp i=1 j#i Before stating the theoretical results, we provide some

_ ) intuition behind the requiremerit — p)/(1 — ps) — 0 which
is the average Z-score. Furthermore, under a suitable wepdnslates to the condition that the estimation threshgld
dependency condition [4], the variabl€ also satisfies the gpproaches 1 slower than the screening threspold

following Poisson-type limit The conditionp, — 1 guarantees that the radius =
. a2 v/2(1 — ps) of the regiorjA(r, v) decays ta0, which in turn

pILH;O Pr(N>0)=e ) (@) implies that the bias of/ should decay to 0. On the other

hand, the conditiorp, — 1 slower thanp — 1 guarantees
whereA = k,J(fu u._ ) is the limiting mean. that the average number of poiri; which fall in A(r, U;)

Contribution: We note that when the variables are indegrows toco asp — oo, which implies that the variance should
pendent, the value of is identically equal tal. For variables decay to O.
which are weakly dependent, Hero et.al. [4] use this fact to For notational convenience, henceforth denBiép;, n) by
determine screening thresholds for desired false alaresraf’,. Note thatP, = -%=-(1 — p?)("=2/2(1 + O(|1 — p|?)),
using Eq. 2 by approximating the valueas 1. However, if which implies thatp(p — 1)P, — and,/(n — 2), asp —
the dependency is stronger, the valueJotan significantly oo. Also let p, correspond tops according to the relation
differ from 1 and it therefore becomes vital to estimate lim, . ps(ps — 1)(1 — p2)("~2/2 = d,,. Thenp, satisfies
to determine screening thresholds. The rest of this paperthe following conditionsps/p — 0, 1/ps — 0 asp — oo.
concerned with the estimation of. We will now state results on the bias, variance and asynptoti



distribution of the estimator/. The proofs for these results 2) r-sparse case: We consider the more realistic scenario
can be found in our technical report [9]. when only a small fixed numberof thep variates are strongly
C. Bias correlated and the rest are weakly correlated. This imjtiat

i ) ) o the corresponding Z-scores of the- » uncorrelated variables
Define the maximal gradient of the average pairwise density,, fairly uniformly distributed on the spheé, », which in

to be turn implies thatvVAM/ = O(1/p). In this case, the squared
VM= sup |[Vofu v, (t0)]uzsl|. bias is O(p,~*/("=2)p~1) and is clearly dominated by the
u,0€Sn 2 variance. Also notice that thissparse setting implies >> 1.
The bias of is bounded by ghis_implgaz thr?t the overall (lj\/ISE foa;;;Qe/ r;ipaor?;:‘/c?se is
. ominated by the variance and is given p°)+ D).
2 s
|E[J] = J(fu. u._ )| <20, VM\/2(1 = ps) In this scenario, our analysis shows tipatshould be chosen
2 n
1\ 72 to be as small as possible.
=2v2a2d2"VM <—) (1+o(1), (4 P
Ds F. Asymptotic distribution
which implies that the estimatak is asymptotically unbiased. ~ Since the set of random variablgs = {vi,va,..., v}
D. Variance are exchangeable [6] fo_r evepy we can assume Fhat =
Defi {v1,va,...,v,,} are a finite segment of an infinite length
efine exchangeable sequence. Consider the normalized version of
our estimator/ given b
M = [_C“_fg \/V[ij|Ui(Ui|Ui)]V[kaUi(Ui|Ui)]] : g y
#i7k j o J - J(fU.yU*—.) (6)
Also define,  (ps/0) V2T (o 0.2 ) Fn
Okt = fuius 00, (W 4, Uk, ) We will show that.J is asymptotically normal in distribution.
—fu.u, (uis ug) fu, o, (e, w), SetX; = P,(ps,n)~'v; and consider the sum
and " X; — E[X,] m
Sp=vm)y ————=-=Vm) Y,
5p = -;fﬁg# < sup |5ijkl|> ; ? ; Vv VI[X,] ;
17] Ui Uj, Uk, UL

and further assumé, — 0 asp — oo. Specifically, letd, = where Y’ are the normalized exchangeable

