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ABSTRACT

Nonparametric Estimation of Distributional Functionals and Applications

by

Kevin R. Moon

Chair: Alfred O. Hero III

Distributional functionals are integrals of functionals of probability densities and in-

clude functionals such as information divergence, mutual information, and entropy.

Distributional functionals have many applications in the fields of information the-

ory, statistics, signal processing, and machine learning. Many existing nonparametric

distributional functional estimators have either unknown convergence rates or are

difficult to implement. In this thesis, we consider the problem of nonparametrically

estimating functionals of distributions when only a finite population of independent

and identically distributed samples are available from each of the unknown, smooth,

d-dimensional distributions. We derive mean squared error (MSE) convergence rates

for leave-one-out kernel density plug-in estimators and k-nearest neighbor estimators

of these functionals. We then extend the theory of optimally weighted ensemble esti-

mation to obtain estimators that achieve the parametric MSE convergence rate when

the densities are sufficiently smooth. These estimators are simple to implement and do

not require knowledge of the densities’ support set, in contrast with many competing

estimators. The asymptotic distribution of these estimators is also derived.

The utility of these estimators is demonstrated through their application to sunspot

xvii



image data and neural data measured from epilepsy patients. Sunspot images are clus-

tered by estimating the divergence between the underlying probability distributions

of image pixel patches. The problem of overfitting is also addressed in both applica-

tions by performing dimensionality reduction via intrinsic dimension estimation and

by benchmarking classification via Bayes error estimation.

xviii



CHAPTER I

Introduction

1.1 Background

The large growth of digital technology and devices in recent years has led to an

explosion in the availability of signals and data. This increase in data corresponds

to increased research opportunities and challenges in signal processing and machine

learning. One such challenge is the increased risk of overfitting in machine learning

problems due to increased dimensionality. Large dimensional data can provide a very

high resolution description of the objects being analyzed. However, with this high

resolution comes the “curse of dimensionality” which requires a rapidly increasing

amount of data samples as dimension increases to analyze the data without overfitting

[13, 86].

Two approaches to reducing the risk of overfitting are considered in this thesis.

The first approach is to use estimated bounds on the Bayes error as a benchmark for

classification. The second is to perform dimensionality reduction.

Another opportunity caused by the increase in data is that in a growing number of

applications, an object may be represented by a collection of measurements [162, 182],

e.g., patch features of an image represented as the collection of its 3×3 image patches

[143]. In classical machine learning problems, an object is represented by a single

feature vector. Some measure of difference or distance, such as the Euclidean distance,
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calculated between each pair of objects feature vectors might then be used as input

into a machine learning algorithm such as classification, regression, or clustering.

In contrast, when an object is represented by a collection of measurements, the

object is not well represented as a single vector. Simply combining all measurements

into a single vector, e.g., by concatenation of the grey levels of all image patches, leads

to a feature of overly high dimension whose dimension may vary if image size varies.

Therefore, to compare these objects for a machine learning task, some measure of

dissimilarity between collections of measurements is necessary [162].

We approach the problem of comparing collections of measurements by formulat-

ing the problem as comparing probability distributions. To measure the dissimilarity

between collections of measurements, the vectors from a collection can be viewed as

samples from some underlying distribution. The difference between the underlying

distributions of two sample collections can be measured by a quantity known as the

information divergence.

1.1.1 Nonparametric Estimation of Distributional Functionals

The common theme in these approaches is the estimation of information theoretic

quantities and distributional functionals such as information divergence, mutual in-

formation, and entropy. These distributional functionals are integrals of functionals

of the underlying densities of the data. However, the data densities are rarely known

in practice.

A parametric approach can be used where the densities are fit to a parametric

model such as a Gaussian distribution [97, 148]. The distributional functional is

then calculated using the formula. This approach can be problematic for two rea-

sons. First, for higher dimensions, evaluating the integral to obtain the distributional

functional may require numerical integration which can be computationally intensive.

Second, the parametric model may be a poor fit for the underlying distributions which
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would result in inaccurate estimates. This is especially likely for high dimensional

data.

This thesis considers the problem of nonparametrically estimating functionals of

distributions when only a finite population of independent and identically distributed

(i.i.d.) samples are available from each of the unknown, smooth, d-dimensional dis-

tributions. Although the methods in this thesis can be applied to functionals of one

or more distributions, we focus primarily on functionals of two distributions which

we refer to as divergence functionals. Within the last few years, recent work has

focused on defining nonparametric divergence functional estimators with known con-

vergence rates [102, 111, 152, 180, 181]. However, these approaches are often either

computationally difficult or require the use of an optimal kernel density estimator

(KDE). These optimal KDEs require explicit knowledge of the support set of the

densities and are difficult to construct when the support set contains boundaries.

Furthermore, the asymptotic distributions of these divergence functional estimators

is unknown for nearly all of them. Thus these estimators cannot be used to perform

inference tasks on the divergence such as testing that two populations have identical

distributions or constructing confidence intervals. See Section 1.2.1 for more details

on these estimators.

In the context of this problem, we derive mean squared error (MSE) convergence

rates for leave-one-out kernel density plug-in estimators of divergence functionals. We

then extend the theory of optimally weighted ensemble entropy estimation developed

in [187] to obtain two divergence functional estimators with a MSE convergence rate

of O
(

1
T

)
, (the parametric rate) where T is the sample size, when the densities are

sufficiently smooth. These estimators are simple to implement and do not require

knowledge of the densities’ support set. We then derive the asymptotic distribution

of the weighted ensemble estimators which enables us to perform inference.

In addition to the kernel density plug-in estimators, we analyze the MSE conver-
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gence rates for k-nearest neighbor (nn) plug-in estimators of divergence functionals

and apply the same optimally weighted ensemble estimation theory to derive k-nn

estimators that achieve the parametric rate. The asymptotic distribution is similarly

derived.

These nonparametric estimators of divergence functionals enable us to estimate

bounds on the Bayes error for a classification problem and the divergence between

the underlying distributions of two sample collections as input in machine learning

problems. A similar entropy estimator can be used to estimate the intrinsic dimension

of data which is useful for dimensionality reduction (see Section 1.1.3). We apply the

estimators to sunspot image data and neural data in these contexts.

1.1.2 Bounds on the Bayes Error

In a classification problem, a common goal is to learn a classifier that minimizes the

average probability of error for future samples. However, there exist many different

classifiers of varying complexity and it is not known a priori which one will perform the

best on a given data set. A common approach is to apply a large corpus of classifiers

to the data and choose the classifier with the lowest test error. But this can be very

computationally intensive, especially if some of the classifiers require the selection

of tuning parameters. Additionally, many classifiers can potentially overfit the data,

especially when the dimension is large, which will result in a poor generalization error

[2, 86, 107]. These problems can be avoided by knowing the Bayes error.

The Bayes error is the lowest average probability of error that any classifier can

achieve [86]. Thus it can serve as a benchmark for classification performance. For

example, if we apply a simple linear classifier to a classification problem and obtain

a test error that is significantly higher than the Bayes error, then we know that it is

worth applying a more complicated classifier until the test error and the Bayes error

are more closely aligned. On the other hand, if we apply a more complex classifier,
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such as a convolutional neural network, and we obtain a test error that is below

the Bayes error, we know that we are overfitting and should either adjust tuning

parameters or try a less complex classifier. Additionally, if we find that the Bayes

error is very high for the given feature space, then this indicates that it may be better

to use a different feature space.

The expression for the Bayes error is a distributional functional that depends on

the underlying distributions of the data which are typically unknown in practice. Ad-

ditionally, the functional of the distributions in the expression for the Bayes error is

not differentiable everywhere which makes estimation more difficult. However, there

are many bounds on the Bayes error that are related to divergences with smooth func-

tionals [6, 15, 33, 85]. Therefore, we can estimate these bounds using a nonparametric

estimator of distributional functions.

1.1.3 Dimensionality Reduction via Intrinsic Dimension Estimation

As mentioned previously, large dimensional data can lead to overfitting and poor

performance in machine learning problems due to the curse of dimensionality. In

practice data often lie on a lower dimensional manifold or subspace plus noise [40].

Dimensionality reduction techniques are therefore applied to mitigate the effects of

the curse of dimensionality as well as denoise the data [12, 28, 86, 137, 203, 208].

Two key components of dimensionality reduction are choosing the size (i.e. di-

mension) and type (linear vs. nonlinear) of the lower dimensional manifold. These

choices are often made with regards to heuristics and computational considerations

instead of the natural geometry of the data. We estimate the intrinsic dimension

as a measure of the natural geometry. The intrinsic dimension of the data is the

dimension of the lower dimensional manifold on which the data lie. This can be used

to choose the size of the lower dimensional manifold when performing dimensionality

reduction. To determine the type of manifold, we estimate the intrinsic dimension

5



using both a nonlinear and a linear method. The nonlinear method is based on a

nonparametric k-nearest neighbor (nn) approach that is related to the entropy of

the underlying data [31]. By comparing the estimates from the two approaches, we

determine whether the lower dimensional subspace is linear or not.

1.1.4 Importance of Entropy and Divergence Measures in Other Appli-

cations

In addition to these problems, divergence estimation is useful for estimating the

decay rates of error probabilities [41], testing the hypothesis that two sets of samples

come from the same probability distribution [144], clustering [8, 45, 123], blind source

separation [93, 136], image segmentation [82, 126, 195], and steganography [108]. For

many more applications of divergence measures, see [11]. Although these applications

are not explored in this thesis, our divergence functional estimators can be used for

them as well.

As mentioned above, our methods of analysis can be easily extended to derive

entropy functional estimators that achieve the parametric convergence rate as long

as the density is sufficiently smooth. In addition to intrinsic dimension estimation

[31, 40], these estimators can be used in applications such as texture classification

and image registration [90], anomaly detection [185], goodness-of-fit testing [76], and

many others.

While mutual information is a special case of divergence, applying our analy-

sis methods to the problem of mutual information estimation requires a bit more

care due to possible dependencies between samples. We extend the theory to de-

rive nonparametric ensemble estimators of general mutual information measures that

achieve the parametric rate. We consider two cases: 1) the data have purely continu-

ous components; 2) the data have a mixture of continuous and discrete components.

These estimators can then be used in applications such as determining channel capac-
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ity [41], feature selection [114, 159, 193, 196], fMRI data processing [32], independent

subspace analysis [156], forest density estimation [127], clustering [123], neuron clas-

sification [175], and intrinsically motivated reinforcement learning [138, 172].

1.2 Related Work

1.2.1 Nonparametric Estimation of Divergence Functionals

Several nonparametric estimators for some functionals of two distributions in-

cluding some divergences already exist. For example, Póczos and Schneider [161]

established weak consistency of a bias-corrected k-nn estimator for Rényi-α and other

divergences of similar form where k is fixed. Wang et al. [200] provided a k-nn based

estimator for the Kullback-Leibler divergence. Mutual information and divergence

estimators based on plug-in histogram schemes have been proven to be consistent

[43, 118, 179, 199]. Hero III et al. [90] provided an estimator for Rényi-α divergence

but assumed that one of the densities was known. However none of these works study

the mean squared error convergence rates nor the asymptotic distribution of their

estimators.

More recent work has focused on deriving convergence rates for divergence estima-

tors. These estimators typically derive the rates in terms of a smoothness condition

on the densities such as the Hölder condition which is a standard definition of smooth-

ness:

Definition I.1 (Hölder Class). Let X ⊂ Rd be a compact space. For r = (r1, . . . , rd),

ri ∈ N, define |r| =
∑d

i=1 ri and Dr = ∂|r|

∂x
r1
1 ...∂x

rd
d

. The Hölder class Σ(s,K) of functions

on L2(X ) consists of the functions f that satisfy

|Drf(x)−Drf(y)| ≤ K ‖x− y‖s−bsc ,

for all x, y ∈ X and for all r s.t. |r| ≤ bsc.
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Figure 1.1: A comparison of the convergence rates of various divergence functional
estimators (including this work) as a function of the smoothness of the densities when
the dimension is d = 8. Smoothness is measured in terms of the Hölder condition
given in Definition I.1. The convergence rate is given in terms of the negative root
MSE exponent, i.e. −1

2
log(MSE)/ log(N). Thus the maximum value that can be

achieved (the parametric rate) is 1/2. Note that the estimators in Krishnamurthy
et al. [111] achieve the same rates as those in Kandasamy et al. [102]. Also, for the
estimator in Nguyen et al. [152], the smoothness condition is applied to the likelihood
ratio instead of the densities.

From Definition I.1, it is clear that if a function f belongs to Σ(s,K), then f is

continuously differentiable up to order bsc. In this work, we propose estimators that

achieve the parametric MSE convergence rate of O(1/T ) when s ≥ d and s > d
2
,

respectively. Figure 1.1 provides a comparison of the convergence rates for various

divergence functional estimators as a function of the densities’ smoothness s when d =

8. Specifically, our work is compared with the estimators in [102, 111, 152, 180, 181],

all of which are discussed in the following.

Nguyen et al. [152] proposed a method for estimating f -divergences by estimating

the likelihood ratio of the two densities by solving a convex optimization problem

and then plugging it into the divergence formulas. For this method they prove that
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the minimax MSE convergence rate is parametric (O
(

1
T

)
where T is the number of

samples from each density) when the likelihood ratio is in the bounded Hölder class

Σ(s,K) with s ≥ d/2. However, this estimator is restricted to true f -divergences

instead of the broader class of divergence functionals. Additionally, solving the convex

problem of [152] is similar in complexity to training the support vector machine

(SVM) (between O(T 2) and O(T 3)) which can be demanding when T is very large.

In contrast, our method of optimally weighted ensemble estimation depends only on

simple density plug-in estimates and an offline convex optimization problem. Thus

the most computationally demanding step in our approach is the calculation of the

density estimates which has complexity no greater than O(T 2).

Singh and Póczos [180, 181] provided an estimator for Rényi-α divergences as

well as general density functionals that uses a mirror image kernel density estimator.

They prove a convergence rate of O
(

1
T

)
when s ≥ d for each of the densities. However

this method requires several computations at each boundary of the support of the

densities which becomes difficult to implement as d gets large. Also, this method

requires knowledge of the support of the densities which may not be possible for

some problems. In contrast, while our assumptions require the density supports to

be bounded, knowledge of the support is not required for implementation.

The linear and quadratic estimators given by Krishnamurthy et al. [111] estimate

divergence functionals that include the form
∫
fα1 (x)fβ2 (x)dµ(x) for given α and β.

These estimators achieve the parametric rate when s ≥ d/2 and s ≥ d/4 for the

linear and quadratic estimators, respectively. However, the latter estimator is com-

putationally infeasible in most cases and the former requires numerical integration

for some divergence functionals, which can be computationally difficult. Additionally,

while a suitable α− β indexed sequence of divergence functionals of this form can be

made to converge to the KL divergence, this does not guarantee convergence of the

corresponding sequence of divergence estimators in [111], whereas our estimator can
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be used to estimate the KL divergence. Other important f -divergence functionals are

also excluded from this form including some that bound the Bayes error [6, 15, 139].

Kandasamy et al. [102] derived similar linear and quadratic estimators for more

general divergence functionals by the use of influence functionals and both data-

splitting and leave-one-out approaches. However, again the quadratic estimator is

computationally infeasible and the linear estimator also requires numerical integration

for some functionals. Furthermore, the estimators derived in [102, 111] require the

use of an optimal KDE. If the support set of the densities is bounded (as is often

assumed), an optimal KDE requires complicated techniques at the boundary of the

support such as those used by [180, 181]. This is again in contrast with our work

which requires no knowledge of the support.

Asymptotic normality has been established for certain appropriately normalized

divergences between a specific density estimator and the true density [16, 17, 19].

However, this differs from our setting where we assume that both densities are un-

known. Additionally, the asymptotic distributions of the estimators in [111, 152, 180,

181] are currently unknown. Kandasamy et al. [102] derived a central limit theorem

for their data-splitting estimator but not their leave-one-out estimator.

Divergence functional estimation is also related to the problem of entropy func-

tional estimation which has received a lot of attention. Some examples include

[21, 73, 116] which used specialized kernel density estimators to achieve the paramet-

ric convergence rate when the density has smoothness parameter s ≥ d/4. Sricharan

et al. [187] derived an entropy functional estimator that uses a weighted average of

an ensemble of simple estimators. While their approach requires the density to have

smoothness parameter s ≥ d to achieve the parametric rate, their approach is simpler

to implement compared to the other estimators [21, 73, 116]. Additionally, our work

in this thesis can be applied to achieve a simple entropy estimator that only requires

s > d/2 to achieve the parametric rate.
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Many estimators for Shannon mutual information between continuous random

variables have been developed. A popular k-nn-based estimator was proposed byKraskov

et al. [110] which is a modification of the entropy estimator derived by Kozachenko and

Leonenko [109]. However, recent work has found that these estimators only achieve

the parametric convergence rate when the dimension of each of the random variables

is less than 3 [69]. Similarly, Pál et al’s estimator of Rényi information [156] does not

achieve the parametric rate. Other methods include estimators based on maximum

likelihood estimation of the likelihood ratio [191] and minimal spanning trees [106].

Finally, Gao et al. [68] showed that k-nn or KDE based approaches underestimate

the mutual information when the mutual information is large. As mutual information

increases, the dependencies between random variables becomes more deterministic

which results in less smooth densities. This is consistent with the work in [102, 111,

180, 181, 187] and this work which require the densities to be smooth to achieve the

parametric rate.

1.2.2 Bayes Error Estimation

Accurately estimating the Bayes Error is not an easy task. It has been shown that

without any assumptions on the distribution of the data, no convergence rate results

can be obtained for an estimator of the Bayes error rate [5]. Antos and Kontoyiannis

[4] showed similar results for additive functionals of a discrete distribution such as

entropy and mutual information. Thus we can only obtain convergence rates for the

Bayes error or its bounds for a subset of the set of all distributions on the data. Ad-

ditionally, Frigyik et al. [61] found that the popular parametric approach of assuming

the densities are Gaussian is not very robust and tends to underestimate the Bayes

error. Thus to obtain our convergence rates, we use a nonparametric approach and

assume that the data densities belong to Σ(s,K) for s ≥ 2.

Past work has attempted to estimate the Bayes error directly using nonparametric
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k-nn or kernel density estimator approaches [48, 63, 65]. A Bayes error estimator can

also be derived using the error rates of an ensemble of classifiers [194]. However

the authors of these works did not derive the convergence rates for their estimators.

Fukunaga and Hummels [64] derived the bias of the error of the finite sample 1-nn

classifier with respect to the asymptotic error which converges to the Bayes error in

probability [190]. They found that the bias converges very slowly to zero as a function

of the number of samples when the dimension is high.

Multiple bounds on the Bayes error based on divergence functionals exist. Mutual

information is related to the Bayes error [57, 88] and has been used widely as a proxy

for the Bayes error in feature selection. Another bound based on the Henze-Penrose

divergence can be consistently estimated by constructing a minimal spanning tree [15].

While this estimator performs well empirically, the convergence rates are currently

unknown. Other bounds based on divergence functionals are discussed in Section 3.4.

1.2.3 Machine Learning on Distributional Features

Divergence measures have recently become more popular as measures of dissimi-

larity between objects modeled as probability distributions. Dhillon et al. [45] derived

word clusters for dimensionality reduction in text classification based on the KL di-

vergence between discrete word distributions. Parametric models have been used to

embed distributions in a Hilbert space and then use kernel methods to solve a machine

learning problem [99, 148].

More recently, nonparametric approaches have been used. In [182], collections

of samples from distributions are compared using set kernels. Muandet et al. [149]

extend the representer theorem to the space of probability distributions. Póczos et al.

[162] estimated the Rényi and L2 divergences to embed distributions, in image clus-

tering and classification, and group anomaly detection. In particular, they find that

the divergence-based approach to image classification outperforms other conventional
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approaches such as bag of words. Regression has also been applied to the cases where

samples from probability distributions form the inputs [163] and possibly the outputs

[155].

1.3 Thesis Contributions

1.3.1 Theoretical Work

In Chapter II, we present the analysis of leave-one-out KDE plug-in estimators of

general divergence functionals. We derive expressions for the bias and the variance

of these plug-in estimators without boundary correction when the support set of

the densities is bounded. We generalize the theory of optimally weighted ensemble

estimation derived in [187] to obtain two KDE divergence functional estimators that

achieve the parametric MSE convergence rate when the densities have smoothness

parameter s ≥ d and s > d/2 under different conditions on the functional. The

estimators are computationally tractable as the weights are calculated via an offline

convex optimization problem. We then derive the asymptotic distribution of the

weighted ensemble estimators which enables us to construct confidence intervals and

perform hypothesis testing.

A similar analysis of leave-one-out k-nn plug-in estimators of general divergence

functionals is given in Chapter III. Expressions for the bias and variance of these

k-nn plug-in estimators without boundary correction are derived. The generalized

theory of optimally weighted ensemble estimation presented in Chapter II is applied

to obtain two k-nn divergence functional estimators that achieve the parametric MSE

convergence rate when the densities have smoothness parameter s ≥ d and s > d/2

under different conditions on the functional. The asymptotic distribution of these

weighted ensemble estimators are also derived. These k-nn estimators are typically

more computationally tractable than the KDE estimators in Chapter II as there exist
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many methods for computing the k-nearest neighbors that are computationally easier

than calculating the KDE.

The analysis techniques used in Chapters II and III extend easily to the problem

of estimating functionals of one (i.e. entropy functionals) or more distributions. Thus

ensemble estimators for both KDE and k-nn plug-in estimators of entropy functionals

(and functionals of 3 or more distributions) can be derived. However, extending these

techniques to mutual information functionals requires a bit more care due to the

possible dependencies between different samples. Under a similar setting, we extend

the theory derived in Chapters II and III to provide nonparametric estimators general

mutual information functionals under two cases: 1) the data have purely continuous

components; 2) the data have a mixture of continuous and discrete components. To

the best of our knowledge, our work is the first to derive MSE convergence rates for

the latter case. The theory of optimally weighted ensemble estimation is applied to

obtain estimators that achieve the parametric rate and the asymptotic distribution

of these estimators is derived. This work is contained in Chapter IV.

1.3.2 Applications of Theory

The remaining chapters of this thesis are devoted to applications of our theoretical

work described in Chapters II through IV. In Chapter V, we estimate the intrinsic

dimension of sunspot image data using entropy-based estimators. We use the intrinsic

dimension estimates to determine the size of a reduced dimension representation and

to determine whether linear methods of dimensionality reduction are appropriate.

The results of Chapter V are used in Chapter VI to reduce the dimension of the

data and then cluster the sunspot images using divergence estimates as input to the

clustering algorithm. Bounds on the Bayes error of a sunspot image classification

problem are also estimated using our divergence functional estimators derived in the

previous chapters.
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We apply similar methods to high frequency oscillations (HFOs) measured from

the brain in epilepsy patients. Typical analyses of HFOs have assumed that the

data lie on a linear manifold that is global across time, channels, and patients. We

estimated the intrinsic dimension of the data using entropy-based estimators to ex-

amine these assumptions and to aid in dimensionality reduction. We further estimate

bounds on the Bayes error to quantify the distinction between two classes of HFOs

(those occurring during seizures and those occurring due to other processes). This

analysis provides the foundation for future clinical use of HFO features and guides

the analysis for other discrete events such as individual action potentials or multi-unit

activity.

