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ABSTRACT

Surveillance for multi-target detection, identification and
tracking is one of the natural problem domains in which parti-
cle filtering approaches have been gainfully applied. Sequen-
tial importance sampling is used to generate and update esti-
mates of the joint multi-target probability density for the num-
ber of targets, their dynamical model, and their state vector.
In many cases there are a large number of degrees of freedom
in sensor deployment, e.g., choice of waveform or modality.
This gives rise to a resource allocation problem that can be
formulated as determining an optimal policy for a partially
observable Markov decision process (POMDP). In this paper
we summarize approaches to solving this problem which in-
volve using particle filtering to estimate both posterior state
probabilities and the expected reward for both myopic and
multistage policies.

1. INTRODUCTION

This paper describes an application of particle filtering meth-
ods to the sensor management problem. Sensor management,
as defined here, refers to the process of automatically choos-
ing the best action (e.g., pointing direction, waveform, mode)
for a collection of agile sensors at each time epoch for the
purposes of providing surveillance. In our setting, a surveil-
lance region consists of an unknown number of targets with
unknown positions, velocities, movement modes, and iden-
tification. The sensor management problem studied here is
therefore one of directing sensor actions over time so as to
generate the best estimate of target number and state.

Our method of sensor management directs sensing assets
to take actions that are expected to maximize information
flow. Maximizing information flow is a flexible method that
simultaneously captures many relevant surveillance goals, in-
cluding detection, tracking, mode estimation, and identifica-
tion. In fact, it can be shown that a closely related method
bounds any task driven metric [1].
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The key enabling element is an on-line recursive estima-
tion of the joint multitarget probability density (JMPD), which
is done using particle filtering methods. In order to choose
actions that result in maximal information flow, one needs to
construct a probability density that captures the knowledge of
the surveillance region provided by the measurements made.
This probability density then allows prediction of what ac-
tions will be valuable as measured by information flow. The
correct probability density for this setting is the JMPD, which
is a very high dimensional non-parametric object. It is this
density which is estimated using particle filtering methods.
Due to the high dimensionality of the JMPD, efficient impor-
tance density design is of paramount importance.

This paper proceeds as follows. In Section 2, we define
the JMPD and describe the temporal evolution and measure-
ment update. In Section 3, we describe the particle filter im-
plementation which uses an adaptive importance density tai-
lored to our particular problem. We highlight the novel char-
acteristics of this problem which allow for an efficient im-
plementation, which relies on adaptively factoring the den-
sity when permissible and using biassed sampling techniques
that preferentially place particles in important regions of state
space. Next, in Section 4, we describe how methods from
information theory are combined with the JMPD to choose
action sets that maximize information flow. We first describe
single sensor myopic methods, and then show the extensions
to multisensor and non-myopic methods. Section 5 presents a
simulation showing the efficacy of the method. Finally, Sec-
tion 6 provides some concluding remarks.

2. THE JMPD

Estimation of the joint multitarget probability density (JMPD)
is a Bayesian method of fusing models of target behavior, sen-
sor capability, and actual measurements into a single picture.
In this sense, the JMPD captures all of the uncertainty about
the surveillance region. Others have studied related methods
based on Bayesian reasoning, e.g., the work in [2, 3]. This
section and the following are abbreviated versions of [4].

The joint multitarget probability density (JMPD)
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is the probability density for exactly T targets with states
x1,x2, ...xT−1,xT at time k based on a set of past obser-
vations Zk. The JMPD is a continuous discrete hybrid as it is
a product of the probability mass function p(T k|Zk) and the
probability density function p(xk

1 ,xk
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T−1,x
k
T |T k,Zk).

The number of targets at time k, T k, is a variable esti-
mated simultaneously with the states of the T k targets. The
JMPD is defined for all T k, T k = 0 · · ·∞. The observa-
tion set Zk refers to the collection of all measurements, i.e.
Zk = {z1, z2, ...zk}, where each of the zi may be a single
measurement or a vector of measurements from time i.