O(1/p*) for somea > 0. The variance of/ is then bounded random  sequence (X; - E[X])/\/V[X].  Be-
oy cause |J(fu.v. ) ~ Jp(fou. )|~ 0 and
| VIXil/m — (ps/p)*2J(fu u._)/kal — 0, it follows
T 9 - . that J has the same asymptotic distribution &8s We will
VI = (Polpsn) ™V [(1/m)2“] now show thatS, converges weakly to a standard normal
= distribution.
_ -2 .
= ((Polps;n)) Q/m) Vivi] From our analysis of the variance dfand using the fact
+(Po(ps;n)) " (1 = 1/m) Clvy, vo thatb;; are binomial, we see that the correspondifigatisfy
2J ? _
< (fin*) (%) (1+0(1)) ClY1,Ys] = (P, k) /(P2 (fu.v._))) Clvi, V2] = 0,

oM /1 ) asp — oo. Itis similarly possible to show tha&[Y;2, Y 5% —
(T (‘) + an5p) (I+0o(1)), (3 0asp— oc. Then, using our central limit theorem for asymp-

: . totically uncorrelated interchangeable processes (Hmed.
and the variance of our estimator tendstasp — oo.

[10]), it follows that
E. Opt|m|zat|on. of MSE | . lim Pr{J <a} = lim Pr{S, < a} = 6(0), (7)
Note that our intuition behind choosirtg—p)/(1—ps) — 0 P00 p—00
is verified by our expressions for the MSE. approaches  whereg(.) is the distribution function of a Gaussian random
slower tharp, which then implies that, /p — 0, which inturn - yariable with mea and variance. Bounds on the Wassertein

implies that our estimator is consistent. We will now optimi gistance between the distribution.fand the standard normal

the choice ofp, for minimum MSE. o distribution can be found in [10].
1) General case:: When all the variates are significantly
correlated, VM = O(1) which implies that the bias is V. EXPERIMENTS

O(p;2/<”‘2>). We note that the overall MSE is then given by The first set of experiments deal with verifying the theoret-
O(ps~4 =2 4 O(p? /p?) + O(1/p) + O(1/p®). Optimizing ical results on bias, variance and asymptotic distribufimn
this expression ovep, gives the relatiop, = O(p*~2/")  the estimatoy/. In the second set of experiments, we use these
which then gives the optimized M.S.E to W@(p~*/™) + results to test if the hypothesi, : J = 1 holds, i.e., if the
O(1/p) + O(1/p®). variates are independent.Jf= 1, we can then use the theory
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Figure 2. Variation of experimentally observed MSE of and theoretical bound
with varying ps foran = 10, p = 1000, » = 5 multivariate normal sample. The

MSE indeed decreases with decreasingas predicted by our theory in Sec. IV-E2. Figyre 3. g-q plot of normalized quantiles of and standard normal quantiles. The

Furthermore, there is good agreement between the predittedd and the observed jinear agreement between the quantiles corroborates aasymptotic distribution of
MSE for p, > 10 (see Sec. V-A for explanation.) 7 is indeed standard normal.

in [4] to set appropriate thresholds for false alarm ratéee TB- Test for independence

third set of experiments deal with thesparse scenario, i.e. In this set of experiments, we are interested in verifying
J # 1. In this case, we show that using our estimateJof if the variates in a given data set are independent or not,
to determine screening thresholds for desired false alatesr i.e. to test if J = 1. We first consider two training data sets:
works better than using the approximatién= 1. (i) a multivariate normal sample where all the variates are
independent, and (b) a multivariate normal sample where a
fraction of 5% of the variates are dependent. We showdhig
confidence intervals od for increasing dimensiop for these

two cases in Fig. 4(a) and Fig. 4(b) respectively. As exmkcte
the confidence intervals tightly sandwich arouhe- 1 in the

A. Verification of theory

We simulaten = 10 i.i.d. samples from a multivariate
Gaussian distribution withp = 1000 where all butr = 5 f q | in th q
variables are uncorrelated. Clearly, this situation cpemds 'St case and a valug > 1 in the second case. ~
to the r-sparse scenario in Sec. IV-E2. In the first experimen Given the above result, we use the central limit theoreth of
we vary p, from 1 to 1000 and compare the experimentally[0 determine the p-vall.lt()e that-the hypothlths: Jh:;fholds.
observed M.S.E. and the theoretically predicted bound en /€ 9enerate 2 sets abo training samples each of = 10
M.S.E. This is shown in Fig. 2. 1I.d. samples from a multivariate Gaussian distributioithw