1.3.3 Publications
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1. K. Moon and A. Hero, “Ensemble estimation of multivariate f -divergence,” in

IEEE Internatoinal Symposium on Information Theory (ISIT), 2014 [140].

2. K. Moon and A. Hero, “Multivariate f -divergence estimation witn confidence,”

in Advances in Neural Information Processing Systems (NIPS), 2014 [141].

3. K. Moon, K. Sricharan, K. Greenewald, and A. Hero, “Improving convergence of

divergence functional ensemble estimators,” in IEEE International Symposium

on Information Theory (ISIT), 2016 [146].

4. K. Moon, K. Sricharan, K. Greenewald, and A. Hero, “Nonparametric ensemble

estimation of distributional functionals,” submitted to IEEE Transactions on

Information Theory, March 2016 [145].

5. K. Moon, K. Sricharan, and A. Hero, “Ensemble Estimation of Mutual In-

formation,” submitted to Advances in Neural Information Processing Systems
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(NIPS), 2016.
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1.4 Conclusion

In conclusion, this thesis first develops a framework for simple and accurate estima-

tion of distributional functionals such as entropy, divergence, and mutual information

functionals. These estimators can be used to reduce the risk of overfitting data via

intrinsic dimension estimation and Bayes error estimation. Additionally, these esti-

mators can be used to extend machine learning techniques to distributional features.

This thesis then demonstrates the use of these estimators in these applications by

applying them to sunspot image data and HFO data.
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CHAPTER II

Kernel Density Ensemble Estimation of

Divergence Functionals

This chapter provides new theoretical results required to derive nonparametric

estimators of distributional functionals using kernel density estimators (KDE). As

mentioned in Chapter I, this thesis focuses primarily on functionals of two distribu-

tionals which are referred to as divergence functionals. Specifically, we consider the

problem of estimating divergence functionals when only two finite populations of inde-

pendent and identically distributed (i.i.d.) samples are available from some unknown,

nonparametric, smooth, d-dimensional distributions. We derive mean squared error

(MSE) convergence rates for kernel density plug-in divergence functional estimators.

We then extend the theory of optimally weighted ensemble entropy estimation devel-

oped in [187] to obtain two divergence functional estimators with a MSE convergence

rate of O
(

1
T

)
, where T is the sample size, when the densities are sufficiently smooth.

We then derive the asymptotic distribution of the weighted ensemble estimators which

enables us to perform hypothesis testing.

Notation

Bold face type is used for random variables and random vectors. The conditional

expectation given a random variable Z is denoted EZ. The variance of a random
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variable is denoted V and the bias of an estimator is denoted B.

2.1 The Divergence Functional Weak Estimator

This chapter focuses on estimating functionals of the form

G (f1, f2) =

∫
g (f1(x), f2(x)) f2(x)dx, (2.1)

where g(x, y) is a smooth functional, and f1 and f2 are smooth d-dimensional prob-

ability densities. If g (f1(x), f2(x)) = g
(
f1(x)
f2(x)

)
, g is convex, and g(1) = 0, then

G (f1, f2) defines the family of f -divergences. Some common divergences that be-

long to this family include the KL divergence (g(t) = − ln t), the Rényi-α divergence

(g(t) = tα), and the total variation distance (g(t) = |t − 1|). We consider a broader

class of functionals than the f -divergences.

2.1.1 The Kernel Density Plug-in Estimator

We use a kernel density plug-in estimator of the divergence functional in (2.1).

Assume that N1 i.i.d. realizations {Y1, . . . ,YN1} are available from f1 and N2 i.i.d.

realizations {X1, . . . ,XN2} are available from f2. Let hi > 0 be the kernel bandwidth

for the density estimator of fi. Let K(·) be a kernel function with ||K||∞ <∞ where

‖K‖∞ is the `∞ norm of the kernel K. The kernel density estimates (KDE) are

defined as follows

f̃1,h1(Xj) =
1

N1hd1

N1∑
i=1

K

(
Xj −Yi

h1

)
,

f̃2,h2(Xj) =
1

M2hd2

N2∑
i=1
i 6=j

K

(
Xj −Xi

h2

)
,
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where M2 = N2 − 1. The functional G (f1, f2) is then approximated as

G̃h1,h2 =
1

N2

N2∑
i=1

g
(
f̃1,h1 (Xi) , f̃2,h2 (Xi)

)
. (2.2)

2.1.2 Convergence Rates

Similar to [140, 141, 187], the principal assumptions we make on the densities f1

and f2 and the functional g are that: 1) f1, f2, and g are smooth; 2) f1 and f2 have

common bounded support set S; 3) f1 and f2 are strictly lower bounded on S. We

also assume 4) that the density support set is smooth with respect to the kernel K(u).

Our full assumptions are:

� (A.0): Assume that the kernel K is symmetric, is a product kernel, and has

bounded support in each dimension. Also assume that it has order ν which

means that the jth moment of the kernel Ki defined as
∫
tjKi(t)dt is zero for

all j = 1, . . . , ν−1 and i = 1, . . . , d where Ki is the kernel in the ith coordinate.

� (A.1): Assume there exist constants ε0, ε∞ such that 0 < ε0 ≤ fi(x) ≤ ε∞ <

∞, ∀x ∈ S.

� (A.2): Assume that the densities fi ∈ Σ(s,K) in the interior of S with s ≥ 2

(see Definition I.1).

� (A.3): Assume that g has an infinite number of mixed derivatives.

� (A.4): Assume that
∣∣∣∂k+lg(x,y)

∂xk∂yl

∣∣∣, k, l = 0, 1, . . . are strictly upper bounded for

ε0 ≤ x, y ≤ ε∞.

� (A.5): Assume the following boundary smoothness condition: Let px(u) : Rd →

R be a polynomial in u of order q ≤ r = bsc whose coefficients are a function

20



of x and are r − q times differentiable. Then assume that

∫
x∈S

 ∫
u:K(u)>0, x+uh/∈S

K(u)px(u)du


t

dx = vt(h),

where vt(h) admits the expansion

vt(h) =

r−q∑
i=1

ei,q,th
i + o

(
hr−q

)
,

for some constants ei,q,t.

As stated in assumption A.0, we focus on finite support kernels for simplicity in

the proofs although it is likely that our results extend to some infinitely supported

kernels as well. The smoothness assumptions on the densities in assumption A.2 are

weaker as compared to [140, 141, 187]. However, we assume stronger conditions on

the smoothness of g to enable us to achieve good convergence rates without knowl-

edge of the boundary of the support set. These assumptions are not overly restrictive

as most divergence functionals of interest are infinitely differentiable (e.g. the KL

divergence). Those that are not infinitely differentiable are typically not differen-

tiable everywhere (e.g. the total variation distance) which violates the assumptions

of current nonparametric estimators that achieve the parametric rate.

Densities for which assumptions A.1 − A.2 hold include the truncated Gaussian

distribution and the Beta distribution on the unit cube. Functions for which assump-

tions A.3−A.4 hold include g(x, y) = − ln
(
x
y

)
and g(x, y) =

(
x
y

)α
.

Assumption A.5 requires the boundary of the density support set to be smooth

wrt the kernel K(u) in the sense that the expectation of the area outside of S wrt any

random variable u with smooth distribution is a smooth function of the bandwidth

h. It is not necessary for the boundary of S to have smooth contours with no edges

or corners as this assumption is satisfied by the following cases:
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Theorem II.1. Assumption A.5 is satisfied when S = [−1, 1]d and when K is the

uniform rectangular kernel; that is K(x) = 1 for all x : ||x||1 ≤ 1/2. Assumption A.5

is also satisfied when S = [−1, 1]d and when K is the uniform Euclidean kernel; that

is K(x) = 1 for all x : ||x||2 ≤ 1/2.

The proof is given in Appendix A. Given the simple nature of this density support

set and kernels, it is likely that other kernels and supports will satisfy A.5 as well.

The following theorem on the bias follows under assumptions A.0−A.5:

Theorem II.2. For general g, the bias of the plug-in estimator G̃h1,h2 is of the form

B
[
G̃h1,h2

]
=

r∑
j=1

(
c4,1,jh

j
1 + c4,2,jh

j
2

)
+

r∑
j=1

r∑
i=1

c5,i,jh
j
1h

i
2 +O (hs1 + hs2)

+c9,1
1

N1hd1
+ c9,2

1

N2hd2
+ o

(
1

N1hd1
+

1

N2hd2

)
. (2.3)

Furthermore, if g(x, y) has k, l-th order mixed derivatives ∂k+lg(x,y)
∂xk∂yl

that depend on x, y

only through xαyβ for some α, β ∈ R, then for any positive integer λ ≥ 2, the bias is

of the form

B
[
G̃h1,h2

]
=

r∑
j=1

(
c4,1,jh

j
1 + c4,2,jh

j
2

)
+

r∑
j=1

r∑
i=1

c5,i,jh
j
1h

i
2 +O (hs1 + hs2)

λ/2∑
j=1

r∑
m=0

(
c9,1,j,m

hm1(
N1hd1

)j + c9,2,j,m
hm2(

N2hd2
)j
)

+

λ/2∑
j=1

r∑
m=0

λ/2∑
i=1

r∑
n=0

c9,j,i,m,n
hm1 h

n
2(

N1hd1
)j (

N2hd2
)i

+O

 1(
N1hd1

)λ
2

+
1(

N2hd2
)λ

2

 . (2.4)

Divergence functionals that satisfy the mixed derivatives condition required for

(2.4) include the KL divergence and the Rényi-α divergence. Obtaining similar terms

for other divergence functionals requires us to separate the dependence on hi of the
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derivatives of g evaluated at EZf̃i,hi(Z). This is left for future work. See Appendix B.1

for details.

The following variance result requires much less strict assumptions:

Theorem II.3. Assume that the functional g in (2.1) is Lipschitz continuous in

both of its arguments with Lipschitz constant Cg. Then the variance of the plug-in

estimator G̃h1,h2 is bounded by

V
[
G̃h1,h2

]
≤ C2

g ||K||2∞
(

10

N2

+
N1

N2
2

)
.

From Theorems II.2 and II.3, it is clear that we require hi → 0 and Nih
d
i →∞ for

G̃h1,h2 to be unbiased while the variance of the plug-in estimator depends primarily

on the number of samples. Note that the constants in front of the terms that depend

on hi and Ni may not be identical for different i, j, m, n in (2.3) and (2.4). However,

these constants depend on the densities f1 and f2 and their derivatives which are

often unknown. The rates given in Thm. II.2 and II.3 are similar to the rates derived

for the entropy plug-in estimator in [187] if hdi = ki/Ni. The differences lie in the

constants in front of the rates and the dependence on the number of samples from

two distributions instead of one. Additionally, as compared to (2.3), in (2.4) there are

many more terms. These terms enable us to achieve the parametric MSE convergence

rate when s > d/2 for an appropriate choice of bandwidths whereas the terms in (2.3)

require s ≥ d to achieve the same rate.

The Lipschitz assumption on g is comparable to other nonparametric estimators

of distributional functionals [102, 111, 145, 180, 181]. Specifically, assumption A.1

ensures that functionals such as those for Shannon and Renyi divergences are Lipschitz

on the space ε0 to ε∞.
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Figure 2.1: Heat map of predicted bias of divergence funtional plug-in estimator based

on Theorem II.2 as a function of dimension and sample size when h = N
−1
d+1 . Note

the phase transition in the bias as dimension d increases for fixed sample size N : bias
remains small only for relatively small values of d. The proposed weighted ensemble
estimator removes this phase transition when the densities are sufficiently smooth.

2.1.3 Optimal MSE Rate

From Theorem II.2, the dominating terms in the bias are Θ (hi) and Θ
(

1
Nihdi

)
. If

no attempt is made to correct the bias, the optimal choice of hi in terms of minimizing

the MSE is

h∗i = Θ

(
N
−1
d+1

i

)
.

This results in a dominant bias term of order Θ

(
N
−1
d+1

i

)
. Note that this differs

from the standard result for the optimal KDE bandwidth for minimum MSE density

estimation which is Θ
(
N−1/(d+4)

)
for a symmetric uniform kernel [83].

Figure 2.1 gives a heatmap showing the leading term O (h) as a function of d and

N when h = N
−1
d+1 . The heatmap indicates that the bias of the plug-in estimator in

(2.2) is small only for relatively small values of d.

2.1.4 Proof Sketches of Theorems II.2 and II.3

To prove the expressions for the bias, the bias is first decomposed into two parts

by adding and subtracting g
(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)
within the expectation creating

a “bias” term and a “variance” term. Applying a Taylor series expansion on the bias

and variance terms results in expressions that depend on powers of BZ

[
f̃i,hi(Z)

]
:=
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EZf̃i,hi(Z)−fi(Z) and ẽi,hi(Z) := f̃i,hi(Z)−EZf̃i,hi(Z), respectively. Within the interior

of the support, moment bounds can be derived from properties of the KDEs and a

Taylor series expansion of the densities. Near the boundary of the support, the

smoothness assumption on the boundaryA.5 is also required. Note that this approach

differs from that in [187] which corrected the KDEs near the boundary of the support

set and also used concentration inequalities for the KDEs. The full proof of Thm. II.2

is given in Appendix B.1.

The proof of the variance result takes a different approach. It uses the Efron-Stein

inequality which bounds the variance by analyzing the expected squared difference

between the plug-in estimator when one sample is allowed to differ. The full proof of

Thm. II.3 is given in Appendix B.2.

2.2 Weighted Ensemble Estimation

As pointed out in Sec. 2.2.2, Thm. II.2 shows that when the dimension of the data

is not small, the bias of the MSE-optimal plug-in estimator G̃h1,h2 decreases very

slowly as a function of sample size, resulting in large MSE. However, by applying the

theory of optimally weighted ensemble estimation, originally developed in [187] for

entropy estimation, we can modify the minimum MSE estimator by taking a weighted

sum of an ensemble of estimators where the weights are chosen to significantly reduce

the bias.

2.2.1 The Weighted Ensemble Estimator

The bias expressions in Theorem II.2 are quite complicated due to their depen-

dence on the sample size of two different distributions. We can simplify them signifi-

cantly by assuming that N1 = N2 = N and h1 = h2 = h. Define G̃h := G̃h,h.

25



Corollary II.4. For general g, the bias of the plug-in estimator G̃h is given by

B
[
G̃h

]
=

bsc∑
j=1

c10,jh
j + c11

1

Nhd
+O

(
hs +

1

Nhd

)
.

If g(x, y) has k, l-th order mixed derivatives ∂k+lg(x,y)
∂xk∂yl

that depend on x, y only

through xαyβ for some α, β ∈ R, then for any positive integer λ ≥ 2, the bias is

B
[
G̃h

]
=

bsc∑
j=1

c10,jh
j +

λ/2∑
q=1

bsc∑
j=0

c11,q,j
hj

(Nhd)q

+O

(
hs +

1

(Nhd)
λ
2

)
.

Note that the corollary still holds if N1 and N2 are linearly related, i.e., N = N1 =

Θ(N2) and similarly if h1 and h2 are linearly related, i.e., h = h1 = Θ(h2). We form an

ensemble of estimators by choosing different values of h. Choose L = {l1, . . . , lL} to

be real positive numbers that index h(li). Thus the parameter l indexes over different

neighborhood sizes for the kernel density estimates. Define w := {w (l1) , . . . , w (lL)}

and G̃w :=
∑

l∈Lw(l)G̃h(l). The key to reducing the MSE is to choose the weight

vector w to reduce the lower order terms in the bias without substantially increasing

the variance.

2.2.2 Finding the Optimal Weight

The theory of optimally weighted ensemble estimation is a general theory orig-

inally presented by Sricharan et al [187] that can be applied to many estimation

problems as long as the bias and variance of the estimator can be expressed in a

specific way. We generalize the conditions given in [187] that were required to apply

the theory. Let L = {l1, . . . , lL} be a set of index values and let N be the number

of samples available. For an indexed ensemble of estimators
{

Êl

}
l∈L

of a parameter

E, the weighted ensemble estimator with weights w = {w (l1) , . . . , w (lL)} satisfying
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∑
l∈Lw(l) = 1 is defined as

Êw =
∑
l∈L

w (l) Êl.

Êw is asyptotically unbiased if the estimators
{

Êl

}
l∈L

are asymptotically unbiased.

Consider the following conditions on
{

Êl

}
l∈L

:

� C.1 The bias is expressible as

B
[
Êl

]
=
∑
i∈J

ciψi(l)φi,d(N) +O

(
1√
N

)
,

where ci are constants depending on the underlying density, J = {i1, . . . , iI} is

a finite index set with I < L, and ψi(l) are basis functions depending only on

the parameter l and not on the sample size.

� C.2 The variance is expressible as

V
[
Êl

]
= cv

(
1

N

)
+ o

(
1

N

)
.

Theorem II.5. Assume conditions C.1 and C.2 hold for an ensemble of estimators{
Êl

}
l∈L

. Then there exists a weight vector w0 such that the MSE of the weighted

ensemble estimator attains the parametric rate of convergence:

E
[(

Êw0 − E
)2
]

= O

(
1

N

)
.

The weight vector w0 is the solution to the following convex optimization problem:

minw ||w||2

subject to
∑

l∈Lw(l) = 1,

γw(i) =
∑

l∈Lw(l)ψi(l) = 0, i ∈ J.

(2.5)
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A more restrictive version of Theorem II.5 was originally presented in [187] with

the stricter condition of φi,d(N) = N−1/(2d). The proof of our generalized version

(Theorem II.5) is sketched below.

Proof. From condition C.1, the bias of the weighted estimator is

B
[
Êw

]
=
∑
i∈J

ciγw(i)φi,d(N) +O

(√
L||w||2√
N

)
.

The variance of the weighted estimator is bounded as

V
[
Êw

]
≤ L||w||22

N
. (2.6)

The optimization problem in (2.5) zeroes out the lower-order bias terms and limits the

`2 norm of the weight vector w to limit the variance contribution. This results in an

MSE rate of O(1/N) when the dimension d is fixed and when L is fixed independently

of the sample size N . Furthermore, a solution to (2.5) is guaranteed to exist as long

as L > I and the vectors ai = [ψi(l1), . . . , ψi(lL)] are linearly independent. This

completes our sketch of the proof of Thm. II.5.

2.2.3 Optimally Weighted Distributional Functional (ODin) Estimators

To achieve the parametric rate O (1/N) in MSE convergence it is not necessary

that γw(i) = 0, i ∈ J . Solving the following convex optimization problem in place of

the optimization problem in Theorem II.5 retains the O(1/N) rate:

minw ε

subject to
∑

l∈Lw(l) = 1,∣∣∣γw(i)N
1
2φi,d(N)

∣∣∣ ≤ ε, i ∈ J,

‖w‖2
2 ≤ η,

(2.7)
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where the parameter η is chosen to achieve a trade-off between bias and variance.

Instead of forcing γw(i) = 0, the relaxed optimization problem uses the weights to

decrease the bias terms at the rate of O
(

1/
√
N
)

yielding an MSE of O(1/N).

We refer to the distributional functional estimators obtained using this theory

as Optimally Weighted Distributional Functional (ODin) estimators. Sricharan et

al [187] applied the stricter version of Theorem II.5 to obtain an entropy estimator

with convergence rate O(1/N). We also apply the same theory to obtain a divergence

functional estimator with the same asymptotic rate. Let h(l) = lN−1/(2d). From

Corollary II.4, we get ψi(l) = li, i = 1, . . . , d. Note that if s ≥ d, then we are left

with O
(

1
ld
√
N

)
in addition to the terms in the sum. To obtain a uniform bound on

the bias with respect to w and L, we also include the function ψd+1(l) = l−d in the

optimization problem. The bias of the resulting base estimator satisfies condition

C.1 with φi,d(N) = N−i/(2d) for i = 1, . . . , d and φd+1,d(N) = N−1/2. The variance

also satisfies condition C.2. The optimal weight w0 is found by using (2.7) to obtain a

plug-in divergence functional estimator G̃w0,1 with an MSE convergence rate of O
(

1
N

)
as long as s ≥ d. Otherwise, if s < d we can only guarantee the MSE rate up to

O
(

1
Ns/d

)
. We refer to this estimator as the ODin1 estimator.

Another weighted ensemble estimator can be defined that requires less strict as-

sumptions on the smoothness of the densities. This is accomplished by letting h(l)

decrease at a faster rate. Let δ > 0 and h(l) = lN
−1
d+δ . From Theorem II.2, we have

that if g(x, y) has mixed derivatives of the form of xαyβ, then the bias has terms pro-

portional to lj−dqN−
j+δq
d+δ where j, q ≥ 0 and j + q > 0. Theorem II.5 can be applied

to the ensemble of estimators to derive an estimator that achieves the parametric

convergence rate under these conditions. Let φj,q,d(N) = N−
j+δq
d+δ and ψj,q(l) = lj−dq.
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Let

J = {{j, q} : 0 < j + δq < (d+ δ)/2, q ∈ {0, 1, 2, . . . , λ/2}, j ∈ {0, 1, 2, . . . , bsc}} .

(2.8)

Then from (2.5), the bias of G̃h(l) satisfies condition C.1. If L > |J | = I, then

Theorem II.5 can be applied to obtain the optimal weight vector. The estimator

G̃w0,2 =
∑

l∈Lw0(l)G̃h(l) achieves the parametric convergence rate if λ ≥ d/δ+ 1 and

if s ≥ (d + δ)/2. Otherwise, if s < (d + δ)/2 we can only guarantee the MSE rate

up to O
(

1
N2s/(d+δ)

)
. G̃w0,2 is referred to as the ODin2 estimator and is summarized in

Algorithm 1 when δ = 1.

Algorithm 1 Optimally weighted ensemble estimator of divergence functionals

Input: η, L positive real numbers L, samples {Y1, . . . ,YN} from f1, samples
{X1, . . . ,XN} from f2, dimension d, function g, kernel K

Output: The optimally weighted divergence estimator G̃w0,2

1: Solve for w0 using (2.7) with φj,q,d(N) = N−
j+q
d+1 and basis functions ψj,q(l) = lj−dq,

l ∈ l̄, and {i, j} ∈ J defined in (2.8)
2: for all l ∈ l̄ do
3: h(l)← lN

−1
d+1

4: for i = 1 to N do
5: f̃1,h(l)(Xi)← 1

Nh(l)d

∑N
j=1 K

(
Xi−Yj

h(l)

)
,

f̃2,h(l)(Xi)← 1
(N−1)h(l)d

∑N
j=1
j 6=i

K
(

Xi−Xj

h(l)

)
6: end for
7: G̃h(l) ← 1

N

∑N
i=1 g

(
f̃1,h(l)(Xi), f̃2,h(l)(Xi)

)
8: end for
9: G̃w0,2 ←

∑
l∈Lw0(l)G̃h(l)

2.2.4 Comparison of ODin1 and ODin2 Estimators

For the ODin1 estimator G̃w0,1, h ∝ N
−1
2d and the parametric convergence rate is

guaranteed when s ≥ d. This can be achieved with L ≥ d parameters and applies to

any functional g in (2.1) that is infinitely differentiable.