Each xt in p(xk
1 ,xk

2 , ...xk
T−1,x

k
T , T k|Zk) is a vector quan-

tity and may (for example) be of the form [x, ẋ, y, ẏ]. For
convenience, the JMPD will be written more compactly in
the traditional manner as p(Xk, T k|Zk), which implies that
the state-vector Xk represents a variable number of targets
each possessing their own state vector. We will omit the time
subscript k when convenient and no confusion will arise, and
e.g., write simply p(X, T |Z).

The likelihood p(z|X, T ) and the JMPD p(X, T |Z) are
conventional Bayesian objects manipulated by the usual rules
of probability and statistics. Thus, a multitarget system has
state X = (x1, · · · ,xT ) with probability distribution given
by p(X, T |Z). This can be viewed as a hybrid stochastic sys-
tem where the discrete random variable T governs the dimen-
sionality of X. The normalization is therefore

∞∑
T=0

∫
dXp(X, T |Z) = 1 , (2)

where the single integral denotes the T integrations required.
The temporal update of the posterior proceeds according

to the usual rules of Bayesian filtering. The model of JMPD
time evolution is given by p(Xk, T k|Xk−1, T k−1) and will
be referred to as the kinematic prior (KP). The kinematic prior
includes models of target motion, target birth and death, and
any additional prior information that may exist such as terrain
and roadway maps. In the case where target identification is
part of the state being estimated, different kinematic models
may be used for different target types. Multiple models are
also possible [5]. The time-updated (prediction) density is
computed via the model update equation as

p(Xk, T k|Zk−1) = (3)
∞�

Tk−1=0

�
X

dXk−1p(Xk, T k|Xk−1, T k−1)p(Xk−1, T k−1|Zk−1)

The measurement update uses Bayes’ rule to update the
posterior density with a new measurement zk as

p(Xk, T k|Zk) =
p(zk|Xk, T k)p(Xk, T k|Zk−1)

p(zk|Zk−1)
. (4)

3. PARTICLE FILTER ESTIMATION OF THE JMPD

The sample space of the JMPD is very large since it contains
all possible configurations of state vectors xt for all possible

values of T . Thus, to estimate the JMPD in a computationally
tractable manner, a sophisticated approximation method is re-
quired. This section describes our particle filter implementa-
tion with special attention given to the adaptive importance
density that allows tracability.

3.1. Notation

In particle filtering, the probability density of interest (here
the JMPD) is represented by a set of Npart weighted samples.
Here, a particle is more than just the estimate of the state of
a target; it incorporates both an estimate of the states of all of
the targets as well as an estimate of the number of targets.

The multitarget state vector for T targets is

X = [x1, x2, ..., xT−1, xT ] , (5)

and particle p will be written as

Xp = [xp,1, xp,2, . . . xp,Tp ] , (6)

which says particle p estimates there are Tp targets, where Tp

can be any non-negative integer. With δD denoting the Dirac
delta, we define

δ(X − Xp) =
{

0 T �= Tp

δD(X − Xp) otherwise
(7)

Then the particle filter approximation to the JMPD is given
by a set of particles Xp and corresponding weights wp as

p(X, T |Z) ≈
Npart∑
p=1

wpδ(X − Xp) (8)

where
∑Npart

p=1 wp = 1.
The JMPD is defined for all possible numbers of targets,

T = 0, 1, 2, · · · . As each of the particles is a sample drawn
from the JMPD, a particle may estimate 0, 1, 2, · · · targets.
Here, different particles in the approximation may correspond
to different estimates of the number of targets.