. . R 1000 with all the variates being independent in the first

As predicted by our theoretical bound, the MSE decreases, dr . beina d dent in th d h

with decreasingp, in this r — sparse case (Sec. IV-E2) Set alm - 5\/Iar|ates e'r:'g eper;]_ent n t e.sef:(_m ss(et). T g
s : : " resulting p-values are shown in histograms in Fig. 5(a) an
Furthermore, we see that there is close agreement betweenr_(f;}é' 5(b) respectively. In the case of independent varjatés

thegrelté)ca_:_ht?gucn;n abned et:ela?rz(ggnbmeglgile:\\ﬂﬂ?wlz tlﬂatth% rr(lazgr"%? the training sets have p-value less than 0.01. On the other
Ps : P y 9 gﬁand,QO% of the training sets have p-value less than 0.01 in

2 .
values ofp,, the.term(zii(fU*U**-)/'{”) (ps/p)” dominates thle dependent variates scenario. The estindatan therefore
the MSE and this term is exact. On the other hand, for smal e ST . .
e used as a test statistic to determine if all the variates in

values ofp,, the MSE is dominated by the upper bound. :
given sample are independent or not.
2M /3p.
Alternative estimator:From Eq. 1 (proposition 1 in [4]), C. Correlations between spam harvesters

one can propose the following alternative estimator for  In this experiment, we analyze email spam data collected
J = 2N/and,, where N is the number of discoveries atvia Project Honey Pot [7], a web-based network for moni-
thresholdp. We note that the estimatdrfor p; = pisidentical toring harvesting and spamming activity by using trap email
to J. From our theory in Sec. IV-E2 and the correspondingddresses. Project Honey Pot is a distributed system for
simulation results in Fig. 2, we see that the MSE performangsonitoring harvesting and spamming activity via a netwdrk o
of J is indeed significantly worse when compared.tdor decoy web pages with trap email addresses, known as honey
small values ofp;. pots. For every spam email received at a trap email address,

In our next experiment, we fixp; and obtain repeatedthe Project Honey Pot data set provides us with the IP address
estimates ofJ and use these to obtain a g-q plot of thef the harvester that acquired the recipientas email addre
quantiles ofJ. The g-q plot in Fig. 3 shows that the asymptotic We are specifically interested in studying the correlation
distribution of J is indeed standard normal. between harvesters in a given month. Using data from Project
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(b) 95% confidence intervals on/ for dependent variates. The

confidence intervals sandwich a valie 1 (b) Histogram of p-values for dependent varia®% of the p-values

are below 0.01.

Figure 4. Confidence intervals o with increasing dimensiom. The confidence
intervals for independent and dependent variates sandavishnd values/ = 1 and

J # 1 respectively. For sufficiently large dimensipnthe estimated confidence intervals
can therefore be used to tightly bouddwith high probability.

Figure 5. Histograms ofp-values for the hypothesis testing probleiy, : J = 1.

A very small fraction of p-values are smaller than 0.01 in itrdependent variates case
as opposed to a fraction 6f0% in the dependent variates case. The statigtican
therefore be used to test for independence of the variates.

— Upper 95% confidénce intervél
— Estimate of J N

Honey Pot, for each of the 24 months between January 2(C . Lower 95% confidence intervals

and December 2007, we build a coincidence matrix where t
columns correspond to harvesters and the rows correspon -2 8 |
each day of the month. Each entry in the matrix therefo
corresponds to the number of emails collected by a particu
harvester in a given day of the month.

w

[N
T
L

OCJ

We treat the number of emails harvested on each day
be independent and identically distributed, i.e. we treathe
coincidence matrix as a x p data matrix X, where the
dlmenSIOI’]p is the number of harvesters ands the number Figure 6. Dependence measuré between harvesters for each of the 24 months

between January 2006 and December 2007 with confidencevaigehe dependence
of days ina glven month. The average number of harveSt@{e%sure indicates increasing co-ordinated harvestesitgatiith time.
each month is approximatefy,,, ~ 1500. We now estimate
the dependence measurefor each of the 24 months along

with 95%confidence intervals. This is shown in the Fig. 6. D. Correlation screening for dependent variates