In contrast, for the ODin2 estimator G̃w0,2, h ∝ N
−1
d+δ if g(x, y) has mixed deriva-
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tives of the form of xαyβ and the parametric convergence rate is guaranteed when

s ≥ d+δ
2

. Thus the parametric rate can be achieved with G̃w0,2 under less strict as-

sumptions on the smoothness of the densities than those required for G̃w0,1. Since

δ > 0 can be arbitrary, it is theoretically possible to construct an estimator that

achieves the parametric rate as long as s > d/2. This is consistent with the rate

achieved by the more complex estimators proposed in [111].

These rate improvements come at a cost in the number of parameters L required

to implement the weighted ensemble estimator. If s ≥ d+δ
2

then the size of J for

ODin2 is on the order of d2

8δ
. This may lead to increased variance of the ensemble

estimator as indicated by (2.6) and highlights the practical limits in the choice of δ.

Also, so far G̃w0,2 can only be applied to functionals g(x, y) with mixed derivatives of

the form of xαyβ. Future work is required to extend this estimator to other functionals

of interest.

2.2.5 Central Limit Theorem

The following theorem shows that the appropriately normalized ensemble estima-

tor G̃w converges in distribution to a normal random variable. This enables us to

perform hypothesis testing on the divergence functional. The proof is based on the

Efron-Stein inequality and an application of Slutsky’s Theorem (Appendix B.3).

Theorem II.6. Assume that the functional g is Lipschitz in both arguments with

Lipschitz constant Cg. Further assume that h = o(1), N →∞, and Nhd →∞. Then

for fixed L, the asymptotic distribution of the weighted ensemble estimator G̃w is

Pr

((
G̃w − E

[
G̃w

])
/

√
V
[
G̃w

]
≤ t

)
→ Pr(S ≤ t),

where S is a standard normal random variable.
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2.2.6 Uniform Convergence Rates

In this section, we show that the optimally weighted ensemble estimators achieve

the parametric MSE convergence rate uniformly. Denote the subset of Σ(s,K) with

densities bounded between ε0 and ε∞ as Σ(s,K, ε0, ε∞).

Theorem II.7. Let G̃w0 be an optimally weighted ensemble estimator of the func-

tional

G(p, q) =

∫
g (p(x), q(x)) q(x)dx,

where p and q are d-dimensional probability densities. That is, G̃w0 corresponds to

either the ODin1 or ODin2 estimator described in Section 2.2.3 with w0 calculated

using (2.7) and s sufficiently large according to the estimator; i.e. s ≥ d for ODin1

and s ≥ (d + δ)/2 for ODin2. Additionally, let r = bdc (ODin1) or r = b(d+ δ)/2c

and s > r. Then

sup
p,q∈Σ(s,K,ε,ε∞)

E
[(

G̃w0 −G(p, q)
)2
]
≤ C

N
, (2.9)

where C is a constant.

The proof decomposes the MSE into the variance plus the square of the bias.

The variance is bounded easily by using Theorem II.3. To bound the bias, we show

that the constants in the bias terms are continuous with respect to the densities p

and q under an appropriate norm. We then show that Σ(s,K, ε, ε∞) is compact with

respect to this norm and then apply the Extreme Value Theorem. Details are given

in Appendix B.4.

2.3 Numerical Validation

Throughout this section, we choose δ = 1 for all experiments involving the ODin2

estimator.

32



1.5 2 2.5 3
−1

0

1

2

l

w
0(l)

 

 

ODin1
ODin2

Figure 2.2: Examples of the optimal weights for g(x, y) =
(
x
y

)α
, d = 4, N = 3100,

L = 50, and l is uniformly spaced between 1.5 (ODin1) or 2 (ODin2) and 3. The
lowest values of l are given the highest weight. Thus the minimum value of bandwidth
parameters L should be sufficiently large to render an adequate estimate.

2.3.1 Tuning Parameter Selection

The optimization problem in (2.7) has parameters η, L, and L. The parame-

ter η provides an upper bound on the norm of the weight vector, which gives an

upper bound on the constant in the variance of the ensemble estimator. If all the

constants in (2.3) or (2.4) and an exact expression for the variance of the ensemble

estimator were known, then η could be chosen to minimize the MSE. Since the con-

stants are unknown, by applying (2.7), the resulting MSE of the ensemble estimator is

O (ε2/N)+O (Lη2/N) , where each term in the sum comes from the bias and variance,

respectively. Since there is a tradeoff between η and ε, in principle setting η = ε/
√
L

would minimize these terms. In practice, we find that the variance of the ensemble

estimator is less than the upper bound of Lη2/N and setting η = ε/
√
L is therefore

overly restrictive. Setting η = ε instead works well in practice.

For fixed L, the set of kernel widths L can in theory be chosen by minimizing ε

in (2.7) over L in addition to w. However, this results in a nonconvex optimization

problem since w does not lie in the non-negative orthant. A parameter search may

not be practical as ε generally decreases as the size and spread of L increases. This

decrease in ε does not always correspond to a decrease in MSE as high and low values

of h(l) can lead to inaccurate density estimates. Denote the value of the minimum
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value of l so that f̃i,h(lmin)(Xj) > 0 ∀i = 1, 2 as lmin and the diameter of the support

S as D. To ensure the density estimates are bounded away from zero, we require

that min(L) ≥ lmin. The weights in w0 are generally largest for the smallest values

of L (see Fig. 2.2) so min(L) should also be sufficiently larger than lmin to render an

adequate estimate. Similarly, max(L) should be sufficiently smaller than D as high

bandwidth values lead to high bias. The remaining L values are chosen to be equally

spaced between min(L) and max(L).

As L increases, the similarity of bandwidth values h(l) and basis functions ψi,d(l)

increases, resulting in a negligible decrease in the bias. Hence L should be chosen large

enough to decrease the bias but small enough so that the h(l) values are sufficiently

distinct (typically 30 ≤ L ≤ 60).

2.3.2 Convergence Rates Validation: Rényi-α Divergence

To validate our theory, we estimated the Rényi-α divergence integral between two

truncated multivariate Gaussian distributions with varying dimension and sample

sizes. The densities have means µ̄1 = 0.7 ∗ 1̄d, µ̄2 = 0.3 ∗ 1̄d and covariance matrices

0.1 ∗ Id where 1̄d is a d-dimensional vector of ones, and Id is a d× d identity matrix.

We used α = 0.5 and restricted the Gaussians to the unit cube.

The left plots in Fig. 2.3 show the MSE (200 trials) of the standard plug-in es-

timator implemented with a uniform kernel, the two proposed optimally weighted

estimators ODin1 and ODin2, and a linear combination of ODin1 and ODin2, G̃ρ =

(1 − ρ)G̃w0,1 + ρG̃w0,2, for various dimensions and sample sizes. The set of kernel

widths L, L, and ρ are tuned to minimize the MSE. The bandwidth used for the

standard plug-in estimator was selected from the set L that resulted from the ODin2

optimization; specifically the member of the set that empirically minimized the MSE

of the plug-in estimator. Note that for d = 4, the standard plug-in estimator per-

forms comparably with the optimally weighted estimators. However, for d = 7, 10,
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Figure 2.3: (Left) Log-log plot of MSE of the uniform kernel plug-in (“Kernel”), the
two proposed optimally weighted estimators (ODin1 and ODin2), and the optimal
linear combination of ODin1 and ODin2 for various dimensions and sample sizes.
(Right) Plot of the average value of the same estimators with standard error bars
compared to the true values being estimated. The proposed weighted ensemble esti-
mators generally match the theoretical rate (see Table 2.1) and perform much better
than the plug-in estimator for high dimensions.
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Estimator d = 4 d = 7 d = 10

ODin1 1.04 1.07 1.01
ODin2 0.83 1.08 1.00
Comb. 1.03 1.04 1.02

Table 2.1: Negative log-log slope of the MSE as a function of sample size for various
dimensions and estimators

Dim. N = 100 N = 240 N = 560 N = 1330 N = 3200

d = 4 0.15 0 0.1 0.05 0.05
d = 7 0.6 0.45 0.75 0.75 0.55
d = 10 0.55 1 0.5 0.65 0.5

Table 2.2: Values of the weight ρ for the estimator G̃ρ = (1− ρ)G̃w0,1 + ρG̃w0,2 that
minimize MSE

the plug-in estimator performs considerably worse. This reflects the strength of en-

semble estimators: the weighted sum of a set of poor estimators can result in a very

good estimator. Note also that for most cases, the ensemble estimators’ MSE rates

match the theoretical rate based on the estimated log-log slope given in Table 2.1.

ODin1 tends to do better than ODin2 when the dimension is lower (d = 4) while

the opposite occurs for the higher dimensions. Further evidence for this is given

in the right figures in Fig. 2.3 that show the corresponding average estimates with

standard error bars compared to the true values. ODin1 has smaller variance than

ODin2 when d = 4 and slightly larger variance when d = 10. This seems to account

for the differences in MSE between ODin1 and ODin2. The values for the weight

ρ are given in Table 2.2 which indicate a preference for ODin1 when d = 4 and a

preference for ODin2 for higher dimensions. Paired t-tests on the MSE (125 trials)

of the two methods indicate that the MSE differences are statistically significant (see

Table 2.3).
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Dim. ODin1>ODin2 ODin1<ODin2 ODin1=ODin2

4 1 0 1.8× 10−58

7 8.7× 10−52 1 1.8× 10−51

10 0 1 1.0× 10−52

Table 2.3: p-values of paired t-tests of ODin1 vs. ODin2 MSE (N = 1300). Null
hypotheses for the p-values reported in each column are given on the top row.

ODin1 ODin2
Set min(L) max(L) min(L) max(L)

1 1.5 3 2 3
2 1.75 3 2.25 3
3 2 3 2.5 3
4 2.25 3 2.75 3
5 2.5 3 2.75 3.25

Table 2.4: Values of min(L) and max(L) for different experiments.

2.3.3 Tuning Parameter Robustness

The results in Section 2.3.2 were obtained by selecting the tuning parameters

L and L for each pair of dimension and samples to minimize the MSE. Here we

demonstrate the robustness of the estimators to variations in the tuning parameters.

In all experiments, we estimated the Rényi-α divergence integral between the same

distributions described in Section 2.3.2 (truncated Gaussians with same covariance

and different mean) and chose L = 50. In the first set of experiments, we set η = ε

and chose the set of kernel bandwidths L to be linearly spaced between min(L) and

max(L). Table 2.4 provides the values chosen for min(L) and max(L).

Figure 2.4 shows the results for these experiments when d = 5. As the number

of samples increase, choosing a larger range of values for L (Sets 1 and 2) generally

gives better performance for both ODin1 and ODin2 in terms of MSE than choosing a

smaller range for L (e.g. Sets 4 and 5). This suggests that for large sample sizes, the

estimators will perform well if a reasonably large range for L is chosen. In contrast,

choosing a smaller range of values for L when the sample size is small results in

smaller bias and variance compared to the larger ranges. Thus for small sample sizes,
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it may be useful to tighten the range of kernel bandwidths.

Comparing the results for ODin1 and ODin2 indicates that ODin2 is more robust

to the choice of L as the difference in MSE under the different settings is smaller for

ODin2 than ODin1. This is due primarily to the relatively smaller bias of ODin2

as the variances of the two estimators under each setting are comparable (see the

bottom plots in Fig. 2.4). Similar results hold when the dimension is increased to

d = 7 (see Fig. 2.5). For larger sample sizes, a large range for L gives better results

than a smaller range. However, for smaller sample sizes, the larger range for L does

not perform as well as other configurations. Additionally, ODin2 again appears to

be more robust to the choice of L as the difference in MSE at larger sample sizes

is smaller for ODin2. Additionally, the Set 5 configuration of ODin1 does not even

appear to be converging to the true value yet when N = 10000.

For the second set of experiments, we fixed L to be linearly spaced values between

2 and 3. We then varied the values of η from 0.5 to 10. Figure 2.6 provides heatmaps

of the MSE of the two ensemble estimators under this configuration with d = 5, 7.

For d = 5, choosing η = 0.5 gives the lowest MSE when N ≥ 103.5 for ODin1 and for

all sample sizes for ODin2. In fact, when d = 5, ODin2 with η = 0.5 outperforms all

other configurations at all sample sizes, including those shown in Fig. 2.4. Increasing

d to 7 changes this somewhat as choosing η = 0.5 results in the lowest MSE when

N ≥ 1000 for ODin2 and for no sample sizes for ODin1. However, generally lower

values of η (η < 2) result in the lowest MSE for ODin2 when N < 1000 and for ODin1

when N ≥ 103.5 (η ≤ 3). Both ODin1 and ODin2 are fairly robust to the choice of η

when d = 5 as the MSE is relatively constant at each sample size for most η values.

However, ODin2 has generally lower MSE values for N ≥ 102.5 (see Table 2.5). When

d = 7, ODin2 is more robust than ODin1 for larger samples (N ≥ 1000).

Overall, based on our experiments, ODin1 has lower MSE on average for smaller

sample sizes while ODin2 is generally more robust to the tuning parameters for larger
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Figure 2.4: (Top) Log-log plot of MSE of the two proposed optimally weighted es-
timators (ODin1 and ODin2) as a function of sample size using different values for
the range of kernel bandwidths L (see Table 2.4) when d = 5. (Bottom) Plot of the
average value of the same estimators with standard error bars compared to the true
value being estimated. For larger sample sizes, a larger range in L results in smaller
MSE (see Sets 1 and 2), while a smaller range in L is more accurate at smaller sample
sizes. ODin2 is generally more robust to the choice of L.
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Figure 2.5: (Top) Log-log plot of MSE of the two proposed optimally weighted es-
timators (ODin1 and ODin2) as a function of sample size using different values of
the parameter L (see Table 2.4) when d = 7. (Bottom) Plot of the average value
of the same estimators with standard error bars compared to the true value being
estimated. Again, a larger range for L at large sample sizes results in smaller MSE.
Note from the bottom plots that the non-monotonicity of the MSE for Sets 4 and 5
is due to the fact that the estimators happen to be less biased for some mid-range
values of N ; i.e. the asymptotics have not yet taken effect. As can be seen from the
bottom plots, the bias is again decreasing for most of these estimators.
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Figure 2.6: Heatmaps of the ensemble estimators’ MSE (log10 scale) as a function of
sample size and the tuning parameter η. Lower values of η tend to give the smallest
MSE, especially for ODin2. Both estimators are fairly robust to the choice of η as
the MSE is relatively constant at each sample size for most η values.
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Sample Size N 102 102.5 103 103.5 104 104.5

Mean MSE, ODin1, d = 5 0.0225 0.0159 0.0118 0.0071 0.0040 0.0022
Mean MSE, ODin2, d = 5 0.0358 0.0092 0.0029 0.0011 0.0005 0.0002
Mean MSE, ODin1, d = 7 0.0394 0.0233 0.0155 0.0115 0.0091 N/A
Mean MSE, ODin2, d = 7 0.0557 0.0292 0.0120 0.0046 0.0018 N/A

Table 2.5: Average MSE over all values of η used in Figure 2.6 for a fixed sample size.

sample sizes. Additionally, choosing a low value for η with ODin2 may result in better

performance. Thus unless the sample size is small, ODin2 should be preferred over

ODin1.

2.3.4 Central Limit Theorem Validation: KL Divergence

To verify the central limit theorem of both ensemble estimators, we estimated the

KL divergence between two truncated Gaussian densities again restricted to the unit

cube. We conducted two experiments where 1) the densities are different with means

µ̄1 = 0.7 ∗ 1̄d, µ̄2 = 0.3 ∗ 1̄d and covariance matrices σi ∗ Id, σ1 = 0.1, σ2 = 0.3;

and where 2) the densities are the same with means 0.3 ∗ 1̄d and covariance matrices

0.3 ∗ Id. For both experiments, we chose d = 6 and N = 1000.

Figure 2.7 shows Q-Q plots of the normalized optimally weighted ensemble esti-

mators ODin1 (left) and ODin2 (right) of the KL divergence when the two densities

are the same (top) and when they are different (bottom). The linear relationship be-

tween the quantiles of the normalized estimators and the standard normal distribution

validates Theorem II.6 for both estimators under the two cases.

2.4 Conclusion

We derived convergence rates for a kernel density plug-in estimator of divergence

functionals. We generalized the theory of optimally weighted ensemble estimation

and derived an estimator that achieves the parametric rate when the densities belong

to the Hölder smoothness class with smoothness parameter greater than d/2. The
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Figure 2.7: Q-Q plots comparing quantiles from the normalized weighted ensemble
estimators ODin1 (left) and ODin2 (right) of the KL divergence (vertical axis) to
the quantiles from the standard normal distribution (horizontal axis) when the two
distributions are the same (top) and when they are different (bottom). The red line
shows a reference line passing through the first and third quantiles. The linearity of
the plot points validates the central limit theorem (Theorem II.6) for all four cases.
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estimators we derive apply to general bounded density support sets and do not require

knowledge of the support which is a distinct advantage over other estimators. We

also derived the asymptotic distribution of the estimator, provided some guidelines

for tuning parameter selection, and validated the convergence rates for the case of

empirical estimation of the Rényi-α divergence. We then performed experiments to

examine the estimators’ robustness to the choice of tuning parameters and validated

the central limit theorem for KL divergence estimation.

The generalized theory of optimally weighted ensemble estimators derived in this

chapter can be used to derive k-nn based estimators of entropy and divergence func-

tionals that have similar performance. This is presented in Chapter III. Similarly, we

extend our methods of analysis to derive optimally weighted ensemble estimators of

mutual information measures based on KDE plug-in methods. This is presented in

Chapter IV.
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CHAPTER III

k-Nearest Neighbors Ensemble Estimation of

Divergence Functionals

The theory derived in Chapter II for KDE plug-in estimators of divergence func-

tionals does not easily extend to...This chapter focuses on nonparametric k-nearest

neighbor (nn) plug-in estimators of divergence functionals. We consider the same

problem as in Chapter II of estimating divergence functionals when only two finite

populations of i.i.d. samples are available from unknown, nonparametric, smooth,

d-dimensional distributions. In this chapter, the MSE convergence rates for k-nn

plug-in divergence functional estimators is derived. We use the same general theory

of optimally weighted ensemble estimation developed in Chapter II to again obtain

two divergence functional estimators with a MSE convergence rate of O(1/T ) when

the densities are sufficiently smooth. We also derive the asymptotic distribution of

the weighted ensemble estimators.

3.1 The Divergence Functional Plug-in Estimator

As in Chapter II, we focus on estimating functionals of two distributions of the

form

G (f1, f2) =

∫
g (f1(x), f2(x)) f2(x)dx, (3.1)
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where f1 and f2 are smooth d-dimensional probability densities and g(t1, t2) is a

smooth functional.

3.1.1 The k-nn Plug-in Estimator

We use a k-nn density plug-in estimator of the divergence functional in (3.1).

Assume that N1 i.i.d. samples {Y1, . . . ,YN1} are available from f1 and N2 i.i.d.

samples {X1, . . . ,XN2} are available from f2. Let M1 = N1, M2 = N2 − 1, and

ki ≤ Mi. Denote the distance of the k1th nearest neighbor of the sample Yi in

{X1, . . . ,XN2} as ρ1,k1(i). Similarly, denote the distance of the k2th nearest neighbor

of the sample Xi in {X1, . . . ,XN2} \ {Xi} as ρ2,k2(i). The standard k-nn density

estimator is [128]

f̂i,ki(Xj) =
ki

Micdρdi,ki(j)
,

where cd is the volume of a d-dimensional unit ball. The functional G(f1, f2) is

estimated as

Ĝk1,k2 =
1

N2

N2∑
i=1

g
(
f̂1,k1(Xi), f̂2,k2(Xi)

)
.

3.1.2 Convergence Rates

We make similar assumptions on the densities and the functional g as in Chap-

ter II. For completeness, they are

� (B.1): Assume there exist constants ε0, ε∞ such that 0 < ε0 ≤ fi(x) ≤ ε∞ <

∞, ∀x ∈ S.

� (B.2): Assume that the densities fi ∈ Σ(s,K) in the interior of S with s ≥ 2

and r = bsc.

� (B.3): Assume that g has an infinite number of mixed derivatives.

� (B.4): Assume that
∣∣∣∂k+lg(x,y)

∂xk∂yl

∣∣∣, k, l = 0, 1, . . . are strictly upper bounded for

ε0 ≤ x, y ≤ ε∞.
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� (B.5): Assume that the support S = [0, 1]d.

The following theorem on the bias of the plug-in estimator follows under assump-

tions B.1− B.5

Theorem III.1. For general g, the bias of the plug-in estimator Ĝk1,k2 is of the form

B
[
Ĝk1,k2

]
=

r∑
j=1

((
c17,1,j +

c17,1,j,0√
k1

)(
k1

N1

) j
d

+

(
c17,2,j +

c17,2,j,0√
k2

)(
k2

N2

) j
d

)

+
r∑
j=0

r∑
i=0
i+j 6=0

c18,i,j

(
k1

N1

) i
d
(
k2

N2

) j
d

+O

(
1√
k1k2

+
1

k1

+
1

k2

+ max

(
k1

N1

,
k2

N2

)min(s,d)
d

)
. (3.2)

Furthermore, if g(x, y) has m, l-th order mixed derivatives ∂m+lg(x,y)
∂xm∂yl

that depend on

x, y only through xαyβ for some α, β ∈ R, then for any positive integer ν ≥ 0, the

bias is of the form

B
[
Ĝk1,k2

]
=

bsc∑
j=0

bsc∑
i=0
i+j 6=0

c18,i,j

(
k1

N1

) i
d
(
k2

N2

) j
d

+O

(
max

(
k1

N1

,
k2

N2

)min(s,d)
d

+
1

min(k1, k2)
2+ν
2

)

+
ν∑

m=0

r∑
j=0

j+m6=0

(
c20,1,j,m

k
1+m

2
1

(
k1

N1

) j
d

+
c20,2,j,m

k
1+m

2
2

(
k2

N2

) j
d

)

+
r∑
j=1

(
c17,1,j

(
k1

N1

) j
d

+ c17,2,j

(
k2

N2

) j
d

)

+
ν∑

m=0

bsc∑
j=0

m+j 6=0

ν∑
n=0

bsc∑
i=0

n+i 6=0

c18,i,j,m,n

k
1+m

2
1 k

1+n
2

2

(
k1

N1

) i
d
(
k2

N2

) j
d

. (3.3)

The following variance result requires much less strict assumptions:

Theorem III.2. If the functional g is Lipschitz continuous in both of its arguments
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with Lipschitz constant Cg, then the variance of Ĝk1,k2 is

V
[
Ĝk1,k2

]
= O

(
1

N2

+
N1

N2
2

)
. (3.4)

From Theorems III.1 and III.2, it is clear that we require ki →∞ and ki/Ni → 0

for Ĝk1,k2 to be unbiased. For the variance to decrease to zero, we require N2 →∞.

As in Chapter II, the additional terms in (3.3) enable us to achieve the parametric

MSE convergence rate when s > d/2 for an appropriate choice of k values whereas the

terms in (3.2) require s ≥ d to achieve the same rate. Moreover, the additional terms

in (3.3) enable us to achieve the parametric rate for smaller values of k which is more

computationally efficient. For a discussion on the Lipschitz condition in Theorem III.2

and the extra condition required for (3.3), see Section 2.1.2.

3.1.3 Optimal MSE Rate

From Theorem III.1, the dominating terms in the bias are Θ

((
ki
Ni

) 1
d

)
and Θ

(
1
ki

)
.