3.2. Multitarget SIR

With these definitions, the SIR particle filter extends directly
to filtering with the JMPD. The method is to simply proposes
new particles at time k from the particles at time k − 1 by
projecting through the kinematic prior. This model includes
both the dynamics of persistent targets and the model of how
targets enter and exit the surveillance region. Specifically, tar-
gets entering or leaving the surveillance region are accounted
for as the proposed particle Xk

p may have either fewer tar-

gets or more targets than Xk−1
p (i.e. T k

p = T k−1
p − 1 or

T k
p = T k−1

p + 1). The weight update is simply

wk
p = wk−1

p p(zk|Xk
p) . (9)



3.3. The Inefficiency of the SIR Method

The SIR particle filter has the benefit of being simple to de-
scribe and easy to implement. However, the SIR is so numer-
ically inefficient that multitarget problems are intractable.

Assume for discussion that the sensor is pixelated, return-
ing energy in one of C sensor cells. Target birth may occur
in any unoccupied cell at any time step. Target death may
occur in any occupied cell at any time step. One method of
handling this would be to have a very large number of par-
ticles, capable of encoding all possibilities of the next state,
i.e. no new target, one new target (in each of the possible
unoccupied cells), two new targets (in each possible pair of
unoccupied cells), etc. and likewise with target removal. This
must still retain the particle diversity required for efficient fil-
tering. This method requires an enormous number of particles
even with a first-order approximation that at most one target
enters or leaves the region at each time step.

Furthermore, even with no birth and death, target propos-
als using the kinematics are too inefficient to be useful on
multitarget problems. Consider the case where there are T
targets in the surveillance region. In order for a particle to be
a good estimate of the multitarget state, all T targets must be
proposed to good locations. Without knowledge of the mea-
surements, the probability an individual target is proposed to
a good location is much less than 1. Therefore, as the number
of targets grows, the number of particles required to perform
good tracking with high probability grows exponentially.

Both of these problems are remedied via an importance
density that more closely approximates the optimal impor-
tance density (i.e., uses current measurements to direct pro-
posals to higher likelihood multitarget states). In the follow-
ing subsections, we describe the importance density.

3.4. Importance Density Design for Target Birth/Death

In order to reach the efficiency required for tractable detec-
tion of multiple targets, we advocate a measurement directed
sampling scheme for target birth and death. Specifically, we
keep an existence grid (separate from the particles and tied to
the sensor grid) which contains the probability that a single
target is in cell i at time k given the measurements. There-
fore, the existence grid is merely a single vector of floating
point numbers, one for each sensor cell.

The existence grid cells are initialized with a prior prob-
ability which may be spatially varying. The probability of
target existence in each cell is propagated forward via an addi-
tion/removal model analogous to the target motion model, and
updated with new measurements according to Bayes’ rule.

To handle target birth, new targets are preferentially added
in locations according to the rate dictated by the existence
grid. This bias is removed during the weight update process
so that the Bayesian recursions are still exactly implemented.
This implementational technique allows particles to be used

more efficiently as new targets are only added in highly prob-
able areas. Target death is handled analogously by removing
according to the existence grid.

3.5. Importance Density Design for Persistent Targets

The kinematic prior does not take advantage of the fact that
the JMPD state vector is made up of individual target state
vectors. In particular, targets that are far apart in measurement
space behave independently and should be treated as such.
Furthermore, similar to that of the uniformed birth/death pro-
posal, the current measurements are not used when proposing
new particles. These two considerations taken together result
in an inefficient use of particles and therefore require large
numbers of particles to successfully track.

To overcome these deficiencies, we use a technique which
biases the proposal process towards the measurements and al-
lows for factorization of the multi-target state when permis-
sible. These strategies propose each target in a particle sepa-
rately, and form new particles as the combination of the pro-
posed targets. We describe the use of two methods here, the
independent partitions (IP) method of [6] and the coupled par-
titions (CP) method. The basic idea of both CP and IP is to
construct particle proposals at the target (or group-of-targets)
level, incorporating the measurements so as to bias the pro-
posal towards the optimal importance density. This biased
sampling is removed in the weight update stage. Therefore
the Bayes recursions are still exactly implemented. We advo-
cate an adaptive partition (AP) method which automatically
switches between the two as appropriate. All of the methods
are performed only on the persistent targets, and the algorithm
is done in conjunction with the addition and removal of tar-
gets as described in the preceding section.