5 10 15 20 25
Months

A stronger dependence measuréndicates greater correla- In [4], the authors used the Poisson-type limit in Eq. 2 to
tion among the harvesters, which can be viewed as an indicaget screening thresholds for desired false positive rateslo
of more co-ordinated harvesting activity. Our premise iglpa so, the authors use examples where the data sets are sparsely
corroborated by the fact that there is a increase in hanvestependent and subsequently approximate the valuelf 1.
dependence in October 2006 (corresponding to time point 10in our first experiment, we use this limit in Eq. 2 and the
in Fig. 6) which coincides with media reports [2] suggestingalue of J/ = 1 to determine screening thresholds in & 10,
that there was a spam outbreak in October 2006. p = 1000 multivariate normal sample where all the variates



are independent. There is very good agreement between itidependent days undet = 4 treatments: intake of alcohol,
desired and observed false alarm rates as shown in Tablgrhpe juice, water, or red wine. After removing samplesnake
Next, we consider two sets ofra= 10, p = 1000 multivariate at pretreatment baseline (time 0) there remaimed= 87
samples distributed over the treatmentsras= 20 (alcohol),

False alarm rates for independent variatéss 1 ng = 22 (grape juice);ns = 23 (water), andn, = 22 (wine).

Desired | .20 | .10 | .05 | .02 01 Fig. 7 gives a visualization of the Z-scores for each treat-

Observed| .18 | .111] .043| .016| .010 ment in the training data. Observe that the Z-scores display
Table | non-uniformity on the spher&,. Using the results in this

DESIRED AND CORRESPONDING OBSERVED FALSE ALARM RATES IN CORRATION paper, we are able to characterize this non-uniformity by
SCREENING EXPERIMENT FOR INDEPENDENT VARIATESTHRESHOLDS ARE estimating,]i, Z — 17 2’ 374 from the data and Subsequently
DETERMINED USING THE VALUE J = 1. THERE IS GOOD AGREEMENT BETWEEN o
DESIRED AND OBSERVED FALSE ALARM RATES determining the p-value that the hypothedis : J; = 1
holds. Under the r-sparse assumption in Sec. IV-E2, therlowe
and uppen5% confidence intervald;, J, for each of thet
normal samples where = 5 of the p = 1000 variates are treatments is shown in Table Il below.
dependent. In previous experiments, we have shown that thgor comparison, we also compute the lenitiST) of the
value of J significantly differs from1 in this case. The first minimal spanning tree graphs constructed on the Z-scores,
data set is used as training sample to estimatéVe now which is a test of randomness [5] of the Z-scores. The length
repeat the correlation screening experiment on the secatad tbf the MST graphs were normalized by the corresponding
set, with two sets of thresholds - the first set of threshotds aviST lengths on Z-scores of independent variatessgn » to
determined with the valug = 1 and the second set of valuesaccount for the different dimension — 2 of the 4 treatments.
are determined by the upp®b% confidence interval o/  From the results in Table Ill, we can infer a monotonic
as determined previously in Fig. 4(b). Using the uppg¥% relationship between the MST lengths and the confidence
confidence interval,, should guarantee that the observed falsatervals on.J;. Furthermore, we found the p-values that the
rate is always less than or equal to the desired false alden rgyypothesisH; : J; = 1 is true and the p-values based on
The desired and corresponding observed false alarm raesminimal spanning tree lengths that the hypothesis: 'the Z-
shown in Table Il. We see that the observed false alarm ratg®res are a uniform draw afi,, o’ holds to be extremely
small(~ 10~19). Itis clear from these results that the Z-scores
are not uniformly distributed on the sphergs, _».

False alarm rates for r-spare variatds; 1
Desired 20| .10 | .05 | .02 | .01
Observed { =1) | .300| .180 | .063| .033 | .020
Observed { = J,) | .216| .123| .043 | .026 | .013

95% confidence intervals od for gene expression data
Treatments | MST length | Lower level (/;) | Upper level (/.

Table 1 Alcohol 0.81 1.87 1.88
DESIRED AND CORRESPONDING OBSERVED FALSE ALARM RATES IN CORRATION _
SCREENING EXPERIMENT FOR RSPARSE VARIATES THRESHOLDS ARE DETERMINED Grape Juice 0.76 1.81 1.83
USING (1) J = 1 AND (II) J = J,,. WHILE THERE IS GOOD AGREEMENT BETWEEN Water 0.73 2.01 2.03
DESIRED AND OBSERVED FALSE ALARM RATES USINGJ = .J,,, THE OBSERVED -
FALSE ALARM RATES WITH THRESHOLDS USINGJ = 1 ARE SIGNIFICANTLY HIGHER Wine 0.69 2.50 2.52