If no bias correction is made, the optimal choice of ki that minimizes the MSE is

k∗i = Θ

(
N

1
d+1

i

)
.

This results in a dominant bias term of order Θ

(
N
−1
d+1

i

)
, which is large whenever d

is not small.

3.1.4 Proof Sketches of Theorems III.1 and III.2

The proof of the bias result uses a conditioning argument on the k-nn distances

by viewing the k-nn estimator as a kernel density estimator with uniform kernel and

random bandwidth. This allows us to leverage some of the KDE plug-in estimator

proof techniques. For fixed bandwidth (i.e. k-nn distance), we then consider sep-

arately the cases where the k-nn ball is contained within the support and when it
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intersects the boundary of the support. See Appendix C.1 for the full proof.

The proof of the variance result uses the Efron-Stein inequality as in the proof of

Theorem II.3. However, the proof of the k-nn result is more complicated due to the

dependencies between different k-nn neighborhoods. Thus we analyze the possible

effects on the k-nn graph when one sample is allowed to differ in order to use the

Efron-Stein inequality. See Appendix C.2 for the full proof of Theorem III.2.

3.2 Weighted Ensemble Estimation

As for the KDE plug-in estimator in Chapter II, the k-nn plug-in estimator Ĝk1,k2

in Section 3.1 has slowly decreasing bias when the dimension of the data is not

small. By applying the theory of optimally weighted ensemble estimation derived

in Section 2.2, we can take a weighted sum of an ensemble of estimators where the

weights are chosen to reduce the bias.

3.2.1 Optimally Weighted k-nn Estimators

We simplify the bias expressions in Theorem III.1 by assuming that N1 = N2 = N

and k1 = k2 = k. Define Ĝk := Ĝk,k.

Corollary III.3. For general g, the bias of the plug-in estimator Ĝk is given by

B
[
Ĝk

]
=

r∑
j=1

(
c21,1,j +

c21,2,j√
k

)(
k

N

) j
d

+O

(
1

k
+

(
k

N

)min(s,d)
d

)
.

If g(x, y) has m, l-th order mixed derivatives ∂m+lg(x,y)
∂xm∂yl

that depend on x, y only through

xαyβ for some α, β ∈ R, then for any positive integer ν ≥ 2, the bias is of the form

B
[
Ĝk

]
=

r∑
j=1

c22,j

(
k

N

) j
d

+
λ∑

m=0

r∑
j=0

j+m6=0

c22,j,m

k
1+m

2

(
k

N

) j
d

+O

(
1

k
ν
2

+

(
k

N

)min(s,d)
d

)

49



The corollary still holds ifN1 andN2 are linearly reated and if k1 and k2 are linearly

related. An ensemble of estimators is formed by choosing different neighborhood

sizes by choosing different values of k. Choose L = {l1, . . . , lL} to be real positive

numbers that index h(li). As in Chapter II, define w := {w (l1) , . . . , w (lL)} and

Ĝw :=
∑

l∈Lw(l)Ĝk(l). The weights can be used to decrease the bias as before.

For general g, let k(l) = l
√
N . From Corollary III.3, we have ψi(l) = li/d for

i = 1, . . . , d. If s ≥ d, then we have a O
(

1
l
√
N

)
. We also include the function

ψd+1(l) = l−1. The bias of the resulting base estimator satisfies condition C.1 with

φi,d(N) = N−i/(2d) for i = 1, . . . , d and φi,d+1(N) = N−1/2. The variance also satisfies

condition C.2. The optimal weight w0 is found using (2.7) to obtain a plug-in diver-

gence functional estimator Ĝw0,1 with an MSE convergence rate of O
(

1
N

)
as long as

s ≥ d. Otherwise, if s < d we can only guarantee the MSE rate up to O
(

1
Ns/d

)
. We

refer to this estimator as the ODin1 k-nn estimator.

As for the KDE case, we can define another weighted ensemble estimator that

achieves the parametric rate under less strict assumptions on the smoothness of the

densities if the functional g satisfies the assumption required for (3.3). Let δ > 0 and

k(l) = lN δ. From Corollary III.3, the bias has terms proportional to lj−
q
2N−

(1−δ)j
d
− qδ

2

where j, q ≥ 0 and j + q
2
> 1

2
. Let φj,q,d(N) = N−

(1−δ)j
d
− qδ

2 and ψj,q(l) = lj−
q
2 . Let

J =

{
{j, q} : 0 <

(1− δ)j
d

+
qδ

2
<

1

2
, q ∈ {0, 1, 2, . . . , ν}, j ∈ {0, 1, 2, . . . , r},

j +
q

2
>

1

2

}
.

Then the bias of the resulting base estimator satisfies condition C.1 and the variance

satisfies condition C.2. If L > |J |, then the optimal weight can be found using (2.7).

The resulting weighted ensemble estimator Ĝw0,2 achieves the parametric convergence

rate if ν ≥ 1/δ and if s ≥ d
2(1−δ) . Otherwise, if s < d/(2(1−δ)) we can only guarantee

the MSE rate up to O

(
1

N
2(1−δ)s

d

)
. We refer to this estimator as the ODin2 k-nn
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estimator.

Comparing the ODin1 and ODin2 k-nn estimators yields similar results to that

in Section 2.2.4. The parametric rate can be achieved with Ĝw0,2 under less strict

assumptions on the smoothness of the densities than those required for Ĝw0,1. Since

δ > 0 can be arbitrary, it is theoretically possible to construct an estimator that

achieves the parametric rate as long as s > d/2. However, Ĝw0,2 requires more

parameters to implement the weighted ensemble estimator than Ĝw0,1 which may

have an effect on the variance.

3.2.2 Central Limit Theorem

The following theorem shows that the appropriately normalized ensemble estima-

tor Ĝw converges in distribution to a normal random variable, which enables us to

perform hypothesis testing on the divergence functional. The proof is different from

the proof of Theorem II.6 in that we use a lemma modified from [186] that gives

sufficient conditions on an interchangeable process for a central limit theorem. The

details are given in Appendix C.3.

Theorem III.4. Assume that the mixed derivatives of g of order 2 are bounded and

k(l)→∞ as N →∞ for each l ∈ L. Then for fixed L, and if S is a standard normal

random variable,

Pr

((
G̃w − E

[
G̃w

])
/

√
V
[
G̃w

]
≤ t

)
→ Pr (S ≤ t) .

3.3 Numerical Validation

We validate our theory on the MSE convergence rates by estimating the Rényi-α

divergence integral between two truncated multivariate Gaussian distributions with

varying dimension and sample sizes. The densities have means µ̄1 = 0.7 ∗ 1̄d, µ̄2 =

0.3 ∗ 1̄d and covariance matrices 0.1 ∗ Id where 1̄d is a d-dimensional vector of ones,
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Figure 3.1: (Left) Log-log plot of MSE of the k-nn plug-in estimator (“k-NN”)
and the two proposed optimally weighted estimators (ODin1 and ODin2) for d =
7. (Right) Plot of the average value of the same estimators with standard error
bars compared to the true value being estimated. The proposed weighted ensemble
estimators outperform the plug-in estimator.

and Id is a d × d identity matrix. We used α = 0.5 and restricted the Gaussians to

the unit cube.

The left plot in Fig. 3.1 shows the MSE (200 trials) of the standard plug-in k-nn

estimator where k =
√
N and the two proposed optimally weighted estimators ODin1

and ODin2. We show the case where d = 7 and the sample size varies. For the ODin1

estimator, we chose ¯̀ to be linearly spaced between 0.3 and 3 with L = 50. For

the ODin2 estimator, we chose the minimum value of ¯̀ to be 1.4 and then chose the

next 24 values for k (i.e. L = 25). Note that in comparison to Fig. 2.3, the plug-in

k-nn estimator does better than the plug-in uniform kernel plug-in estimator. This

is likely due to the adaptive nature of the k-nn estimator. Additionally, both ODin1

and ODin2 outperform both plug-in estimators which validates our theory.

3.4 Estimation of Bounds on the Bayes Error

3.4.1 The Bayes Error

Consider the problem of classifying a feature vector x into one of two classes C1

or C2. Denote the a priori class probabilities as q1 = Pr(C1) > 0 and q2 = Pr(C2) =
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1−q1 > 0. The conditional densities of x given that x belongs to C1 or C2 are denoted

by f1(x) and f2(x), respectively, and the Bayes classifier assigns x to C1 if and only if

q1f1(x) > q2f2(x). If p(x) = q1f1(x) + q2f2(x), the average error rate of this classifier,

known as the BER, is

P ∗e =

∫
min (Pr (C1|x) ,Pr (C2|x)) p(x)dx

=

∫
min (q1f1(x), q2f2(x)) dx. (3.5)

The BER is the minimum classification error rate that can be achieved by any classifier

on x’s feature space [86].

3.4.2 f-Divergence Bounds

While the expression for the BER is a divergence functional, the min function

is not differentiable everywhere. Thus the theory derived in this and the previous

chapter does not apply. However, multiple upper and lower bounds on the BER

related to smooth divergence functionals exist. A classical bound is the Chernoff

bound [33]. It is derived from the fact that for a, b > 0, min(a, b) ≤ aαb1−α ∀α ∈ (0, 1).

Replacing the minimum function in (3.5) with this bound gives

P ∗e ≤ qα1 q
1−α
2 cα(f1, f2), (3.6)

where cα(f1, f2) =
∫
fα1 (x)f 1−α

2 (x)dx is the Chernoff α-coefficient. The Chernoff

coefficient is found by minimizing the right hand side of (3.6) with respect to α:

c∗(f1, f2) = min
α∈(0,1)

∫
fα1 (x)f 1−α

2 (x)dx. (3.7)

Combining this with (3.6) gives an upper bound on the BER.

In general, the Chernoff bound is not very tight. A tighter bound was presented
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in [15]. Consider the following quantity:

D̃q1(f1, f2) = 1− 4q1q2

∫
f1(x)f2(x)

q1f1(x) + q2f2(x)
dx (3.8)

=

∫
(q1f1(x)− q2f2(x))2

q1f1(x) + q2f2(x)
dx. (3.9)

It was shown in [15] that the BER P ∗e is bounded above and below as follows:

1

2
− 1

2

√
D̃q1(f1, f2) ≤ P ∗e ≤

1

2
− 1

2
D̃q1(f1, f2).

Arbitrarily tight upper and lower bounds to the BER were given in [6]. We

consider only the lower bound here. Define

gα(f1, f2) = ln

 1 + e−α

exp
(
−αq1f1(x)

p(x)

)
+ exp

(
−αq2f2(x)

p(x)

)
 ,

where p(x) = q1f1(x)+q2f2(x) as before and α > 0. Then the BER is bounded below

as

P ∗e ≥
1

α

∫
gα(f1, f2)p(x)dx =: Gα(f1, f2). (3.10)

The functionals in (3.6) and (3.8)-(3.10) all contain the form of

Dφ(f1, f2) =

∫
φ

(
f1(x)

f2(x)

)
f2(x)dx. (3.11)

To see this, note that for the Chernoff α coefficient, φ(t) = tα. For the D̃q1 based

bounds, the functions are more complicated with φ(t) = 4q1q2t
q2+q1t

and φ(t) = (q1t−q2)2

q1t+q2

for (3.8) and (3.9), respectively. The functions are even more complex for (3.10).
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However, if t = f1(x)
f2(x)

, then

exp

(
−αq1f1(x)

p(x)

)
= exp

(
−αq1

q1 + q2t−1

)
,

exp

(
−αq2f2(x)

p(x)

)
= exp

(
−αq2

q2 + q1t

)
.

Substituting these expressions into Gα(f1, f2) gives the required form. Thus we can

use the optimally weighted ensemble divergence estimator from this chapter to es-

timate all of these bounds on the Bayes error. To estimate c∗(f1, f2), we estimate

cα(f1, f2) for multiple values of α (e.g. 0.01, 0.02, . . . , 0.99) and choose the minimum.

3.4.3 Simulations

We use the ODin1 k-nn estimator. In addition, we use an alternate estimator

for D̃q1 based on an extension of the Friedman-Rafsky (FR) multivariate two sample

test statistic for comparison [60]. This estimator is derived from the MST of the

combined data set XT ∪ YM and does not require direct estimation of the densities

f1 and f2 [14, 15]. However, the convergence rate and asymptotic distribution of this

estimator are currently unknown.

To compare the estimation performance of the various bounds on the BER, we

consider 200 trials of two samples from two Gaussian distributions with unit variance

and varying mean. In practice, we use a leave one out approach for the weighted k-nn

estimator and so the number of samples from both distributions is equal to T . In the

first experiment, we fix the dimension d = 5 and vary the number of samples from each

distribution. Figure 3.2 shows the cases where T = 5000 and 50. We choose α = 500

for Gα. In the large sample regime, the bounds vary smoothly as the separation

between the means of the distributions increases. The two methods for estimating

D̃q1 have nearly identical results when Eq. 3.8 is used for the weighted k-nn method.

If Eq. 3.9 is used, then the estimated bounds (not shown) are inaccurate. This
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Figure 3.2: Estimated bounds on the Bayes error rate for two unit variance Gaussians
with dimension d = 5, varying sample sizes (T = 5000, 50), and varying means over
200 trials. Error bars correspond to a single standard deviation. The D̃q1 based lower
bounds are close to the actual Bayes error for both the large and small sample regimes
but are much more variant with a smaller sample size. The arbitrarily tight lower
bound (Gα with α = 500) is very close to the Bayes error when T = 5000 and when
the Bayes error is low.

underscores the importance of using an appropriate representation of the function φ

when using plug-in based estimation methods as numerical errors may lead to varying

results.

In the low sample regime, the estimates have much higher variance and are more

biased as the lower bounds often cross the Bayes error. However, the D̃q1 based lower

bounds are still fairly close to the true BER and are thus valuable for assessing the

potential performance of a given feature space. Increasing the sample size to as little

as 150 greatly improves the performance (not shown).

In the second experiment, we fixed the number of samples at T = 1000 and

varied the dimension. The results for d = 1 and 10 are given in Fig. 3.3. In the

higher dimension, the D̃q1 lower bounds are closer to the BER which results in these

estimates crossing over the BER more often. The variance in all of the estimates is

also higher when d = 10.

Several trends are apparent in both Figs. 3.2 and 3.3. One is that the variance

of the D̃q1 lower bounds decreases as the BER decreases. In general, the MST-based
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Figure 3.3: Estimated bounds on the Bayes error rate for two unit variance Gaussians
with varying dimension (d = 1, 10) and a fixed sample size of T = 1000 over 200 trials.
The estimated D̃q1 based bounds are more biased and variant when the dimension is
higher.

estimator is more variant than the k-nn estimator except when the dimension or

number of samples is high (e.g. d = 10 or T = 5000). This is not a substantial

problem as an accurate estimate of the BER is less useful at higher values. This is

because if the BER is around 0.4, then the feature space being considered does not

improve the classification much beyond random guessing. Thus time and energy may

be better spent on finding a new feature space for the problem instead of attempting

to achieve the BER on the given feature space.

Another observation is that for d > 1, the Gα based lower bound is not tight

for higher BER when using α = 500. Increasing α does not substantially improve

the tightness at these values due to numerical precision errors. However, it may be

possible to manipulate the expression for gα so that this is not an issue.

Overall, these results suggest that estimating the D̃q1 lower bound provides a

value that is fairly close to the true BER. The weighted k-nn estimator appears to be

less variant than the MST based estimator except when the dimension or number of

samples is sufficiently high. Thus we recommend using the D̃q1 bounds to estimate

the location of the BER. If this gives a range for the BER that is low (approximately

less than 0.2) and there are enough samples, then Gα may be estimated for a more

57



Setosa-Versicolor Setosa-Virginica Versicolor-Virginica

Estimated Confidence Interval (0, 0.0013) (0, 0.0002) (0, 0.0726)
QDA Misclassification Rate 0 0 0.04

Table 3.1: Estimated 95% confidence intervals for the bound on the pairwise Bayes
error and the misclassification rate of a QDA classifier with 5-fold cross validation
applied to the Iris dataset. The right endpoint of the confidence intervals is nearly zero
when comparing the Setosa class to the other two classes while the right endpoint is
much higher when comparing the Versicolor and Virginica classes. This is consistent
with the QDA performance and the fact that the Setosa class is linearly separable
from the other two classes.

precise estimate of the BER. Similar results are obtained for truncated Gaussians.

3.4.4 Application to the Iris Dataset

We use the optimally weighted ensemble estimator to obtain confidence intervals

on the Chernoff bound of the Iris data set from the UCI machine learning repository

[7, 59]. We estimated a bound on the pairwise Bayes error between the three classes

(Setosa, Versicolor, and Virginica) and used bootstrapping to calculate confidence

intervals. We compared the bounds to the performance of a quadratic discriminant

analysis classifier (QDA) with 5-fold cross validation. The pairwise estimated 95%

confidence intervals and the misclassification rates of the QDA are given in Table 3.1.

Note that the right endpoint of the confidence interval is less than 1/50 when com-

paring the Setosa class to either of the other two classes. This is consistent with

the performance of the QDA and the fact that the Setosa class is linearly separa-

ble from the other two classes. In contrast, the right endpoint of the confidence

interval is higher when comparing the Versicolor and Virginica classes which are not

linearly separable. This is also consistent with the QDA performance. Thus the es-

timated bounds provide a measure of the relative difficulty of distinguishing between

the classes, even though the small number of samples for each class (50) limits the

accuracy of the estimated bounds.
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3.5 Conclusion

In this chapter, we derived convergence rates for a k-nearest neighbor plug-in es-

timator of divergence functionals. We applied the generalized theory of optimally

weighted ensemble estimation derived previously to derive an estimator that achieves

the parametric rate when the densities belong to the Hölder smoothness class with

smoothness parameter greater than d/2. The estimators we derive apply when the

densities have support [0, 1]d although they do not require knowledge of the support.

We also derived the asymptotic distribution of the estimator and showed how cer-

tain divergence functionals can be used to estimate bounds on the Bayes error for a

classification problem.
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CHAPTER IV

Extension to Mutual Information Estimation

This chapter extends the work on estimating divergence functionals in Chapters II

and III to the problem of estimating general mutual information measures. We focus

on two cases: 1) the data have purely continuous components; 2) the data have a

mixture of discrete and continuous components. Section 4.1 focuses on the first case

while Section 4.2 focuses on the second.

4.1 Mutual Information Estimation with KDEs: Continuous

Random Variables

We obtain mutual information estimators by modifying the general divergence

functional estimators developed in Chapters II and III, which focused on estimating

functionals of two distributions of the form:

G (f1, f2) =

∫
g (f1(x), f2(x)) f2(x)dx, (4.1)

where f1 and f2 are smooth d-dimensional probability densities and g(t1, t2) is a

smooth functional. To derive a general class of mutual informations from (4.1), let

fX(x), fY (y), and fXY (x, y) be dX , dY , and dX + dY = d-dimensional densities. Let

g(t1, t2) = g
(
t1
t2

)
. Then G(X; Y) := G (fX · fY , fXY ) defines a family of mutual
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informations:

G(X; Y) =

∫
g

(
fX(x)fY (y)

fXY (x, y)

)
fXY (x, y)dxdy. (4.2)

Throughout this section, we assume that all of the components of X and Y lie in

some continuous space.

4.1.1 The KDE Plug-in Estimator

When both X and Y are continuous random variables or vectors with marginal

densities fX and fY , the mutual information functional G(X; Y) can be estimated

using KDEs. Let SX be the support of fX and SY the support of fY . Assume

that N i.i.d. samples {Z1, . . . ,ZN} are available from the joint density fXY with

Zi = (Xi,Yi)
T . Let M = N−1 and let hX , hY be kernel bandwidths. Let KX(·) and

KY (·) be kernel functions with ||KX ||∞, ||KY ||∞ < ∞ where ||K||∞ = supx |K(x)|.

The KDEs for fX and fY are

f̃X,hX (Xj) =
1

MhdXX

N∑
i=1
i 6=j

KX

(
Xj −Xi

hX

)
, (4.3)

f̃Y,hY (Yj) =
1

MhdYY

N∑
i=1
i 6=j

KY

(
Yj −Yi

hY

)
. (4.4)

To estimate the joint distribution fXY , we use the product kernel:

f̃Z,hZ (Xj,Yj) =
1

MhdXX hdYY

N∑
i=1
i 6=j

KX

(
Xj −Xi

hX

)
KY

(
Yj −Yi

hY

)
, (4.5)

where hZ = (hX , hY ). The functional G(X; Y) is then estimated as

G̃hX ,hY =
1

N

N∑
i=1

g

(
f̃X,hX (Xi)f̃Y,hY (Yi)

f̃Z,hZ (Xi,Yi)

)
. (4.6)
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4.1.2 Convergence Rates of the Plug-in Estimator

To derive the convergence rate of G̃hX ,hY , we make similar assumptions about the

densities and the functional g as in Chapter II. The full assumptions are:

� (D.0): Assume that the kernels KX and KY are symmetric product kernels and

have bounded support in each dimension.

� (D.1): Assume there exist constants ε0, ε∞ such that 0 < ε0 ≤ fX(x) ≤ ε∞ <

∞, ∀x ∈ SX , ε0 ≤ fX(x) ≤ ε∞, ∀y ∈ SY , and ε0 ≤ fXY (x, y) ≤ ε∞, ∀(x, y) ∈

SX × SY .

� (D.2): Assume that each of the densities belong to Σ(s,K) in the interior of

their support sets with s ≥ 2.

� (D.3): Assume that g (t1/t2) has an infinite number of mixed derivatives wrt t1

and t2.

� (D.4): Assume that
∣∣∣∂k+lg(t1,t2)

∂tk1∂t
l
2

∣∣∣, k, l = 0, 1, . . . are strictly upper bounded for

ε0 ≤ t1, t2 ≤ ε∞.

� (D.5): Assume the following boundary smoothness condition: Let K be either

KX or KY , S either SX or SY , h either hX or hY . Let px(u) : Rd → R be a

polynomial in u of order q ≤ r = bsc whose coefficients are a function of x and

are r − q times differentiable. Then assume that

∫
x∈S

 ∫
u:K(u)>0, x+uh/∈S

K(u)px(u)du


t

dx = vt(h),

where vt(h) admits the expansion

vt(h) =

r−q∑
i=1

ei,q,th
i + o

(
hr−q

)
,
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for some constants ei,q,t.

For a discussion on these assumptions, see Section 2.1.2.