3.5.1. Independent-Partition (IP) Method

The independent partition (IP) method given by Orton [6] is
a convenient way to propose particles when part or all of the
joint multitarget density factors. As employed here, the IP
method proposes a new target as follows. For a target t, each
particle at time k − 1 has it’s tth partition proposed via the
kinematic prior and weighted by the measurements. From
this set of Npart weighted estimates of the state of the tth

target, we select Npart samples with replacement to form the
tth partition of the particles at time k.

With well separated targets, this method allows many tar-
gets to be tracked with the same number of particles needed to
track a single target. Indeed, in the case of well separated tar-
gets, the multitarget tracking problem breaks down into many
single-target problems. The IP method is useful for just this
case, as it allows the targets to be treated independently when
their relative spacing deems that appropriate. Note, however,
that applying this method on a target by target basis is not
appropriate when there is any measurement-to-target associa-



tion ambiguity. Therefore, when targets are close together in
sensor space, an alternative approach must be used.

3.5.2. Coupled Partition (CP) Proposal Method

When the posterior distributions on target position begin to
overlap, we say that the corresponding partitions are coupled.
In these instances, another method of particle proposal such as
Coupled Partitions (CP) must be used. An alternative method
would be to simply use the IP strategy on groups of partitions
as alluded to in [6]. However, we find that the CP method
described here provides a benefit by giving extra computation
at those points where it is most necessary.

We apply the CP method as follows. To propose partitions
t1 · · · tM of particle p, CP proposes R possible realizations of
the future state using the kinematic prior. The R proposed
futures are then given weights according to the current mea-
surements and a single representative is selected. This process
is repeated for each particle until the tth partition for all par-
ticles has been formed. As in the IP method, the final particle
weights are adjusted for this biased sampling.

3.5.3. Adaptive Particle Proposal Method

We use a hybrid if the IP and CP method, called the Adaptive-
Partition (AP) method. The adaptive-partition method again
considers each target separately. Those targets sufficiently
well separated from all other targets are treated as indepen-
dent and proposed using the IP method. When targets are
not sufficiently distant, the CP method is used. To determine
when targets are sufficiently separated, we use filter estimate
of targets states and then threshold based on distance in sensor
space between the estimated states.

3.5.4. An Improvement

In certain circumstances, the optimal importance density can
be more efficiently approximated that the sample based ap-
proach discussed here. In particular, if target dynamics are
linear/Gaussian and measurements are made on a grid, the
optimal proposal involves sampling from truncated normals.
In this case, a similar AP approach is used wherein partitions
are first separated into groups that are uncoupled and then
each group is treated by sampling from truncated normals. In
the more generic case, one does not have a convenient (semi-
) closed form and instead relies on the purely sample driven
methods of IP and CP as described above.

4. INFORMATION-BASED SENSOR MANAGEMENT

In this section, we give an overview of information theoretic
sensor scheduling. This is based on [7].

In our method of sensor management, actions are ranked
based on the amount of information expected to be gained
from their execution. In principle, we compute the expected

gain in information between the current JMPD and the JMPD
that would result after taking action r and making a measure-
ment, for all r. Then the sensor management decision is to
select the best r using on expected information gain. In prac-
tice, one may have a continuous action space and need more
sophisticated methods (e.g., vector force approaches) as the
possible sensor actions can not be enumerated. In our ap-
plication, we envision the sensor management problem being
one of choosing where to move a sensor (although the method
is general), so r will be treated as a position in the following.