THAN THE DESIRED RATES USING THE DEPENDENCY ADJUSTED THRESHOLDS WITH Table 1l

J = Ju THEREFORE HELPS REMOVE SPURIOUS FALSE POSITIVE DISCOVERIE NORMALIZED MST LENGTHS AND 95% CONFIDENCE INTERVALS ON DEPENDENCE

MEASURE J FOR EACH OF THE4 TREATMENTS. THERE IS GOOD AGREEMENT
BETWEEN THEMST LENGTH STATISTIC AND THE ESTIMATES OFJ.

are significantly higher than the desired rates when setting
thresholds using the approximatioh = 1. On the other ) ) o )
hand, there is very good agreement between the desired anl) OUr experiment, we are interested in discovering de-
observed false alarm rates when setting the screenindiices Pendencies between the genes under the alcohol treatment.
using the upped5% confidence interval,. Using dependency Because we do not have training date_t to estimatdor the
adjusted thresholds determined by usihg: J, helps remove alcohol treatment, we take the following approach. \_N(_e test
additional false positives that are otherwise discoveragnw the hypothesis that the effects of alcohol and grape juice on
screening at thresholds determined by using the approximattn€ genes are similar. Specifically, we test the null hypsithe

J = 1. This result underlines the contribution of this paper. 1o : J1 = J2 where.J; and J, are the/-values for alcohol
and grape juice respectively. The p-value for the above test

E. Correlation screening on gene expression data was found to be 0.4192. Because the p-value is fairly high,
We applied the correlation screening theory to a datasee¢ do not reject our null hypothesi,.

downloaded from the public Gene Expression Omnibus (GEO)We now detect dependent genes in the alcohol data set

NCBI web site [3]. The dataset consists of 108 Affymetrixising correlation screening at a false alarm rate of 0.01. We

HU133 Genechips containing p = 22, 283 gene probes ggain use two thresholds: the first threshold is determined

bridized from peripheral blood samples taken from 6 indiinder the alternative hypothests, : J; = 1 and the second

viduals at 5 time points (0,1,2, 4 and 12 hours) on fouhreshold is determined under the null hypothdsisby using



2 scores for grapeuice(2)

2 scores for alconol(1)

(a) Dependency graph at false alarm rate 0.01 using the appaexim
tion J; = 1 to determine screening threshold. Spurious discoveries
using this naive screening threshold are shown in black.

1

0.8

0.6

0.4r

0.27

Figure 7. 3-dimensional projections of the Z-scores for the expent@ebeverage 0
data under each of the 4 treatments: alcohol, grape juictervead wine (clockwise 0
from top left). For visualization the 22,283 variables (ggrobes) were down sampled .
by a factor of 8 and a randomly selected set of four samplesaah éreatment were (b) Dependency graph at false alarm rate 0.01 using the value
used to produce these figures. These projections show tha@tsicores are not uniformly J1 = Ju to determine screening threshold. Spurious false positive
distributed on the spher§s. are eliminated by using this lower screening threshold.

Figure 8. Dependency graph between 50 of the 22,283 genes in the datader the
alcohol treatment. The genes are represented by the redAdpesige between two genes

J1 = J,, whereJ, is the upper95% confidence interval indicates that the corresponding gene pair under the altafaiment was discovered in
. he d d di d high the correlation screening experiment at a false alarm ra@0d. Spurious discoveries
on J2- Determlmng the ependaency al JUSte Igher screenifig « a naive lower screening threshold obtained by usimgpproximation/; = 1 are

threshold using]1 = J, reduces the number of false positiv@liminated by using a dependency adjusted lower screehimgghold computed using
irs di d desired fal | d the upper95% confidence envelopg; = J,. The upper confidence level,, was
gene pairs discovere at a desired false alarm rate as ce P&Ltermined using an independent set of gene expressioniaida grape juice treatment.

to using the naive threshold determined by approximaﬂpg Using the dependency adjusted threshold in place of theerthieshold therefore helps
. . . — reduce the number of false positives that are discoveredyagiaen false alarm rate.

as 1. Using the valug/; = J, to determine the screening

threshold in place of the approximatioh = 1 reduced the

number_ of discover_ed gene pairs from 67; to _468' This 8 ithors would like to thank Kevin Xu for collecting the email
further illustrated via dependency graphs in Fig. 8(a) a%am data.
Fig. 8(b).
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