Theorem IV.1. Under assumptions D.0−D.5 and for general g, the bias of G̃hX ,hY

is

B
[
G̃hX ,hY

]
=

r∑
j=0
i+j 6=0

r∑
i=0

c10,i,jh
i
Xh

j
Y +

c11,X

NhdXX
+

c11,Y

NhdYY

+O

(
hsX + hsY +

1

NhdXX
+

1

NhdYY

)
. (4.7)

If g (t1, t2) has j, l-th order mixed derivatives ∂j+l

∂tj1∂t
l
2

that depend on t1 and t2 only

through tα1 t
β
2 for some α, β ∈ R, then for any positive integer λ ≥ 2, the bias is

B
[
G̃hX ,hY

]
=

r∑
j=0
i+j 6=0

r∑
i=0

c10,i,jh
i
Xh

j
Y +

λ/2∑
j=1

λ/2∑
i=1

r∑
m=0

r∑
n=0

c12,j,i,m,n
hmXh

n
Y(

NhdXX

)j (
NhdYY

)i
+

λ/2∑
j=1

r∑
m=0

r∑
n=0

c11,m,n,j,X
hmXh

n
Y(

NhdXX

)j + c11,m,n,j,Y
hmXh

n
Y(

NhdYY

)j


+O

hsX + hsY +
1(

NhdXX

)λ/2 +
1(

NhdYY

)λ/2
 (4.8)

The expression in (4.8) enables us to achieve the parametric convergence rate

under less restrictive smoothness assumptions on the densities (s > d/2 for (4.8)

compared to s ≥ d for (4.7)). The extra condition required on the mixed derivatives

of g to obtain the expression in (4.8) is satisfied, for example, for Shannon and Renyi

informations.

Theorem IV.2. If the functional g is Lipschitz continuous in both of its arguments
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with Lipschitz constant Cg, then the variance of G̃hX ,hY is

V
[
G̃hX ,hY

]
≤

22C2
g ||KX ·KY ||2∞

N
.

The proofs of Theorems IV.1 and IV.2 are similar to the proofs of the bias and

variance results for the divergence functional estimators in Chapter II. The primary

differences deal with the product of the marginal KDEs. See Appendix D for proof

sketches.

Theorems IV.1 and IV.2 indicate that for the MSE to go to zero, we require

hX , hY → 0 and NhdXX , NhdYY →∞. The Lipschitz assumption on g is comparable to

other nonparametric estimators of distributional functionals [102, 111, 145, 180, 181].

Specifically, assumption A.1 ensures that functionals such as those for Shannon and

Renyi informations are Lipschitz on the space ε0 to ε∞.

4.1.3 Ensemble Estimation of Mutual Information

An ensemble of estimators can be formed by choosing different bandwidth values as

in Section 2.2. Choose LX = {lX(1), . . . , lX(LX)} and LY = {lY (1), . . . , lY (LY )} to be

real positive numbers that index hX(lX(i)) and hY (lY (i)) over different neighborhood

sizes for the KDEs. Define w to be a weight matrix s.t. wij = w(lX(i), lY (j)). Then

the weighted ensemble estimator is G̃w =
∑

(l,l′ )∈LX×LY w(l, l′)G̃hX(l),hY (l′).

We use the general theory of optimally weighted ensemble estimation in The-

orem II.5 to improve the MSE convergence rate of the mutual information plug-

in estimator. For general g, (4.7) indicates that we need hX ∝ N−1/(2dX) for the

O(1/(NhdXX )) terms to be O(1/
√
N). Similarly, we require hY ∝ N−1/(2dY ). For the

ensemble of estimators, we thus choose hX(lX(i)) = lX(i)N−1/(2dX) and hY (lY (j)) =

lY (j)N−1/(2dY ). From Theorems IV.1 and IV.2, conditions C.1 and C.2 (see Sec-

tion 2.2.2) are satisfied with ψi,j(lX(m), lY (n)) = liX(m)ljY (n) and φi,j(N) = N−i/(2dX)−j/(2dY )

64



for 0 ≤ i ≤ dX and 0 ≤ j ≤ dY s.t. 0 < i/dX + j/dY ≤ 1. The optimal weight w0 is

calculated using (2.7). The resulting estimator G̃w0,1 achieves the parametric MSE

rate when s ≥ max(dX , dY ). We refer to this estimator as the ODin1 estimator of

mutual information.

If the mixed derivatives of the functional g satisfy the extra condition required

for (4.8), then we can define an estimator that achieves the parametric MSE rate

under less strict smoothness assumptions. Choose hX(lX(i)) = lX(i)N−1/(dX+δ) and

hY (lY (j)) = lY (j)N−1/(dY +δ). Then conditions C.1 and C.2 are satisfied with ψi,j,p,q(lX(m), lY (n)) =

li−pdXX (m)lj−qdYY (n) and φi,j,p,q(N) = N−(i−pdX)/(dX+δ)−(j−qdY )/(dY +δ)−p−q for i+ j+ p+

q > 0 and (i − pdX)/(dX + δ) + (j − qdY )/(dY + δ) + p + q ≤ 1/2. The optimal

weight w0 is again calculated using (2.7) and the resulting estimator G̃w0,2 achieves

the parametric MSE convergence rate when s ≥ (max(dX , dY ) + δ)/2. We refer to

this estimator as the ODin2 estimator of mutual information.

As for divergence functionals (see Section 2.2.3), the ODin2 estimator has better

statistical properties as the parametric convergence rate is guaranteed under less

restrictive smoothness assumptions on the densities. On the other hand, the number

of parameters required for the optimization problem in (2.7) is larger for the ODin2

estimator than the ODin1 estimator. In theory, this could lead to larger variance.

Algorithm 2 summarizes the estimator G̃w0,1 for the case when lX(i) = lY (i) (e.g.

when the scales for both spaces are similar).

We finish this section with a central limit theorem:

Theorem IV.3. Assume that the functional g is Lipschitz in both arguments with

Lipschitz constant Cg and that hX , hY = o(1), N → ∞, and NhdXX , NhdYY → ∞.

Then for fixed LX and LY , and if S is a standard normal random variable,

Pr

((
G̃w − E

[
G̃w

])
/

√
V
[
G̃w

]
≤ t

)
→ Pr (S ≤ t) .
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Algorithm 2 Optimally weighted ensemble mutual information estimator G̃w0,1

Input: L positive real numbers L, samples {Z1, . . . ,ZN} from fXY , dimensions dX
and dY , function g, kernels KX and KY

Output: The optimally weighted divergence estimator G̃w0,1

1: Solve for w0 using (2.7) with basis functions ψi,j(l) = li+j, φi,j(N) =
N−i/(2dX)−j/(2dY ), l ∈ L, 0 ≤ i ≤ dX , and 0 ≤ j ≤ dY s.t. 0 < i/dX + j/dY ≤ 1

2: for all l ∈ L do
3: hX(l) = lN−1/(2dX), hY (l) = lN−1/(2dY )

4: for i = 1 to N do
5: Calculate f̃X,h(l)(Xi), f̃Y,h(l)(Yi), and f̃Z,h(l)(Xi,Yi) from (4.3), (4.4), and (4.5)
6: end for
7: G̃hX(l),hY (l) ← 1

N

∑N
i=1 g

(
f̃X,h(l)(Xi)f̃Y,h(l)(Yi)

f̃Z,h(l)(Xi,Yi)

)
8: end for
9: G̃w0,1 ←

∑
l∈Lw0(l)G̃hX(l),hY (l)

The proof is based on an application of Slutsky’s Theorem preceded by an applica-

tion of the Efron-Stein inequality that is very similar to the proof of the central limit

theorem for the divergence functional ensemble estimators in Chapter II. The exten-

sion of the central limit theorem to the mutual information estimator is analagous to

the extension required in the proof of the variance result in Theorem IV.2. Due to

this similarity, we omit the proof of Theorem IV.3.

4.2 Mutual Information Estimation: Mixed Random Vari-

ables

Another important case in mutual information estimation is when X has only

continuous components and Y has only discrete components. For example, if Y is a

predictor variable (e.g. classification labels), then the mutual information between X

and Y indicates the value of X as a predictor of Y. Although Y is discrete, fXY = fZ

is also a density. Let SX be the support of the density fX and SY be the support of

the probability mass function fY . The generalized mutual information can be written
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as

G (X; Y) =
∑
y∈SY

∫
g

(
fX(x)fY (y)

fXY (x, y)

)
fXY (x, y)dx

=
∑
y∈SY

fY (y)

∫
g

(
fX(x)

fX|Y (x|y)

)
fX|Y (x|y)dx. (4.9)

Let Ny =
∑N

i=1 1{Yi=y} where y ∈ SY . Let f̃X,hX be as in (4.3) and define Xy =

{Xi ∈ {X1, . . . ,XN} |Yi = y}. Then if Xi ∈ Xy, the KDE of fX|Y (x|y) is

f̃X|y,hX|y(Xi) =
1

(Ny − 1)hdXX|y

∑
Xj∈Xy
i 6=j

KX

(
Xi −Xj

hdXX|y

)
.

We define the plug-in estimator G̃hX ,hX|Y of (4.9) to be

G̃hX ,hX|Y =
∑
y∈SY

Ny

N
G̃hX ,hX|y , (4.10)

where

G̃hX ,hX|y =
1

Ny

∑
X∈Xy

g
(
f̃X,hX (X)/f̃X|y,hX|y(X)

)
.

4.2.1 Convergence Rates

Theorem IV.4. (Bias) Assume that assumptions D.0−D.5 apply to the functional

g, the kernel KX , and the densities fX and fX|Y . Assume that hX|y = lN−βy with

0 < β < 1
dX

and l a positive number. Then the bias of G̃hX ,hX|Y is

B
[
G̃hX ,hX|Y

]
=

r∑
j=0
i+j 6=0

r∑
i=0

c13,i,jh
i
X l

jN−jβ +
c14,X

NhdXX
+

c14,y

ldXN1−βdX

+O

(
hsX +N−sβ +

1

NhdXX
+

1

N1−βdX
+

1

N

)
. (4.11)
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Furthermore, if g (t1, t2) has j, l-th order mixed derivatives ∂j+l

∂tj1∂t
l
2

that depend on t1

and t2 only through tα1 t
β
2 for some α, β ∈ R, then for any positive integer λ ≥ 2, the

bias is

B
[
G̃hX ,hX|Y

]
=

r∑
j=0
i+j 6=0

r∑
i=0

c13,i,jh
i
X l

jN−jβ +

λ/2∑
j=1

λ/2∑
i=1

r∑
m=0

r∑
n=0

c14,j,i,m,n
hmX l

nN−nβ(
NhdXX

)j
(ldXN1−βdX )i

+

λ/2∑
j=1

r∑
m=0

r∑
n=0

c14,m,n,j,X
hmX l

nN−nβ(
NhdXX

)j + c14,m,n,j,Y
hmX l

nN−nβ

(ldXN1−βdX )j


+O

hsX +N−sβ +
1(

NhdXX

)λ/2 +
1

(N1−βdX )λ/2
+

1

N

 . (4.12)

Proof. For brevity, we only sketch the main ideas of the proof here. See Appendix D

for more details. The conditional bias of G̃hX ,hX|y given Y1, . . . ,YN can be obtained

from Theorem IV.1. Then given that hX|y ∝ N−βy , (4.10) gives terms of the form of

N1−γ
y with γ > 0. Ny is a binomial random variable with parameter fY (y), N trials,

and mean NfY (y). Thus we need to compute the fractional moments of a binomial

random variable. By the generalized binomial theorem, we have that

Nα
y = (Ny −NfY (y) +NfY (y))α

=
∞∑
i=0

 α

i

 (NfY (y))α−i (Ny −NfY (y))i ,

=⇒ E
[
Nα
y

]
=

∞∑
i=0

 α

i

 (NfY (y))α−i E
[
(Ny −NfY (y))i

]
. (4.13)

From Riordan [170], the i-th central moment of Ny has the form of

E
[
(NY −NfY (y))i

]
=

bi/2c∑
n=0

cn,i(fY (y))Nn.
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Thus E
[
N1−γ
y

]
has terms proportional to N1−γ−i+n ≤ N1−γ−bi/2c for i = 0, 1, . . . since

n ≤ bi/2c. Then since there is an N in the denominator of (4.10), this leaves terms

of the form of N−γ when i = 0, 1 and N−1 for i ≥ 2. This completes the proof for the

bias.

Theorem IV.5. If the functional g is Lipschitz continuous in both of its arguments

with Lipschitz constant Cg and SY is finite, then the variance of G̃hX ,hX|Y is O(1/N).

Proof. We again sketch the main ideas for brevity. By the law of total variance, we

have

V
[
G̃hX ,hX|Y

]
= E

[
V
[
G̃hX ,hX|Y

∣∣∣Y1, . . . ,YN

]]
+ V

[
E
[
G̃hX ,hX|Y

∣∣∣Y1, . . . ,YN

]]
.

(4.14)

From Theorem IV.2, we know that V
[
G̃hX ,hX|Y

∣∣∣Y1, . . . ,YN

]
= O

(∑
y∈SY Ny/N

2
)

.

Taking the expectation then yields O(1/N).

For the second term, we know from the proof of Theorem IV.4 that E
[
G̃hX ,hX|Y

∣∣∣Y1, . . . ,YN

]
yields a sum of terms of the form of Nγ

y/N for 0 < γ ≤ 1. Taking the variance of

the sum of these terms yields a sum of terms of the form V
[
Nγ
y

]
/N2. Note that the

covariance terms can be bounded by the Cauchy Schwarz inequality to yield similar

terms. The variance term can be bounded by taking a Taylor series expansion of the

functions Nγ
y and N2γ

y at the point NfY (y) which yields an expression that depends

on the central moments of Ny. The variance can then be calculated from these equa-

tions to obtain V
[
Nγ
y

]
= O(N) which completes the proof. See Appendix D for more

details.

4.2.2 Ensemble Estimation

Given Theorems IV.4 and IV.5, we can obtain ensemble estimators for G (X; Y)

that achieve the parametric rate when either s ≥ dX (general g) or s ≥ (dX + δ)/2 (g

has mixed derivatives of the form specified in Theorem IV.4). For the former, choose
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hX ∝ N−1/(2dX) and hX|y ∝ N
−1/(2dX)
y and for the latter, choose hX ∝ N−1/(dX+δ) and

hX|y ∝ N
−1/(dX+δ)
y . For the most general case, choose LX = {lX(1), . . . , lX(LX)} and

LX|y =
{
lX|y(1), . . . , lX|y(LX|y)

}
to be real positive numbers that index hX(lX(i)) and

hX|y(lX|y) for all y ∈ SY . For simplicity of exposition, we assume that LX|y = LX|Y

for each y ∈ SY . The weighted ensemble estimator is then

G̃w =
∑

(l,l′)∈LX×LX|Y

w(l, l
′
)
∑
y∈SY

Ny

N
G̃hX(l),hX|y(l′ ).

To construct the estimator G̃w0,1, set hX(lX(i)) = lX(i)N−1/(2dX) and hX|y(lX|Y (i)) =

lX|Y (i)N
−1/(2dX)
y . w0 can then be obtained by solving (2.7) with ψi,j(lX , lX|Y ) = liX l

j
X|Y

and φi,j(N) = N−(i+j)/(2dX) for i, j ∈ {0, 1, . . . , dX} and i + j 6= 0. The resulting

estimator G̃w0,1 has a MSE rate of O(1/N) as long as s ≥ d.

A similar procedure as above gives G̃w0,2 when hX ∝ N−1/(dX+δ) and hX|y ∝

N
−1/(dX+δ)
y . Furthermore, if the space SY is finite, then the ensemble estimators obey

a central limit theorem.

4.3 Experimental Validation

In this section, we validate our theory by estimating the Rényi-α mutual infor-

mation integral (i.e. g(x) = xα in (4.9); see Principe [165]) where X is a mixture of

truncated Gaussian random variables and Y is a categorical random variable with

three possible outcomes and respective probabilities Pr(Y = 0) = Pr(Y = 1) = 2/5

and Pr(Y = 2) = 1/5. The conditional covariance matrices are all 0.1 ∗ Id and the

conditional means are, respectively, µ̄0 = 0.25 ∗ 1̄d, µ̄0 = 0.75 ∗ 1̄d, and µ̄0 = 0.5 ∗ 1̄d,

where Id is the d × d identity matrix and 1̄d is a d-dimensional vector of ones. We

chose α = 0.5 and d = 6.

Figure 4.1 shows the MSE (125 trials) of the plug-in KDE estimator of mutual

information using a uniform kernel and the two optimally weighted ensemble esti-
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Figure 4.1: MSE log-log plot as a function of sample size for the uniform kernel plug-
in mutual information estimator (”Kernel”) and the two proposed optimally weighted
ensemble estimators G̃w0,1 (”ODin1”) and G̃w0,2 (”ODin2”) for the distributions de-
scribed in the text. The ensemble estimators generally outperform the kernel plug-in
estimator, especially for larger sample sizes.

mators G̃w0,1 and G̃w0,2 for various sample sizes. For G̃w0,2, we chose δ = 1. Both

ensemble estimators generally outperform the standard plug-in estimator, especially

for larger sample sizes. G̃w0,2 performs the best at higher sample sizes while G̃w0,1

performs the best at lower sample sizes.

4.4 Conclusion

We derived the MSE convergence rates for plug-in KDE-based estimators of mu-

tual information measures between X and Y when they have only continuous com-

ponents. Using these rates, we defined ensemble estimators that achieve an MSE rate

of O(1/N) when the densities are sufficiently smooth and showed that a central limit

theorem also holds. We then extended this theory to the case where Y is discrete

and X is continuous. To the best of our knowledge, this is the first nonparametric

mutual information estimator that achieves the MSE convergence rate of O(1/N) in

this setting.
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CHAPTER V

Application to Sunspot Images: Dimensionality

Reduction

The remainder of this thesis focuses on applications of nonparametric distribu-

tional functional estimation. This chapter and the next focus on applications to

sunspot and active region images.

5.1 Background

Active regions (AR) in the solar atmosphere have intense and intricate magnetic

fields that emerge from subsurface layers to form loops which extend into the corona.

When active regions undergo external forcing such as flux emergence and rearrange-

ment, the system may destabilize. The stored magnetic energy is then suddenly re-

leased as accelerated particles (electrons, protons, ions) and an increase in radiation

called a flare is observed across the entire electromagnetic spectrum [160].

The morphology of sunspots is correlated with flare occurrence and has there-

fore received a lot of attention. The Mount Wilson classification scheme [81] groups

sunspots into four main classes based on the magnetic structure, that is, on the rel-

ative locations and sizes of concentrations of opposite polarity magnetic flux. The

sunspots with simplest morphology belong to the unipolar α and the bipolar β groups.
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Class Classification Rule Number of AR Number of Patches
α A single dominant spot 50 13,358
β A pair of dominant spots of opposite polarity 192 75,463
βγ A β sunspot where a single north-south polarity 130 95,631

inversion line cannot divide the two polarities
βγδ A βγ sunspot where umbrae of opposite polarity 52 66,195

are together in a single penumbra

Table 5.1: Mount Wilson classification rules, number of each AR, and total number
of joint patches or pixels per Mt. Wilson class used in this chapter when using the
STARA masks.

More complex morphologies are described as βγ when a bipolar sunspot is such that

a single north-south polarity inversion line cannot divide the two polarities. When a

βγ sunspot group contains in addition a δ spot, that is, umbrae of different polarities

inside a single penumbra, it is labeled as a βγδ group. The presence of a δ configu-

ration, where large values of opposite polarity exist close together, was identified as

a warning of the build up of magnetic energy stress with an increased probability of

a large flare [132, 173]. See Table 5.1 for a summary of the Mount Wilson classes.

McIntosh [135] proposes another classification scheme containing 60 classes, thus

describing the magnetic structure in greater details. The McIntosh classification is

the basis for several flare forecasting methods which estimate the flare occurrence

rate from historical records of flares and active region classes [26], possibly combining

such information with observed waiting time distribution between flares [24, 66].

The McIntosh and Mount Wilson classifications are in general carried out man-

ually, and this results in inconsistencies that stem from human observation bias as

well as non-reproducible catalogs. To overcome these caveats, some supervised ma-

chine learning methods have been proposed to automatically classify sunspot groups

according to these schemes. [188] extract various measurements from continuum and

magnetogram images, and then feed these into a machine learning classifier which

reproduces the Mount Wilson classification. [35] employ neural networks and su-

pervised classification techniques to reproduce the McIntosh scheme and use those
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results in a flare forecasting system [36]. While these approaches reduce the human

bias, they do not use the information present in sunspot images in an optimal way

and make the study of AR dynamic behavior impractical.

Several attempts were made to find quantitative descriptors of an active region’s

complexity. [133] showed that fractal dimension of an active region alone cannot

distinguish between the various Mount Wilson classes. The generalization to multi-

fractal spectrum, where each scale has its own fractal dimension, allowed to study in

greater details the evolution of active region in view of distinguishing between quiet

and flare-productive active regions. Box counting method [1, 38, 70] as well as more

accurate methods based on continuous wavelet transform [39, 105] were employed.

Continuous wavelet transforms and energy spectrum were also used with a similar

purpose in [91, 134].

Wavelet basis functions act as a microscope to describe local discontinuities and

gradients in an image, and [98] used two multiresolution analyses to compute at

various length scales the gradients of the magnetic field along lines separating opposite

polarities. Using a data set of about 10 000 magnetogram images, they showed that,

at all length scales, those gradients increase going from α to β, βγ, and βγδ classes.

However, a wavelet analysis is known to generate artifacts due to the particular

shape of the specific wavelet functions. Signal representations based on a set of redun-

dant functions called a dictionary, were therefore introduced [130]. [54] proposed the

use of a small sized dictionary to find a sparse representation of patches. Specifically,

a patch is a m×m-pixel neighborhood, and a patch analysis of a n-pixel image will

process the m2 × n data matrix that collects the overlapping patches. See Figure 6.2

for a representation.

As an example of image patch analysis, [54] considered the problem of denoising an

image corrupted by additive Gaussian noise. They computed a sparse representation

of patches over a dictionary, thus effectively denoising the patches. The dictionary
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Figure 5.1: An example patch from the edge of a sunspot in a continuum image and
its column representation.

itself may either be fixed a priori or learned from the corrupted patches. An estimate

of the noise-free image is then obtained by averaging the denoised overlapping patches.

[54] showed that dictionary learning methods based on patch analysis are more flexible

and provide superior results in the context of image denoising.

In this chapter, we carry out a patch analysis of a set of sunspots and active

region magnetogram images that span the four main Mount Wilson classes. We

estimate the intrinsic dimension of the local patches, and show how it relates to the

Mount Wilson classification. We also study patterns of local correlation using partial

correlation and canonical correlation analysis, which reveal some characteristics of

simple and more complex active regions. Such analysis also serves as a preparation

to an unsupervised clustering of active region using patch-based matrix factorization

which will be presented in Chapter VI.

Section 5.2 describes our data set. Unlike previous works, our approach combines

information from two modalities: photospheric continuum images and magnetograms,

both obtained by the Michelson Doppler Imager (MDI) on board the Solar and He-

liospheric Observatory (SOHO) spacecraft. We consider 424 active regions spanning

the four main Mount Wilson classes. We use SMART masks [92] to delineate the

boundaries of magnetic active regions, and the STARA algorithm [201] which pro-

vides masks for umbrae and penumbrae from the continuum images. These two masks

enable us to differentiate between pixels belonging to the actual sunspots and pixels
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featuring the region surrounding the sunspots.

In Section 5.3, the intrinsic dimension of the image patches extracted from the

two modalities is estimated using both linear and non-linear methods. The linear

method relies on Principal Component Analysis (PCA) [100], while the non-linear

method relies on a k-Nearest Neighbor graph approach [31, 40]. The latter method

also estimates the local intrinsic dimension, which has several advantages over a global

estimate. We show that the intrinsic dimension is related to the complexity of the

sunspot groups.

Section 5.4 identifies the spatial and modal interactions of the patches at different

scales by estimating the partial correlation and by using canonical correlation analysis

(CCA) [150, 153]. This gives insight about relationships that may exist between active

region complexity and the correlation patterns.