4.1. The Rényi Divergence Between JMPDs

The calculation of information gain between two densities p1

and p0 is done using the Rényi information divergence, [8]
also known as the α-divergence:

Dα(p1||p0) =
1

α − 1
ln

∫
pα
1 (x)p1−α

0 (x)dx (10)

In our application, we compute the divergence between
the predicted density p(Xk, T k|Zk−1) and the updated den-
sity after a measurement z is made at new location r, denoted
p(Xk, T k|Zk−1, z, r). Therefore, the relevant divergence is

Dα

(
p(·|Zk−1, z, r)||p(·|Zk−1)

)
=

1
α − 1

× (11)

ln
∑
T k

∫
pα(Xk, T k|Zk−1, z, r)p1−α(Xk, T k|Zk−1)dXk ,

where the integral is interpreted as in (2).

4.2. The Expected Rényi Divergence for a Sensing Action

The value of an action must be predicted before receiving the
measurement z. Therefore, we calculate the expected value of
the divergence for each possible action and use this to select
the next action. The expectation may be written as an integral
over all possible outcomes z when taking action r as

E

(
Dα

(
p(·|Zk−1, z, r)||p(·|Zk−1)

))
≡ (12)∫

dzp(z|Zk−1, r)Dα

(
p(·|Zk−1, z, r)||p(·|Zk−1)

)
.

And then the method of scheduling is to choose

r̂ = argmax
r∈C

E

(
Dα

(
p(·|Zk−1, z, r)||p(·|Zk−1)

))
, (13)

where C is a set of physically feasible actions.

4.3. Multi-platform Sensor Management

Information theoretic scheduling for a collection of N sensors
requires choosing the set of future locations of the N sensors



�r ≡ (r1, · · · , rN ) which satisfies

�̂r = argmax
�r∈C′

E

(
Dα

(
p(·|Zk−1,�z,�r)||p(·|Zk−1)

))
. (14)

where C′ represents the multiplatform constraint set which
includes physical constraints but also prevents collision.

The joint optimization can be rewritten as a sum of single
sensor optimizations plus a correction factor as

N�
i=1

E
�
Dα

�
p(·|Zk−1)||p(·|Zk−1, zi, ri)

��
+ E

�
h(�z,�r,Zk−1)

�

The function h in this expression is an “information cou-
pling” term which accounts for the fact (among other things)
that the gain in information for two sensors taking the same
action is not double the information gain for a single sensor
taking the action.

The constraint that sensors cannot collide deals with ac-
tion sets and not simply with individual actions, and so cannot
be handled by simply censoring actions that violate the con-
straint. Therefore, define the Lagrangian

L(�r) =E
(
Dα

(
p(·|Zk−1,�z,�r)||p(·|Zk−1)

))
+ λf(�r)

=
N∑

i=1

E
(
Dα

(
p(·|Zk−1)||p(·|Zk−1, zi, ri)

))
+ E

[
h(�z,�r,Zk−1)

]
+ λf(�r) (15)

where the function f is a term that penalizes action sets that
move the sensors too close together. The joint constrained
optimization then becomes an unconstrained optimization

�̂r = arg max
�r

L(�r) . (16)

This optimization in principle requires a selection between
NM possible action sets, where M is the number of possi-
ble actions for each sensor. In the continuous action setting,
the optimization requires choosing the best vector from RN .
In some settings, convexity or other physical conditions exist
which ameliorate the tractability situation. No such conve-
nience exists in our setting.

To avoid this intractable optimization, we make an ap-
proximation and then exactly optimize. Note that both the La-
grangian penalty term f and the information correction term
h reflect that actions sets which involve moving sensors close
together are poor choices. Therefore, we simultaneously ap-
proximate both terms with a function that reduces the value
of action sets involving sensors moving close together. We
have chosen to use a physicomimetic force to provide this ap-
proximation, although other similar approximations are valid.
Evaluating this force has a very small computational burden,
and furthermore allows a decentralized optimization.