This chapter expands and refines some of the work in [142]. Whereas [142] used

fixed size square pixel regions centered on the sunspot group as input to the analyses,

in this chapter SMART detection masks are used. A larger set of images is considered

in all methods which enables us to analyze the relationships of intrinsic dimension and

correlation with AR complexity. We also explore the partial correlation of patches

which was not included in [142].

5.2 Data

The data used in this study are taken from the Michelson Doppler Imager (MDI)

instrument [174] on board the SOHO Spacecraft.

Within the time range of 1996-2010, we select a set of 424 ARs as follows.

Using the information from the Solar Region Summary reports compiled by the

Space Weather Prediction Center of NOAA http://www.swpc.noaa.gov/ftpdir/

forecasts/SRS/, we consider ARs located within 30◦ of the solar meridian. We

looked at a maximum of two-hundred instances per Mount Wilson types α, β, βγ,
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α β βγ βγδ Simple Complex Total
Number of AR 50 192 130 52 242 182 424

Table 5.2: Number of each AR per Mt. Wilson class. Simple ARs include α and β
groups while complex ARs are βγ and βγδ groups.

and βγδ. Out of this first selection, we removed AR with a longitudinal extent

smaller than four, and finally we checked if MDI continuum and magnetogram data

were available. This provides us with a number of ARs in each Mount Wilson class as

given by Table 5.2. In our analysis, we also divide the ARs into two groups: simple

ARs (α and β) and complex ARs (βγ and βγδ).

AR are observed using two modalities: photospheric continuum images and mag-

netogram. SOHO-MDI provides almost continuous observations of the Sun in the

white-light continuum, in the vicinity of the Ni i 676.78 nm photospheric absorption

line. These photospheric intensity images are primarily used for sunspot observations.

MDI data are available in several processed “levels”. We use level-1.8 images, and

rotate them with North up. SOHO provides two to four MDI photospheric intensity

images per day with continuous coverage since 1995. Using the same instrument level,

1.8 line-of-sight (LOS) MDI magnetograms are recorded with a nominal cadence of

96 minutes. The magnetograms show the magnetic fields of the solar photosphere,

with negative (represented as black) and positive (as white) areas indicating opposite

LOS magnetic-field orientations.

As stated in Section 7.1, SMART masks [92] are used to determine the boundaries

of magnetic active regions from MDI magnetograms. Those masks are applied also

on continuum images to determine the surrounding part of the sunspot that is af-

fected by magnetic fragments as seen in magnetogram images. Similarly, the STARA

algorithm [201] provides masks for sunspots (umbrae and penumbrae) from MDI con-

tinuum and those masks are applied on magnetogram images to determine the AR

cores corresponding to the sunspots. Combining these two types of masks provides
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thus two sets of pixels within each AR: those belonging to the sunspots themselves

as found by STARA and those belonging to the magnetic fragments (or background)

within an AR as found by the difference set between the SMART and STARA masks.

As in [142] we use image patch features to account for spatial dependencies using

square patches of pixels. Thus if a SMART mask of an image has n pixels and we use

a m×m patch, the corresponding continuum data matrix X is m2× n where the ith

column contains the pixels in the patch centered at the ith pixel. The magnetogram

data matrix Y is formed in the same way and the full data matrix is Z =

 X

Y


with size 2m2 × n. We let zi denote the ith column of Z. The images from both

modalities are also normalized prior to analyzing them.

In image patch analysis, the size of the patch should be no larger than the smallest

feature that is to be captured. Otherwise, the relevant feature may be suppressed.

Additionally, large patches lead to high-dimensional estimates which suffer in accu-

racy from ”the curse of dimensionality,” which refers to the fact that the number of

observations must increase at least linearly in the number of parameters for accurate

estimates to be possible in statistical inference [29]. Since some sunspot and active

region features can be quite small and to limit the effects of high dimensionality on

our analysis, we primarily use 3× 3 patches in each modality although larger patches

are used in Section 5.4 when analyzing spatial correlations in the images.

5.3 Intrinsic Dimension Estimation

The goal of this section is to determine the number of intrinsic parameters or de-

grees of freedom required to describe the spatial and modal dependencies using image

patches. We consider 3 × 3 patches within both the continuum and magnetogram

images giving an extrinsic dimension of 18. The intrinsic dimension will determine

how redundant these 18 dimensions are. In addition, intrinsic dimension provides an
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indicator of complexity which we compare against the Mount Wilson classification,

similarly to what [133] and [98] did using fractal dimension and gradient strength

along polarity separating lines, respectively. More details on the concept of intrinsic

dimension on manifolds are included in Appendix E.

It is also important to know whether linear analyses can be accurately applied to

the data or whether non-linear techniques are required. Linear methods have been

applied successfully to solar images before such as in [49]. However, it is not guaran-

teed that natural images are best represented using linear methods as there are cases

where non-linear models have superior performance [47]. Thus this is important to

investigate both for further analysis of the data in Chapter VI and for the correlation

analysis in Section 5.4. If the data lie on a nonlinear subspace and we perform a

linear analysis of the data (e.g. partial correlation, canonical correlation analysis, or

principal component analysis), then the results will be only a linear approximation of

the true relationships and dependencies of the data. Nonlinear methods of analysis

would be necessary to obtain higher accuracy in this case. To answer this question,

we estimate the local intrinsic dimension using a method appropriate for linear sub-

spaces and a method appropriate for any (linear or non-linear) smooth subspace and

then compare the results.

5.3.1 PCA: A Linear Estimator

Principal Component Analysis (PCA) [100] finds a set of linearly uncorrelated

vectors (principal components) that can be used to represent the data. PCA has been

used previously for various purposes in solar-physics and space-weather literature, e.g.

to study the background and sunspot magnetic fields [30, 117, 209], for analysis of

solar wind data [94], or to reduce dimensionality [50].

In PCA, the principal components are the eigenvectors of the covariance matrix
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Σ:

Σ =

 Σxx Σxy

Σyx Σyy

 ,

where x and y are random vectors of dimension 9, x being a patch from the con-

tinuum image, and y the corresponding patch from the magnetogram image. The

eigenvalues indicate the amount of variance accounted for by the corresponding prin-

cipal component. A linear estimate of intrinsic dimension is the number of principal

components that are required to explain a certain percentage of the variance.

By nature, PCA is a global operation and so it provides a global estimate of

the intrinsic dimension. We can obtain more local estimates by performing PCA

separately on the areas within the sunspots and on the magnetic fragments. These

areas are separated using the STARA and SMART masks.

5.3.2 k-NN: A General Estimator

The general method we use is a k-Nearest-Neighbor (k-NN) graph approach with

neighborhood smoothing [31, 40]. The intuition behind the method is that we grow

the k-NN graph from a point zi by adding an edge from zi to zj if zj is within the

k nearest neighbors of zi. The growth rate of the total edge length of the graph is

related to the intrinsic dimension of the data in a way that enables us to estimate it.

One advantage of the k-NN method, in contrast to global methods such as [122],

is it provides an estimate of the local intrinsic dimension by limiting the growth of the

graph to a smaller neighborhood. This provides an estimate of intrinsic dimension at

each pixel location in the image which allows us to more easily visualize the intrinsic

dimension estimates. Additionally, when the number of samples within a region

of interest is small (such as within a small sunspot), this local method provides

more accurate estimates of intrinsic dimension than applying a global method (such

as PCA) since the inclusion of the neighboring pixels results in a higher number
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Figure 5.2: Examples of the estimated local intrinsic dimension using the k-NN
method for an α group (top) and a βγδ group (bottom). Regions with more spa-
tial structure have lower intrinsic dimension.

of samples. Technical explanation of the k-NN method and more details on local

intrinsic dimension are given in Appendix E.

5.3.3 General Results

We estimate the intrinsic dimension of the image patches within the sunspots and

magnetic fragments for all 424 ARs using both the k-NN approach and PCA, where

the extrinsic dimension of the joint patches is 18. Figure 5.2 shows two examples of

the estimated local intrinsic dimension using the k-NN method and the corresponding

continuum and magnetogram images. One set of images corresponds to an α group

while the other set is a βγδ group. In these examples, areas with more spatial struc-

ture, such as within the sunspots, have lower intrinsic dimension. Fewer parameters

are required to accurately represent structured data than noise and so the intrinsic

dimension is lower.
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α β βγ βγδ All
Sunspots k-NN, pooled 3.9± 1.2 4.4± 1.0 4.4± 0.9 4.5± 0.7 4.3± 1.0
Sunspots k-NN, means 4.0± 1.0 4.8± 1.2 4.4± 0.6 4.4± 0.4 4.5± 1.0
Sunspots PCA 97% 3.7± 0.8 4.4± 0.9 4.3± 0.6 4.2± 0.5 4.3± 0.8
Sunspots PCA 98% 4.5± 0.9 5.2± 1.0 5.1± 0.8 5.0± 0.5 5.0± 0.9
Fragments k-NN, pooled 8.0± 1.1 8.0± 1.2 7.7± 1.2 7.6± 1.2 8.0± 1.2
Fragments k-NN, means 8.0± 0.4 7.9± 0.5 7.6± 0.5 7.6± 0.5 7.8± 0.5
Fragments PCA 97% 7.7± 1.6 7.1± 1.2 6.2± 1.2 6.2± 1.3 6.8± 1.4
Fragments PCA 98% 9.1± 1.6 8.5± 1.3 7.5± 1.2 7.4± 1.3 8.1± 1.4

Table 5.3: Estimated intrinsic dimension results for different groups of ARs in the
form of mean±standard deviation. The complex ARs have higher intrinsic dimension
within the sunspots than the simple ARs but lower intrinsic dimension within the
magnetic fragments.

Table 5.3 provides the mean and standard deviation of the intrinsic dimension

estimates within the sunspots and magnetic fragments. These statistics are also

provided for ARs within the main Mount Wilson classes (α, β, βγ, and βγδ). We

provide PCA results for the cases where we estimate the intrinsic dimension as the

number of components required to explain 97% and 98% of the variance, respectively.

For the k-NN method, we provide the results in two ways. For one, we take the

mean of local intrinsic dimensions within each image (separating the ‘sunspot’ from

the ‘magnetic fragments’) and then calculate the mean and standard deviation of

these means. The statistics in this category correspond to the mean and standard

deviation of the average intrinsic dimension of each image and are more directly

comparable to the PCA results. However these results may be affected slightly by

small sunspot groups. For the other approach, we pool all of the local estimates

(again separating sunspots from magnetic fragments) and then calculate the mean

and standard deviation. These results correspond to the mean and standard deviation

of the pixels within each region and category and are less affected by small sunspot

groups.

From Table 5.3, it is clear that the intrinsic dimension is lower within the sunspots

than in the magnetic fragments for all methods. This is expected as there is more spa-
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tial structure within the images inside the sunspots than in the magnetic fragments,

especially in the continuum image.

The average PCA estimate with a 97% threshold and the average mean k-NN

estimate give similar results inside the sunspot while the average 98% PCA estimate

is closest to the average mean k-NN estimate within the magnetic fragments. If

linear methods were not sufficient to represent the spatial and modal dependencies,

we would expect the PCA results to be much higher than the k-NN results when using

comparable thresholds as more linear than nonlinear components would be required

to accurately represent the data. However, this close agreement between the general

and linear results suggests that linear methods are sufficient and that linear dictionary

methods would be appropriate for these data.

5.3.4 Patterns Within the Mount Wilson Groups

For both the PCA and k-NN methods, the average estimated intrinsic dimension

is lower within the sunspots in α groups than in the more complex groups such as

βγδ. This is consistent with Figure 5.2 and may be related to the lower complexity

of α groups. These exhibit more spatially coherent images, which can be described

using a lower number of basis elements, and hence have a lower intrinsic dimension.

Within the magnetic fragments, the opposite trend occurs where the less complex

groups have higher intrinsic dimension. This suggests that the magnetic fragments

are fewer, weaker, and less structured outside of the α and β groups compared to

the more complex regions, leading to a more noise-like background in their magnetic

fragments. This hypothesis is supported by the normalized histograms of the mean

k-NN estimates of intrinsic dimension and the normalized histograms of the pooled k-

NN estimates in Figures 5.3 and 5.4. The histograms of mean intrinsic dimension show

that within the magnetic fragments, α groups generally have higher mean intrinsic

dimension than βγδ groups. In fact, no α groups have a mean intrinsic dimension
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Figure 5.3: Normalized histograms of mean estimated intrinsic dimension of α, β,
βγ, and βγδ groups using the k-NN method. The distributions of intrinsic dimension
differ by complexity with simpler AR groups having higher (resp. lower) intrinsic
dimension within the sunspot (resp. magnetic fragments).

less than 7.5 within the magnetic fragments. However, the normalized histograms

of the individual patch estimates show a significant number of patches with intrinsic

dimension less than 7.5 within the fragments. This suggests that for each α group,

the majority of the patches have higher intrinsic dimension in the magnetic fragments

and are thus more noise-like. In contrast, there are some βγδ groups where the mean

intrinsic dimension of the magnetic fragments is lower (less than 7.5) and so these

magnetic fragments are dominated by patches with more structure.

Table 5.3 also shows that the standard deviation of the estimates within the

sunspots decreases as the complexity increases as measured by the Mount Wilson

classification scheme. The histograms in Figures 5.3 and 5.4 can be used to determine
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Figure 5.4: Normalized histograms of pooled local estimates of intrinsic dimension
of α, β, βγ, and βγδ groups using the k-NN method. The distributions of intrinsic
dimension differ by complexity with simpler AR groups having higher (resp. lower)
intrinsic dimension within the sunspot (resp. magnetic fragments).

85



the cause. From the histograms, it is clear that within the sunspots the intrinsic

dimension of α groups does not have a Gaussian distribution. In this case, most of

the estimates are between 3 and 5. However, there are a significant number of outliers

with intrinsic dimension greater than 5. The presence of these outliers contributes to

the high standard deviation. This is in contrast to the intrinsic dimension of βγ and

βγδ groups inside the sunspot which have fewer outliers and thus smaller standard

deviations.

The outliers in the α groups correspond to small sunspots. The number of pixels

within the α sunspots with average intrinsic dimension ≥ 6 range between 10 and

53 with a median of 16. In these cases, the spatial structure of the sunspots may be

more similar to the magnetic fragments than the spatial structure of larger sunspots.

Thus the intrinsic dimension is higher in the small sunspots.

A similar phenomenon occurs within the β groups. Note that in Table 5.3, the

average and standard deviation of the mean intrinsic dimension of the β groups within

the sunspots is higher than for all other groups. This is also caused by a few outliers

that have high average intrinsic dimension due to the small size of the sunspots.

When individual local intrinsic dimension estimates of the patches from these small

sunspots are pooled with the estimates from all other β patches, the average intrinsic

dimension is more aligned with that of the other Mount Wilson types. Additionally,

ignoring the biggest outliers in the mean intrinsic dimension (defined as having mean

intrinsic dimension > 6.25) gives an average mean intrinsic dimension of 4.6 for the

β groups which is more aligned with the other groups.

The distribution of intrinsic dimension within the magnetic fragments also differs

by complexity based on Figures 5.3 and 5.4. The complex ARs have more patches and

images with lower intrinsic dimension than the simple sunspots which is consistent

with Table 5.3.

In summary, based on the estimated intrinsic dimension of the image patches,
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relatively few parameters are required to accurately represent the data. We have

found that the distribution of local intrinsic dimension varies based on the complexity

of the sunspot group with the more complex sunspots having higher (resp. lower)

intrinsic dimension within the sunspot (resp. magnetic fragments). Additionally,

the standard deviation of the intrinsic dimension is higher within the sunspot in

the simpler sunspots than the complex ARs. This is due to the presence of small

sunspots among the simpler ARs that tend to have less spatial structure and thus

a higher intrinsic dimension than typical sunspots. We have also shown that linear

methods should be sufficient to accurately analyze the data.

5.4 Spatial and Modal Correlations

The results in the previous section indicate that linear methods are likely sufficient

to represent the spatial and modal dependencies within a sunspot. We therefore

analyze the linear correlation over patches using partial correlation and canonical

correlation analysis (CCA).

The partial correlation is proportional to the inverse of the correlation matrix and

analyzes the pixel-to-pixel correlation when the influence of all other pixels has been

removed. It provides insight into how large a patch should be used to sufficiently

capture the spatial and modal correlations in future analysis.

CCA on the other hand is determined by finding the most correlated linear combi-

nations of pixels from each image, solved as a generalized eigenvalue problem, which is

useful for determining the degree of mutual correlation between two modalities. If the

two modalities are independent, there is no benefit in processing them together, while

if the two modalities are strongly dependent, processing only one of the modalities is

sufficient since the other modality would not contain any additional information.
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5.4.1 Partial Correlation: Methodology

The partial correlation measures the correlation between two random variables

while conditioning on the remaining random variables. The intuition behind partial

correlation can be best explained with the linear regression concept. Suppose you

want to compute the partial correlation between two variables X1 and X2 given a set

of variables X . First, compute the linear regression using variables in X to explain

X1 and obtain the associated residuals rX1 . Proceed similarly for X2 and get residuals

rX2 . The partial correlation betweenX1 andX2 is then equal to the (usual) correlation

between rX1 and rX2 , for which the effect of variables X have been removed.

In our context, let x be a patch from the continuum image, and |y| be the magni-

tude (entry-wise absolute value) of the corresponding patch from the magnetogram.

The partial correlation matrix P =

 Pxx Px|y|

P|y|x P|y||y|

 and its off-diagonal elements

can be derived from the inverse correlation matrix. We use the magnitude of the

magnetogram data since both positive and negative polarities affect the continuum

image in similar ways.

5.4.2 Partial Correlation: Results

Figure 5.5 gives the estimated partial correlation matrices when using 3 × 3 and

5 × 5 patches. The patches are extracted from all of the active regions and divided

using the STARA and SMART masks into sunspots and magnetic fragments as before.

The partial correlation of 3× 3 patches is quite strong within both modalities. Based

on a false alarm rate of 0.05, the theoretical thresholds for significance for the partial

correlation [89] of the 3×3 patches are approximately 0.0070 and 0.0014 for within the

sunspots and magnetic fragments, respectively. For the 5× 5 patches, the thresholds

are 0.0080 and 0.0016, respectively. Given these thresholds, the partial correlation

is statistically significant for nearly all values within the modalities (Pxx and P|y||y|)
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Figure 5.5: Estimated partial correlation matrices of patch data from within the
sunspots and the magnetic fragments using 3×3 (left) and 5×5 (right) patches. The
theoretical thresholds [89] for significance to attain a 0.05 false alarm rate are 0.0070
and 0.0014 for within the sunspots and magnetic fragments, respectively when using
a 3× 3 patch. For the 5× 5 patch, the thresholds are 0.0080 and 0.0016, respectively.
Statistically insignificant values are set to zero.

using the 3× 3 patches.

The cross-partial correlation when using the signed magnetic field (i.e. Pxy and

Pyx) is very near zero in both regions (not shown). However, when we take the

absolute value of the magnetogram patches, then the magnitude of the cross-partial

correlation (Px|y| and P|y|x) is much higher in both regions suggesting that the cor-

relation between the modalities is significant. The partial correlation is also stronger

in magnitude in all cases within the sunspots than within the magnetic fragments.

The partial correlation matrices are very structured. In both sunspots and mag-

netic fragments, the pentadiagonal-like structure within the modalities suggests that

the image is generally stationary with approximately a third order nearest neighbor

Markov structure in the pixels. Such structure is clearly seen in the matrices for

5 × 5 patches. The cross-partial correlation also has a pentadiagonal-like structure

although the correlation is not as strong as within the modalities.

To better see the spatial correlations, in Figure 5.6 we plot the partial correlation

patches taken from the columns of the sunspot partial correlation matrix correspond-

ing to the center pixels when using 5×5 patches. Figure 5.6 shows clearly the greater

partial correlation within the continuum. It also highlights that correlation is slightly

higher in magnitude in the vertical direction than the horizontal direction. Nearly all
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Figure 5.6: Partial correlation patches extracted from the columns in the sunspot
partial correlation matrix corresponding to the center pixels. The partial correlation
is stronger within the continuum.

sunspots in this study are located within (−30◦,+30◦) from both the central meridian

and the equator, and so projection effect are unlikely to cause this difference. The

difference in correlation may be a feature of the sunspots themselves, but this may

be difficult to determine since the difference in partial correlation is small.

Some slight differences exist in the partial correlation matrices restricted to certain

Mount Wilson classes. As an example, Figure 5.7 contains the partial correlation

matrices within the sunspots after restricting the data to α and β groups as well

as the difference between the absolute value of the two matrices. The α partial

correlation matrix is higher in magnitude within the modalities than the β matrix

but lower between the modalities. Within modalities, the strongest differences (a

maximum of 0.056 and 0.067 within the continuum and magnetogram, respectively)

are in the entries that correspond to pixels that are farther away from each other. In

contrast, within the cross-partial correlation, the strongest differences (a maximum

of 0.072) between the two AR types are in the entries that correspond to pixels that

are close to each other. A similar pattern holds when comparing the α matrix to the

matrices of the more complex groups.

Overall, the partial correlation matrices indicate that no larger than a 5 × 5

patch is necessary to capture the local spatial dependencies. A 5× 5 patch of pixels

corresponds roughly to the size of a mesogranule [168, 169]. This suggests that within

the magnetic fragments, it is likely that the granules and mesogranules within the
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Figure 5.7: Partial correlation matrices within the sunspots using the data from
α (left) and β ARs (center). Statistically insignificant values are again set to zero.
(Right) difference between the absolute value of the α and β matrices. The α sunspots
are more (resp. less) strongly correlated within (resp. between) the modalities than
the β groups.

photosphere contribute to the local spatial dependencies. Within the sunspots, a 5×5

patch corresponds to the size of the characteristic length of the largest penumbral

filaments [192] which suggests that on average the local spatial dependencies are

minimal beyond this scale. This analysis, however, does not rule out long-range

spatial dependencies, which are more difficult to assess due to the large dimensionality.

Future work will focus on this.

In the remainder of our analysis, we choose a 3×3 patch for the reasons mentioned

in Section 5.2: to ensure that we capture the features of small sunspots and to limit

the effects high dimension on the accuracy of the analysis. Given these concerns, we

see that 3 × 3 patches capture most of the spatial correlation. This is evident from

Figure 5.5 where the partial correlation between pixels on opposite corners of a 3× 3

patch is near zero and other pixels that are similarly far away from each other have

low partial correlation. Thus a 3 × 3 patch strikes a good balance between scale,

extrinsic dimension, and capturing the spatial correlation.

5.4.3 Canonical Correlation Analysis: Methodology

To further investigate the correlation between the modalities, we use canonical

correlation analysis (CCA) on the continuum patch x and the magnitude of the
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magnetogram patch y. CCA finds patterns and correlations between two multivariate

data sets [150, 153] and was used previously in the context of space weather e.g. for

the combined analysis of solar wind and geomagnetic index data sets [27].