We use a generalization of the Lennard-Jones (LJ) poten-
tial that serves as a zeroth order model of the intermolecular

forces of liquids. The LJ force for a pair of sensor nodes i, j
separated by ri,j is radial with magnitude

FLJ(ri,j) = −ε

[
m

γm

rm+1
i,j

− n
γn

rn+1
i,j

]
. (17)

This is strongly repulsive as the radius between sensors
ri,j gets small. The terms γ and ε are chosen based on sensor
kinematic properties. The total force node i feels is the vector
sum of the forces from all other nodes. To compute the total
force, a node need only know the positions of the other nodes;
in fact, since the force falls off so rapidly sensors much more
distant that γ have negligible effect. Therefore a node only
needs to know the positions of nearby neighbors.

Denote by Fi,j
LJ(ri) the vector force node i feels from

node j when positioned at ri. Then the total force node i
feels from all other nodes when positioned at ri is simply
Fi

LJ(ri) =
∑

j �=i F
i,j
LJ(ri). This specification of relaxation

term results in the final approximate optimization

�̂r = argmax
�r

(18)

N∑
i=1

E
(
Dα

(
p(·|Zk−1)||p(·|Zk−1, zi, ri)

))
+ λFi

LJ(ri) .

4.4. Non-myopic Sensor Management

The sensor management approach presented so far is myopic
in that it only considers immediate benefit when making de-
cisions. In certain applications, this approach is inferior to
one that accounts for the long term consequences. As with
multiple sensors, computational burden grows exponentially.
Therefore, in this section, which is a condensed version of [9],
we present a principled approximation that provides schedul-
ing benefit at a modest computational cost.

Let the value of state s at time k be denoted Vk(s). We
will use c(s, r) as shorthand for the myopic expected gain
associated with an action r in state s, i.e.,

c(s, r) .= E
(
Dα

(
p(·|Zk, r, z)||p(·|Zk−1)

) )
(19)

where s is used as a surrogate for p(Xk|Zk−1).
Bellman’s equation describes the value of being in state s

at time k as a sum of the immediate reward and the long term
reward (neglected heretofore) as

Vk(s) = max
r

{c(s, r) + γEs′ [Vk+1(s′)]} (20)

where Es′ [Vk+1(s′)] =
∫

j∈S
p(j|s, r)Vk+1(j).

The optimal non-myopic action r̂ is then given by

r̂ = arg max
r

{c(s, r) + γEs′ [Vk+1(s′)]} (21)



As alluded to earlier, this non-myopic optimization is in
general intractable. One method of approximation that has
been successful in the past is to simply replace the value-to-
go-term with a easily computed function, e.g., choose

r̂ = arg max
r

{c(s, r) + γN(s, r)} (22)

In our application, we have used as N(s, r) the “gain in
information for waiting”, which is an information based quan-
tity that rewards actions that have less value in the future and
penalizes actions more valuable in the future. In this manner,
those actions that are important to take now are elevated in
terms of value and more likely to be taken immediately.

This technique applies to a variety of scenarios. For ex-
ample, consider the scenario where a sensor has time-varying
visibility of the surveillance region due to topological fea-
tures. In this scenario it is important to predict that certain
areas of the region will not be visible in the future and there-
fore they should be interrogated preferentially at present.

5. A SIMULATION

The following simulation compares myopic and approximate
non-myopic scheduling algorithms with a random scheduling
algorithm on a model problem. The model problem (detailed
further in [9]) has a single moving target in a visibility ob-
scured area that is to be detected and tracked by choosing
where to point a single agile sensor.

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

T
ra

ck
in

g 
E

rr
or

Random
Myopic Info Gain (IG)
Approx. non−Myopic IG

Fig. 1. A comparison of the information maximization
scheulding methods and a random scheduling policy.

6. CONCLUSION

This paper has described a method of sensor management
based on maximizing information flow. The key enabling el-
ement to this method is an on-line recursive estimate of the
joint multitarget probability density (JMPD), which is accom-
plished using particle filtering methods. Particular attention

has been given to designing an efficient sampling strategy
to allow tractable estimation of the JMPD. The importance
density so designed simultaneously exploits the fact that the
JMPD often factors into densities over smaller numbers of
targets, and also uses biassed sampling strategies to ensure
particles are used in an efficient manner.
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