In our application, CCA provides linear combinations of continuum patches x

that are most correlated with linear combinations of magnetogram patches y. In

other words, all correlations between the continuum and magnetogram patches are

channeled through the canonical variables. Formally, CCA finds vectors ai and bi

for i = 1, . . . ,m2 such that the correlation ρi = corr(aTi x,bTi |y|) is maximized and

the pair of random variables ui = aTi x and vi = bTi |y| are uncorrelated with all other

pairs uj and vj, j 6= i. The variables ui and vi are called the ith pair of canonical

variables while the vectors ai and bi are the canonical vectors. The solution ai is the

ith eigenvector of the matrix Σ−1
xxΣx|y|Σ

−1
|y||y|Σ|y|x which are taken from the covariance

matrix. The vector bi is found similarly [84].

5.4.4 Canonical Correlation Analysis: Results

Here we focus on 3 × 3 patches and apply CCA to all 424 image pairs using the

magnitude of the magnetogram patches. Figure 5.8 (left and center) shows histograms

of the estimated values of ρ1. Within the sunspots, there are many groups with a near

perfect correlation between the modalities and none of the groups have an estimated

value below 0.41. The right plot in Figure 5.8 plots the estimated values of ρ1 vs. the

number of samples used within the sunspots. Based on this plot, there are many ARs

with high correlation and few patch samples suggesting that the correlation may be

spurious. However, all of the estimated values are statistically significant as defined

by the threshold given by [89] using a false alarm rate of 0.05 (shown as the magenta

line in Figure 5.8).

The histogram of ρ1 within the magnetic fragments (Fig. 5.8, center) is quite

different from the sunspot histogram (Fig. 5.8, left). ρ1 is generally lower within the
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Figure 5.8: Histograms of estimated ρ1 using CCA for within the sunspots (left) and
the magnetic fragments (center) using 3× 3 patches. Right: Scatter plot of ρ1 values
and the number of samples available for within the sunspots. All points are above
the magenta line which gives the threshold for statistical significance at a false alarm
rate of 0.05 [89].

magnetic fragments than within the sunspots which is consistent with the results in

Figure 5.5. All of the ρ1 values are statistically significant.

The distributions of ρ1 differ slightly when comparing simple sunspot groups (α

and β) with complex groups (βγ and βγδ). Figure 5.9 shows that complex groups

generally have lower correlation between the modalities within the sunspots than

the simpler groups. The estimated Hellinger distance (see Appendix ??) between

the distributions using the divergence estimator in [140, 141] is 0.22. Based on the

central limit theorem of the estimator [141], this value is statistically significant with

a p-value of 1.6 × 10−12. At least some of this difference is likely due to the smaller

size of the simpler groups (and thus smaller sample size). However, it is unlikely to

fully explain the difference given that there are many simple sunspot groups with

high correlation and sufficient sample size.

Within the magnetic fragments, there are many more simple regions than complex

regions with ρ1 < 0.4 (see the histogram in Figure 5.9, right). This could be related

to the same phenomena that causes the intrinsic dimension to be higher within the

magnetic fragments of simple sunspot groups observed in Section 5.3.3. However, the

estimated Hellinger distance between these distributions is 0.016. Using the same

statistical test, this estimate is not statistically significant with a p-value of 0.31.
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Figure 5.9: ρ1 histograms of complex (βγ and βγδ) and simple (α and β) regions
within the sunspots (left) and the magnetic fragments (right). The simple ARs are
generally more correlated within the sunspots but less correlated within the magnetic
fragments. The difference between the sunspot distributions, as measured by the
Hellinger distance, is statistically significant.

Thus the distributions are not statistically different from each other.

To analyze the spatial patterns that produce the highest correlation between

modalities, we apply CCA to the entire data set. Figure 5.10 plots ρi for i = 1, . . . , 9

for within the sunspots and within the magnetic fragments. The ρi are all statisti-

cally significant. Notice that the ρi are higher within the sunspots than the magnetic

fragments which is consistent with the results in Figures 5.5 and 5.8.

Figure 5.10 shows the canonical patches ai and bi for i = 1, . . . , 6 when using

all the data from within the sunspots. These are the spatial patterns within the

two modalities that are most correlated with each other. The canonical patches

have a “saddle-like” appearance where the gradient is positive in some directions and

negative in others. For example, in a4, the pixels to the left and right of the center

are very negative but the pixels in the corners are all very positive. Note that these

vectors correspond to centered values with respect to the mean patches.

Comparing the ais to the bis shows that the bis are approximately equal to the

negative of the ais. This makes sense as sunspots within the continuum images

correspond to a decrease in value relative to the background while ARs within the
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Figure 5.10: (Left) Plot of the estimated ρi using CCA on the entire data set for
i = 1, . . . , 9. All values are statistically significant [89]. (Right) Canonical patches ai
(top) and bi (bottom) for i = 1, . . . , 6 when using the entire data set from within the
sunspots. The bis are approximately equal to the negative of the ais.

magnitude of the magnetogram images correspond to an increase in value relative to

the background.

We also performed CCA separately on the data from the Mount Wilson classes.

Figure 5.11 plots the ρi values for each class and the first canonical patches a1 and

b1. For ρ1 and ρ2, the values for each class decrease in order of complexity (α, β, βγ,

βγδ). This is consistent with our comparison of the partial correlation matrices in

Figure 5.7 where the partial correlation was generally higher (in magnitude) for the α

groups than the others. This is also consistent with the intrinsic dimension analysis in

Section 5.3 where the intrinsic dimension generally increases with complexity. This

is because if the correlation between and within modalities is higher, then fewer

parameters are required to accurately describe the data which results in a lower

intrinsic dimension.

The canonical patches a1 and b1 have similar patterns across the different classes

although the patches for the βγ class are flipped compared to the others. The mag-

nitude of the values in the βγδ patches are also smaller than the those of the other

patches.

Overall, the results of this section suggest that the two modalities are correlated

in both the sunspots and the magnetic fragments and are therefore not independent.
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Figure 5.11: (Left) Plot of the estimated ρi using CCA on data segregated by Mount
Wilson classes for i = 1, . . . , 9 within the sunspots α groups start out with the highest
correlation. (Right) Canonical patches a1 (top) and b1 (bottom) for the Mount
Wilson classes within the sunspots. Again, the b1s are approximately equal to the
negative of the a1s as in Figure 5.10 but the patches differ slightly from class to class.

The correlation is stronger within the sunspots compared to the magnetic fragments

and stronger within the sunspots in simple ARs compared to complex ARs. However,

the correlation is not perfect and so there may be an advantage to including both

modalities in the classification of sunspots and flare prediction.

5.5 Conclusion

Existing AR categorical classification systems such as the Mount Wilson and

McIntosh schemes describe geometrical arrangements of the magnetic field at the

largest length scale. In this chapter, we have focused on the properties of the ARs at

fine length scale. We showed that when we analyze the global statistics or attributes

of these local properties, we find differences between the simple and complex ARs as

defined using the large scale characteristics. Thus by this approach, we are analyzing

both the large and fine scale properties of the images. Such results may be due to

the multi-scale properties of the magnetic fields, as evidenced previously in [98].

This chapter also highlighted specific behaviors of the core of active regions (that

corresponds to the sunspot masks in continuum) and magnetic fragments (the sur-

rounding part of AR), as well as the difference between these two regions as a function
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of the Mount Wilson classification. We found that within the sunspots, the spatial

and modal correlations are stronger than within the magnetic fragments. Addition-

ally, simpler ARs were found to have higher correlation between the modalities within

the sunspots than the complex ARs.

This chapter paves the way for further analysis based on matrix factorization. The

results of Section 5.3 justifies the use of linear methods of analysis. Knowledge of the

intrinsic dimension allows us to choose the number of factors. The spatial and modal

correlation analysis in Section 5.4 also justifies the choice of a patch size of 3× 3 and

confirms that both modalities (continuum and magnetogram) should be used in the

analysis. This analysis is provided in Chapter VI.
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CHAPTER VI

Application to Sunspot Images: Clustering via

Divergence Estimation and Bayes Error

Estimation

6.1 Introduction

6.1.1 Context

While the Mount Wilson classification scheme has been effective in relating a

sunspot’s large scale magnetic configuration with its ability to produce flares, the

categorical nature of the Mount Wilson classification prevents the differentiation be-

tween two sunspots with the same classification and makes the study of an AR’s

evolution cumbersome. Moreover, the Mount Wilson classification is generally car-

ried out manually which results in human bias. Several papers [35, 36, 188] have used

supervised techniques to reproduce the Mount Wilson and other schemes which has

resulted in a reduction in human bias.

To go beyond categorical classification in the flare prediction problem, the last

decade has seen many efforts in describing the photospheric magnetic configuration

in more details. Typically, a set of scalar properties is derived from line of sight

(LOS) or vector magnetogram and analyzed in a supervised classification context
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to derive which combination of properties is predictive of increased flaring activity

[3, 10, 25, 56, 71, 77, 96, 120, 121, 176, 183, 207]. Examples of scalar properties

include: sunspot area, total unsigned magnetic flux, flux imbalance, neutral line

length, maximum gradients along the neutral line, or other proxies for magnetic

connectivity within ARs. These scalar properties are features that can be used as

input in flare prediction. However, there is no guarantee that these selected features

exploit the information present in the data in an optimal way for the flare prediction

problem.

6.1.2 Contribution

We introduce a new data-driven method to cluster ARs using information con-

tained in magnetogram and continuum. Instead of focusing on the best set of proper-

ties that summarizes the information contained in those images, we study the natural

geometry present in the data via a reduced-dimension representation of such images.

The reduced-dimension is implemented via matrix factorization of an image patch

representation as explained in Section 6.1.3. We show how this geometry can be used

for classifying ARs in an unsupervised way, that is, without including AR labels as

input to the analysis. We consider the same dataset as in Chapter V.

Our method can be adapted to any definition of the support of an AR, or Region

of Interest (ROI), and such ROI must be given a priori. We consider three types of

ROIs:

1. Umbrae and penumbrae masks obtained with the Sunspot Tracking and Recog-

nition Algorithm (STARA) [201] from continuum images. These sunspot masks

encompass the regions of highest variation observed in both continuum and

magnetogram images, and hence are used primarily to illustrate our method.

Figure 6.1 provides some examples of AR images overlaid with their respective

STARA masks.
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Figure 6.1: MDI continuum and magnetogram from NOAA 9097 on July 23, 2000
(top) and from NOAA 10045 on July 25, 2002 (bottom) overlaid with the correspond-
ing STARA masks in green.
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2. The neutral line region, defined as the set of pixels situated no more than 10

pixels (20 arcsec) away from the neutral line, and located within the Solar

Monitor Active Region Tracker (SMART) masks [92], which defines magnetic

AR boundaries.

3. The set of pixels that are used as support for the computation of the R-value de-

fined in [176]. The R-value measures a weighted absolute magnetic flux, where

the weights are positive only around the neutral line.

Our patch-based matrix factorization method investigates the fine scale structures

encoded by localized gradients of various directions and amplitudes, or locally smooth

areas for example. In contrast, the Mount Wilson classification encodes the relative

locations and sizes of concentrations of opposite polarity magnetic flux on a large scale.

Although both classification schemes rely on completely different methods, using the

first ROI defined above, we find some similarities (see Section 6.5). Moreover the

Mount Wilson classification can guide us in the interpretation of the results and

clusters obtained.

The shape of the neutral line separating the two main polarities in an AR is

a key element in the Mount Wilson classification scheme, and the magnetic field

gradients observed along the neutral line are important information in the quest for

solar activity prediction [56, 176]. We therefore analyze the effect of including the

neutral line region in Section 6.5.

Results based on the third ROI are compared directly to the R-value. The various

comparisons enable us to evaluate the potential of our method for flare prediction.

6.1.3 Reduced dimension via matrix factorization

Our data-driven method is based on a reduced-dimension representation of an AR

ROI via matrix factorization of image patches. Matrix factorization is a widely used

tool to reveal patterns in high dimensional datasets. Applications outside of solar
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physics are numerous and range e.g. from multimedia activity correlation, neuro-

science, gene expression [12], to hyperspectral imaging [137].

The idea is to express a k−multivariate observation z1 as a linear combination of

a reduced number of r < k components aj, each weighted by some (possibly random)

coefficients hj,1:

z1 =
r∑
j=1

ajhj,1 + n1, (6.1)

where n1 represents residual noise. With Z = [z1, . . . , zn], the equivalent matrix

factorization representation is written as

Z = AH + N (6.2)

where Z is a k×n data matrix containing n observations of k different variables, A is

the k× r matrix containing the ‘dictionary elements’ (called ’factor loadings’ in some

applications) and H is the r× n matrix of coefficients (or ‘factor scores’). The k × n

matrix N contains residuals from the matrix factorization model fitting. Finding A

and H from the knowledge of Z alone is a severely ill-posed problem, hence prior

knowledge is needed to constrain the solution to be unique.

Principal Component Analysis (PCA) [100] is probably the most widely used

dimensionality reduction technique. It seeks principal directions that capture the

highest variance in the data under the constraints that these directions are mutually

orthogonal, thereby defining a subspace of the initial space that exhibit information

rather than noise. The PCA solution can be written as a matrix factorization thanks

to the Singular Value Decomposition (SVD) [147], and so we use SVD in the clustering

method presented here.

The Nonnegative Matrix Factorization (NMF) [119] is also considered in this chap-

ter. Instead of imposing orthogonality, it constrains elements of matrices A and H to

be nonnegative. We further impose that each column of H has elements that sum up
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to one, thereby effectively using a formulation identical to one used in hyperspectral

unmixing [20].

Unmixing techniques exploit the high redundancy observed in similar bandpasses.

They aim at separating the various contributions and at estimating a smaller set of less

dependent source images. Matrix factorization, known as ‘blind source separation’ in

this context, has many applications, ranging from biomedical imaging, chemometrics,

to remote sensing [37], and recently to the extraction of salient morphological features

from multi-wavelength extreme ultraviolet solar images [49].

In this chapter, we wish to factorize a k×n data matrix Z containing n observations

of k different variables as in (6.2) where the dictionary matrix A spans a subspace of

the initial space, with r < k. We consider the cases where Z is formed from a single

image as well as from multiple images.

When a single image is used, the data matrix Z is built from a n pixel image

by taking overlapping m × m-pixel neighborhoods called patches. Figure 6.2 (left)

presents such a patch and its column representation. The k rows of the i−th column

of Z are thus given by the m2 pixel values in the neighborhood of pixel i. The right

plot in Figure 6.2 provides the number of patches in each pair of AR images when

using the STARA masks. When multiple images are used, such as when analyzing

collectively all images from a given Mount Wilson class, the patches are combined

into a single data matrix. Table 5.1 gives the total number of patches from each

Mount Wilson class when using the STARA masks.

A factorization of a data matrix containing image patches is illustrated in Fig-

ure 6.3. In this figure, let z1 be the first column of Z, containing the intensity values

for the first patch. These intensity values are decomposed as a sum of r elements as

in Equation (6.1) where aj is the j−th column of A and hj,1 is the (j, 1)−th element

of H. In this representation, the vectors aj, j = 1, . . . , r are the elementary building

blocks common to all patches, whereas the hj,1 are the coefficients specific to the first
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Figure 6.2: (Left) An example of a 3× 3 pixel neighborhood or patch extracted from
the edge of a sunspot in a continuum image and its column representation. (Right)
The number of patches extracted from each pair of AR images when using the STARA
masks.

patch.

To compare ARs and cluster them based on this reduced dimension representation,

some form of distance is required. To measure the distance between two ARs, we apply

some metrics to the corresponding matrices A or H obtained from the factorizations

of the two ARs. These distances are further introduced into a clustering algorithm

that groups ARs based on the similarity of their patch geometry.

6.1.4 Outline

Section 6.2 describes two matrix factorization methods: the singular value decom-

position (SVD) and nonnegative matrix factorization (NMF). While more sophisti-

cated methods exist that may lead to improved performance, we focus on SVD and

NMF to demonstrate the utility of an analysis of a reduced dimension representation

of image patches for this problem. Future work will include further refinement in the

choice of matrix factorization techniques. To compare the results from this factoriza-

tion we need a metric, and so we use the Hellinger distance for this purpose. To obtain

some insight on how these factorizations separate the data, we make some general

comparisons in Section 6.3. In particular, with the defined metric, we compute the
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Figure 6.3: An example of linear dimensionality reduction where the data matrix
of AR image patches Z is factored as a product of a dictionary A of representative
elements and the corresponding coefficients in the matrix H. The A matrix consists
of the basic building blocks for the data matrix Z and H contains the corresponding
coefficients.

pairwise distances between Mount Wilson classes to identify which classes are most

similar or dissimilar according to the matrix factorization results.

Section 6.4 describes the clustering procedures that take the metrics’ output as

input. The method called ‘Evidence Accumulating Clustering with Dual rooted Prim

tree Cuts’ (EAC-DC) was introduced by [67] and is used to cluster the ARs. By

combining the two matrix factorization methods, a total of two procedures are used

to analyze the data. Besides analyzing the whole sunspot data, we also look at

information contained in patches situated along the neutral lines. The results of the

clustering analyses are provided in Section 6.5.

6.2 Matrix Factorization

The intrinsic dimension analysis in Chapter V showed that linear methods (e.g.

matrix factorization) are sufficient to represent the data, and hence we focus on those.

Matrix factorization methods aim at finding a set of basis vectors or dictionary ele-

ments such that each data point (in our case, pair of pixel patches) can be accurately

expressed as a linear combination of the dictionary elements. Mathematically, if we

use m ×m patches then this can be expressed as Z ≈ AH, where Z is the 2m2 × n
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data matrix with n data points being considered, A is the 2m2×r dictionary with the

columns corresponding to the dictionary elements, and H is the r×n matrix of coef-

ficients. The goal is to find matrices A and H whose product nearly approximates Z.

The degree of approximation is typically measured by the squared error ||Z−AH||2F ,

where || · ||F denotes the Frobenius norm [204]. Additional assumptions on the struc-

ture of the matrices A and H can be applied in matrix factorization depending on

the application. Examples include assumptions of orthonormality of the columns of

the dictionary A, sparsity of the coefficient matrix H [166], and nonnegativity on A

and H [125].

We consider two popular matrix factorization methods: the singular value decom-

position (SVD) and nonnegative matrix factorization (NMF).

6.2.1 Factorization using SVD

To perform matrix factorization using SVD, we take the singular value decom-

position of the data matrix Z = UΣVT where U is the matrix of the left singular

vectors, Σ is a diagonal matrix containing the singular values, and V is a matrix of

the right singular vectors. If the size of the dictionary r is fixed and is less than 2m2,

then the matrix of rank r that is closest to Z in terms of the Frobenius norm is the

matrix product UrΣrV
T
r , where Ur and Vr are matrices containing only the first r

singular vectors and Σr contains only the first r singular values [147]. Thus for SVD,

the dictionary and coefficient matrices are A = Ur and H = ΣrV
T
r , respectively.

Note that SVD enforces orthonormality on the columns of Ur.

The intrinsic dimension estimated in Chapter V determines the number of pa-

rameters required to accurately represent the data. It is used to provide an initial

estimate for the size of the dictionaries r. For SVD, we choose r to be one standard

deviation above the mean intrinsic dimension estimate, that is, r ' 5 or 6. The

choice of r is then further refined by a comparison of dictionaries in Section 6.3. See
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Figure 6.4: Learned dictionary elements using SVD. Dictionary elements are con-
strained to be orthonormal. The patches consist of uniform patches and gradients in
varied directions. The magnetogram patches are essentially zero when the continuum
components are nonzero and vice versa. The dictionary size r is first chosen based
on the intrinsic dimension estimates in Chapter V and then refined by comparing
dictionaries of various sizes in Section 6.3. Section 6.4.2 contains more details on
choosing r.

Section 6.4.2 for more on selecting the dictionary size.

Figure 6.4 shows the learned dictionaries using SVD on the entire data set of 424

image pairs of ARs. Interestingly, the SVD seems to consider the continuum and

magnetogram separately as the magnetogram elements are essentially zero when the

continuum elements are not and vice versa. This is likely caused by the orthonor-

mality constraint. The dictionary patches largely consist of a mix of uniform patches

and patches with gradients in varied directions. The second dictionary element is

associated with the average magnetic field value of a patch.

6.2.2 Factorization using NMF

Non-negative matrix factorization (NMF) [119] solves the problem of minimizing

||Z−AH||2F while constraining A and H to have nonnegative values. Thus NMF is a

good choice for matrix factorization when the data is nonnegative. For our problem,

the continuum data is nonnegative while the magnetogram data is not. Therefore we

use a modified version of NMF using projected gradient where we only constrain the

parts of A corresponding to the continuum to be nonnegative. An effect of using this

modified version of NMF is that since the coefficient matrix H is still constrained to

be nonnegative, we require separate dictionary elements that are either positive or
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Figure 6.5: Learned dictionary elements using NMF where the continuum dictionary
elements are constrained to be nonnegative. All the dictionary patches consist of
uniform patches or gradients in varied directions. The order of the elements is not
significant. The dictionary size r is chosen to be approximately 1.5 times larger than
the SVD dictionary size, which is chosen based on the intrinsic dimension estimates
in [? ] and then refined using the results in Section 6.3.

negative in the magnetogram component. Thus we use approximately 1.5 times more

dictionary elements for NMF than SVD.

Since we apply NMF to the full data matrix Z, this enforces a coupling between

the two modalities by forcing the use of the same coefficient matrix to reconstruct

the matrices X and Y. This is similar to coupled NMF which has been used in

applications such as hyperspectral and multispectral data fusion [206].

Figure 6.5 shows the learned dictionary elements using NMF on the entire dataset.

For NMF, the modalities are not treated separately as in the SVD results. But as

for SVD, the patches largely consist of a mix of uniform patches and patches with

gradients in varied directions.

6.2.3 SVD vs. NMF

There are advantages to both SVD and NMF matrix factorization methods which

are summarized in Table 6.1. SVD produces the optimal rank r approximation of Z,

is fast and unique, and results in orthogonal elements [115]. NMF has the advantages

of nonnegativity, sparsity, and interpretability. The interpretability comes from the

additive parts-based representation inherent in NMF [115]. In contrast, the SVD

results are not sparse which can make interpretation more difficult. However, NMF is
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SVD Advantages NMF Advantages

Optimal rank r approximation Results are nonnegative
Fast to compute Results are sparse
Unique Sparsity and nonnegativity lead to improved interpretability

Table 6.1: Summary of the advantages of SVD and NMF matrix factorization meth-
ods. The advantages of one method complement the disadvantages of the other [115].
For example, the NMF optimization problem is nonconvex with local minima result-
ing in solutions that depend on the initialization of the algorithm.

not as robust as SVD as the NMF algorithm is a numerical approximation to a non-

convex optimization problem having local minima. Thus the solution provided by the

NMF algorithm depends on the initialization. More details on matrix factorization

using NMF and SVD are included in Appendix E.2.

6.2.4 Methods for Comparing Matrix Factorization Results

To compare the results from matrix factorization, we primarily seek a difference

between the coefficients from H. To aid us in choosing a dictionary size r, we also

require a measure of difference between dictionaries A. We use the Hellinger distance

and Grassmannian projection metric to measure the respective differences.

In [142], the Frobenius norm was used to compare the dictionaries. However, this

fails to take into account the fact that two dictionaries may have the same elements

but in a different order. In this case, the Frobenius norm of the difference between

two dictionaries may be high even though the dictionaries span the same subspace. A

better way to measure the difference would be to compare the subspaces spanned by

the dictionaries. The Grassmannian Gr(r, V ) is a space which parameterizes all linear

subspaces with dimension r of a vector space V . As an example, the Grassmannian

Gr (2,Rn) is the space of planes through the origin of the standard Euclidean vector

space in Rn. In our case, we are concerned with the Grassmannian Gr (r,R18), where

r is the size of the dictionary. The space spanned by a given dictionary A is then a

single point in Gr (r,R18). Several metrics have been defined on this space including
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the Grassmannian projection metric [52, 189]. It can be defined as

dG(A,A′) = ‖PA −PA′‖ ,

where PA = A
(
ATA

)−1
AT is the projection matrix of A and ‖·‖ is the `2 norm.

This metric is invariant to the order of the dictionary elements and compares the

subspaces spanned by the dictionaries. This metric has a maximum value of 1.

To compare the coefficient matrices, we assume that the 18-dimensional pixel

patches within an AR are samples from an 18-dimensional probability distribution,

and that each AR has a corresponding (potentially unique) probability distribution

of pixel patches. We project these samples onto a lower dimensional space by matrix

factorization. In other words, we learn a dictionary A and the coefficient matrix H

for the entire dataset Z, and then separate the coefficients in H according to the K

different ARs (or groups of ARs) considered: Z = A

(
H1 H2 . . . HK

)
. The

columns of Hi are a collection of projected, low-dimensionality, samples from the ith

AR (or group), and we let fi denote the corresponding probability density function.

Given two such collections, we can estimate the difference between their probability

distributions by estimating the information divergence. Many kinds of divergences

exist such as the popular Kullback-Leibler divergence [113]. We use the Hellinger

distance which is defined as [18, 42, 87]

H(fi, fj) = 1−
∫ √

fi(x)fj(x)dx,

where fi and fj are the two probability densities being compared. The Hellinger

distance has the advantage over other divergences of being a metric which is not true of

divergences in general. To estimate the Hellinger distance, we use the nonparametric

estimator derived in Chapter III that is based on the k-nearest neighbor density

estimators for the densities fi and fj.
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6.3 Comparisons of General Matrix Factorization Results

We apply the metrics mentioned in Section 6.2.4 and compare the local features

as extracted by matrix factorization per Mount Wilson class. One motivation for

these comparisons is to investigate differences between the Mount Wilson classes

based on the Hellinger distance. Another motivation is to further refine our choice

of dictionary size r in preparation for clustering the ARs. When comparing the

dictionary coefficients using the Hellinger distance, we want a single, representative

dictionary that is able to accurately reconstruct all of the images. Then the ARs

will be differentiated based on their respective distributions of dictionary coefficients

instead of the accuracy of their reconstructions. The coefficient distributions can then

be compared to interpret the clustering results as is done in Section 6.5.1.

Recall that our goal is to use unsupervised methods to separate the data based on

the natural geometry. Our goal is not to replicate the Mount Wilson results. Instead

we use the Mount Wilson labels in this section as a vehicle for interpreting the results.

6.3.1 Grassmannian Metric Comparisons

We first learn dictionaries for each of the Mount Wilson types by applying ma-

trix factorization to a subset of the patches corresponding to sunspot groups of the

respective type. We then use the Grassmannian metric to compare the dictionaries.

For example, if we want to compare the α and β groups, we collect a subset of patches

from all ARs designated as α groups into a single data matrix Zα. We then factor

this matrix with the chosen method to obtain Zα = AαHα. Similarly, we obtain

Zβ = AβHβ and then calculate dG(Aα,Aβ).

The reason we use only a subset of patches is that each AR type has a different

number of total patches (see Table 5.1) which may introduce bias in the comparisons.

One source of potential bias in this case is due to the potentially increased patch

variability in groups with more patches, which would result in increased difficulty in
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characterizing certain homogeneities of the patch features. This is mitigated some-

what by the fact that the local intrinsic dimension is typically less than 6. However,

it is possible that there may be different local subspaces with the same dimension. A

second source of potential bias is in the different levels of variance of the estimates

due to difference in patch numbers. To circumvent these potential biases, we use

the same number of patches in each group for each comparison. For the inter-class

comparison, we randomly take 13,358 patches (the number of patches in the smallest

class) from each class to learn the dictionary, and then calculate the Grassmannian

metric. For the intra-class comparison, we take two disjoint subsets of 6,679 patches

(half the number of patches in the smallest class) from each class to learn the dic-

tionaries. This process is repeated 100 times and the resulting mean and standard

deviation are reported.

Table 6.2 shows the corresponding average Grassmannian distance metrics when

using SVD and NMF and for different sizes of dictionaries r. For SVD, the results are

very sensitive to r. Choosing r = 5 results in large differences between the different

dictionaries but for r = 6, the dictionaries are very similar. This suggests that for

SVD, 6 principal components are sufficient to accurately represent the subspace upon

which the sunspot patches lie. This is consistent with the results in Chapter ?? where

the intrinsic dimension is found to be less than 6 for most patches.

Interestingly, for the r = 5 SVD results, the βγ group is the most dissimilar to

the other groups while being relatively similar to itself. In contrast, the β group is

fairly dissimilar to itself and relatively similar to the α and βγδ groups.

The NMF results are less sensitive to r. The average difference between the

dictionaries and its standard deviation is larger when r = 9 compared to when r = 8.

However, for a given r, all of the mean differences are within a standard deviation of

each other. Thus on aggregate, the NMF dictionaries learned from large collections

of patches from multiple images differ from each other to the same degree regardless
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SVD, Pooled Grassmannian, r = 5
α β βγ βγδ

α 0.15± 0.10 0.26± 0.18 0.89± 0.06 0.34± 0.18
β 0.50± 0.29 0.89± 0.14 0.43± 0.27
βγ 0.24± 0.16 0.7± 0.2
βγδ 0.45± 0.28

SVD, Pooled Grassmannian, r = 6
α β βγ βγδ

α 0.02± 0.004 0.03± 0.003 0.02± 0.004 0.04± 0.005
β 0.02± 0.005 0.02± 0.004 0.03± 0.006
βγ 0.03± 0.006 0.03± 0.006
βγδ 0.03± 0.007

NMF, Pooled Grassmannian, r = 8
α β βγ βγδ

α 0.40± 0.13 0.40± 0.10 0.33± 0.09 0.37± 0.10
β 0.29± 0.13 0.35± 0.09 0.37± 0.11
βγ 0.37± 0.12 0.34± 0.10
βγδ 0.41± 0.11

NMF, Pooled Grassmannian, r = 9
α β βγ βγδ

α 0.62± 0.25 0.41± 0.15 0.45± 0.19 0.40± 0.13
β 0.54± 0.23 0.49± 0.19 0.44± 0.19
βγ 0.53± 0.23 0.44± 0.20
βγδ 0.49± 0.20

Table 6.2: Difference between dictionaries learned from the collection of sunspot
patches corresponding to the different Mount Wilson types as measured by the Grass-
mannian metric dG, e.g. dG(Aα,Aβ). Dictionaries are learned using random subsets
of the data and the results are reported in the form of mean±standard deviation using
100 trials. Different sizes of dictionaries r are used. The SVD results are sensitive to
r.
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of the Mount Wilson type.

6.3.2 Hellinger Distance Comparisons

For the Hellinger distance, we learn a dictionary A and the coefficient matrix

H for the entire data set Z. We then separate the coefficients in H according

to the Mount Wilson type and compare the coefficients’ distributions using the

Hellinger distance. For example, suppose that the data matrix is arranged as Z =(
Zα Zβ Zβγ Zβγδ

)
. This is factored as Z = A

(
Hα Hβ Hβγ Hβγδ

)
. To

compare the α and β groups, we assume that the columns in Hα are samples from

the distribution fα and similarly Hβ contains samples from the distribution fβ. We

then estimate the Hellinger distance H(fα, fβ) using the divergence estimator from

Chapter II.

When the Hellinger distance is used to compare the collections of dictionary co-

efficients within the sunspots, the groups are very similar, especially when using

SVD (Table 6.3). This indicates that when the coefficients of all ARs from one class

are grouped together, the distribution looks similar to the distribution of the other

classes. However, there are some small differences. First the intraclass distances are

often much smaller than the interclass distances which indicates that there is some

relative difference between most classes. Second, for both matrix factorization meth-

ods, the βγδ groups are the most dissimilar. This could be due to the presence of a

δ spot configuration, where umbrae of opposite polarities are within a single penum-

bra. Such a configuration may require specific linear combinations of the dictionary

elements as compared to the other classes. The presence and absence of these linear

combinations in two Mount Wilson types would result in a higher Hellinger distance

between them.

Again, for clustering, we compute the pairwise Hellinger distance between each

AR’s collection of coefficients. This is done by forming the data matrix from the 424
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SVD, Pooled Hellinger
α β βγ βγδ

α 0.0006± 0.004 0 0 0.03
β 0.0005± 0.002 0.01 0.08
βγ 0.0003± 0.002 0.05
βγδ 0.0004± 0.002

NMF, Pooled Hellinger
α β βγ βγδ

α 0± 0 0.08 0.05 0.10
β 0.00007± 0.0004 0.03 0.12
βγ 0.000002± 0.00003 0.11
βγδ 0.00001± 0.0002

Table 6.3: Difference between the collection of dictionary coefficients pooled from
the different Mount Wilson classes as measured by the Hellinger distance. Intraclass
distances are reported in the form of mean±standard deviation and are calcuated by
randomly splitting the data and then calculating the distance over 100 trials. The
size of the dictionaries is r = 6 and 8 for SVD and NMF, respectively. The βγδ group
is most dissimilar to the others.

ARs as Z =

(
Z1 Z2 . . . Z424

)
and factoring it as Z = A

(
H1 H2 . . . H424

)
.

The columns of Hi are samples from a distribution fi and the distributions fi and

fj are compared by estimating H(fi, fj). The corresponding dictionaries for the two

methods are shown in Figures 6.4 and 6.5.

Table 6.4 gives the average pairwise Hellinger distance between the ARs. The

average distances differ more with the NMF based coefficients resulting in larger

dissimilarity. The average distance is smallest when comparing the β groups to all

others and largest when comparing the βγ groups to the rest. The standard deviation

is also larger when comparing α and β groups. This may be partially related to the

variability in estimation due to smaller sample sizes as the α and β groups contain

more of the smaller ARs (see Figure 6.2). Overall, the average distances show that

there are clear differences between the ARs within the sunspots using this metric.
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SVD, Average Hellinger
α β βγ βγδ

α 0.83± 0.21 0.80± 0.20 0.82± 0.16 0.80± 0.14
β 0.75± 0.22 0.78± 0.18 0.77± 0.17
βγ 0.83± 0.15 0.81± 0.14
βγδ 0.78± 0.13

NMF, Average Hellinger
α β βγ βγδ

α 0.85± 0.21 0.81± 0.20 0.84± 0.17 0.82± 0.14
β 0.76± 0.23 0.80± 0.19 0.80± 0.17
βγ 0.85± 0.15 0.85± 0.14
βγδ 0.83± 0.12

Table 6.4: Average pairwise difference between dictionary coefficients from each AR
from different Mount Wilson types as measured by the Hellinger distance. Results
are reported in the form of mean±standard deviation. The size of the dictionaries is
r = 6 and 8 for SVD and NMF, respectively. The βγ ARs are most dissimilar to each
other and the other classes while the β ARs are most similar.

6.4 Clustering of Active Regions: Methods

6.4.1 Clustering Algorithm

The clustering algorithm we use is the Evidence Accumulating Clustering with

Dual rooted Prim tree Cuts (EAC-DC) method in [67] which scales well for cluster-

ing in high dimensions. EAC-DC clusters the data by defining a metric based on

the growth of two minimal spanning trees (MST) grown sequentially from a pair of

points. To grow the MSTs, a base dissimilarity measure is required as input such as

the Hellinger distance described in Section 6.2.4. From the new metric defined using

the MSTs, a similarity measure between inputs is created. It is fed into a spectral

clustering algorithm that groups together inputs which are most similar. The similar-

ity measure based on the MSTs adapts to the geometry of the data, and this results

in a clustering method that is robust and competitive with other algorithms [67]. See

Appendix E.3 for more details.
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Measure Type Properties

Grassmannian metric Dissimilarity Compares dictionaries by comparing the subspace
spanned by the dictionary elements

Hellinger distance Dissimilarity Compares the underlying distributions of dictionary
coefficients

EAC-DC based measure Similarity Based on sequentially grown MSTs of the data;
requires a base dissimilarity measure as input

Table 6.5: Summary of the dissimilarity and similarity measures used.

6.4.2 Clustering Input: Dictionary Sizes

As input to the clustering algorithm, we use the matrix factorization results as

described in Section 6.2.4. We learn a single dictionary from the entire dataset. We

then project the data onto a lower dimensional space, i.e. we learn the coefficient

matrices Hi. These matrices are the inputs in this method and the base dissimilarity

measure is the Hellinger distance estimated using each AR’s respective coefficients.

Table 6.5 provides a summary of the various dissimilarity and similarity measures

that we use.

As mentioned in Section 6.2, the estimated intrinsic dimension from Chapter V is

used to provide an initial estimate for the size of the dictionaries r. The choice of r is

further refined by the dictionary comparison results from Section 6.3 . For SVD, we

choose r to be one standard deviation above the mean intrinsic dimension estimate

which is approximately 5 or 6. When comparing the dictionary coefficients, we want

the single dictionary to accurately represent the images. The dictionary should not be

too large as this may add spurious dictionary elements due to the noise. The results

in Table 6.2 suggest that for SVD, the dictionaries are essentially identical for r = 6.

This means that 6 dictionary elements are sufficient to accurately reconstruct most

of the images. This is consistent with the intrinsic dimension estimates in Chapter V.

Thus we choose r = 6 when using the Hellinger distance for the SVD dictionary

coefficients.

Since our mixed version of NMF requires approximately 1.5 times the number of
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dictionary elements as SVD (see Section 6.2.1), we choose r = 8 within the sunspots.

Since the differences between classes were similar for r = 8 and r = 9, choosing r = 8

strikes a balance between accurate representation of the data and limiting the effects

of noise.

6.4.3 Clustering Input: Patches within Sunspots and Along the Neutral

Line

Our main focus up to this point in this chapter has been on data matrices Z

containing the patches within the STARA masks, that is, within sunspots. The

clustering based on these patches is discussed in Sections 6.5.1-6.5.2.

It is well-known, however, that the shape of the neutral line separating the main

polarities plays an important role in the Mount Wilson classification. For this reason,

we conduct two experiments involving data from along the neutral line.

The results of the first experiment are in Section 6.5.3 where we apply matrix

factorization on a data matrix containing only the patches situated along the neutral

line using the same ARs as in Sections 6.5.1-6.5.2. To compute the location of a

neutral line in this experiment, we assume it is situated in the middle between regions

of opposite polarity, and proceed as follows. First, we determine regions of high

magnetic flux of each polarity using an absolute threshold at 50 Gauss. Second, we

compute for each pixel the distance to the closest high flux region in each polarity

using the Fast Marching method [178]. Once the two distance fields (one for each

polarity) are calculated, the neutral line can be obtained by finding the pixels that

lie on or are close to the zero level set of the difference of these two distance fields.

In this chapter, we choose a maximum distance of 10 pixels to determine the neutral

line region.

We extract the patches that lie in the neutral line region and within the SMART

mask associated to the AR. Call the resulting data matrix ZN . We then apply SVD or
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# of clusters Mount Wilson Comparison

2 Simple (α and β), complex (βγ and βγδ)
3 α, β, and complex
4 Mount Wilson (α, β, βγ, and βγδ)

Table 6.6: The labels used to compare with the clustering results when analyzing the
effects of including the neutral line.

NMF matrix factorization as before and calculate the pairwise distance between each

AR neutral line using the Hellinger distance on the results. Define the resulting 424×

424 dissimilarity matrix as DN for whichever factorization method we are currently

using. Similarly, define ZS and DS as the respective data matrix and dissimilarity

matrix of the data from within the sunspots using the same configuration. The base

dissimilarity measure D inputted in the clustering algorithm is now a weighted average

of the distances computed within the neutral line regions and within the sunspots:

D = wDN +(1−w)DS where 0 ≤ w ≤ 1. Using a variety of weights, we then compare

the clustering output to different labeling schemes based on the Mount Wilson labels

as shown in Table 6.6.

For the second experiment, we perform clustering on a ROI that selects pixels

along a strong field polarity reversal line. The high gradients near strong field polarity

reversal lines in LOS magnetograms are a proxy for the presence of near-photospheric

electrical currents, and thus might be indicative of a non-potential configuration [176].

To compute this ROI, the magnetograms are first reprojected using an equal-area,

sinusoidal re-projection that uses Singular-Value Padding [44]. The latter is known to

be more accurate than image interpolation on transformed coordinates. To conserve

flux, the magnetograms are also area-normalized.

In the reprojected magnetograms, we delimit an AR using sunspot information

from the Debrecen catalog [79] to obtain the location of all the pixels that belong to

the spots related to an AR (called ”Debrecen spots” hereafter). The ROI consists of

a binary array constructed as follows:
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1. The pixels that belong to the Debrecen spots are assigned the scalar value 1

and all others are assigned the scalar value -1.

2. From this two-valued array, we retrieve the distances from the zero level-set

using a fast marching method [178] implemented in the Python SciKits’ module

”scikit-fmm”.

3. We mask out the pixels within a distance of 80 pixels from the zero level-set (in

the equal-area-reprojected coordinate system).

4. The ROI is delimited by the convex hull of the resulting mask, that is, the

smallest convex polygon that surrounds all 1-valued pixels. The resulting mask

is a binary array with the pixels inside the convex hull set to True.

Within the ROI, the R-value is calculated similarly to the method described in [176].

We dilate the image using a dilation factor of 3 pixels, and extract the flux using

overlapping gaussian masks with σ = 2 px. Integrating the non-zero values outputs

the R-value, i.e, the total flux in the vicinity of the polarity-inversion line.

We then perform an image patch analysis using image patches from this region.

We do this by using either SVD or NMF to do dimensionality reduction on the

patches, and then estimate the Hellinger distance between ARs using the reduced

dimension representation. We exclude α groups from the analysis as they do not

have a strong field polarity reversal line. This leaves 420 images to be clustered. The

clustering assignments are then compared to the calculated R value via the correlation

coefficient. The results are presented in Section 6.5.4.

6.5 Clustering of Active Regions: Results

Given the choices of matrix factorization techniques (NMF and SVD) we have two

different clustering results on the data. Section 6.5.1 focuses on the clusterings using

120



data from within the sunspots, and Section 6.5.2 provides some recommendations for

which metrics and matrix factorization techniques to use to study different ARs. The

neutral line clustering results are then given in Section 6.5.3 followed by the R value

based experiment in Section 6.5.4.

6.5.1 Clustering within the Sunspot

We now present the clustering results when using the Hellinger distance as the

base dissimilarity. The corresponding dictionary elements to the coefficients are rep-

resented in Figure 6.4 (for the SVD factorization) and in Figure 6.5 (for the NMF).

The EAC-DC algorithm does not automatically choose the number of clusters. We

use the mean silhouette heuristic to determine the most natural number of clusters

as a function of the data [171]. The silhouette is a measure of how well a data

point belongs to its assigned cluster. The heuristic chooses the number of clusters

that results in the maximum mean silhouette. In both clustering configurations, the

number of clusters that maximize the mean silhouette is 2 so we focus on the two

clustering case for all clustering schemes throughout.

To compare the clustering correspondence, we use the adjusted Rand index (ARI).

The ARI is a measure of similarity between two clusterings (or a clustering and labels)

and takes values between -1 and 1. A 1 indicates perfect agreement between the

clusterings and a 0 corresponds to the agreement from a random assignment [167].

Thus a positive ARI indicates that the clustering correspondence is better than a

random clustering while a negative ARI indicates it is worse. The ARI between the

NMF and SVD clusterings is 0.27 which indicates some overlap.

Visualizing the clusters in lower dimensions is done with multidimensional scaling

(MDS) as in [142]. Let S be the 424×424 symmetric matrix that contains the AR pair

similarities as created by EAC-DC algorithm. MDS projects the similarity matrix S

onto the eigenvectors of the normalized Laplacian of S [112]. Let ci ∈ R424 be the
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projection onto the ith eigenvector of S using NMF. The first eigenvector represents

the direction of highest variability in the matrix S, and hence a high value of the

k−th element of c1 indicates that the k−th AR is dissimilar to other ARs.

Figure 6.6 displays the scatter plot of c1 vs. c2 (top) and c1 vs. c3 (bottom) using

NMF. Comparing them with the Mount Wilson classification we see a concentration

of simple ARs in the region with highest c1 values (most dissimilar ARs), and a

concentration of complex ARs in the region with lowest c1 (more similar ARs). We

can show this more precisely by computing the mean similarity of the ith AR to all

other ARs as the mean of the ith row (or column) of S. The value from c1 is then

inversely related to this mean similarity as seen in Figure 6.7.

The similarity defined under this clustering scheme gathers in Cluster 2 ‘similar’

AR that are for a large part of the type βγ and βγδ, whereas Cluster 1 contains AR

that are more ‘dissimilar’ to each other, with a large part of α or β active regions.

The other clustering configuration has a similar relationship between the first MDS

coefficient and the mean similarity.

Table 6.7 makes this clearer by showing the mean similarity measure within each

cluster and between the two clusters, which is calculated in the following manner.

Suppose that the similarity matrix is organized in block form where the upper left

block corresponds to Cluster 1 and the lower right block corresponds to Cluster 2.

The mean similarity of Cluster 1 is calculated by taking the mean of all the values

in the upper left block of this reorganized similarity matrix. The mean similarity

of Cluster 2 is found similarly from the lower right block and the mean similarity

between the clusters is found from either the lower left or upper right blocks. These

means show that under the NMF clustering scheme, ARs in Cluster 2 are very similar

to each other while ARs in Cluster 1 are not very similar to each other on average. In

fact, the ARs in Cluster 1 are more similar to the ARs in Cluster 2 on average than

to each other. The other clustering configuration has a similar relationship between
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Figure 6.6: Scatter plot of MDS variables c1 vs. c2 (top) and c1 vs. c3 (bottom)
where ci ∈ R424 is the projection of the similarity matrix onto the ith eigenvector of
the normalized Laplacian of the similarity matrix when using the NMF coefficients.
Each point corresponds to one AR and they are labeled according to the clustering
(left) and the Mount Wilson labels (right). In this space, the clusters data appear to
be separable and there are concentrations of complex ARs in the region with lowest
c1 values. Other patterns are described in the text.
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Figure 6.7: Mean similarity of an AR with all other ARs as a function of its MDS
variable c1 using NMF. Cluster 2 is associated with those ARs that are most similar
to all other ARs while Cluster 1 contains those that are least similar to all others.

Mean Similarity
1 vs. 1 1 vs. 2 2 vs. 2

SVD, Hellinger 0.29 0.42 0.87
NMF, Hellinger 0.30 0.42 0.88

Table 6.7: Mean similarity of ARs to other ARs either in the same cluster (1 vs. 1
or 2 vs. 2) or in the other cluster (1 vs. 2) under the different schemes. Cluster 1
contains ARs that are very dissimilar to each other while Cluster 2 contains ARs that
are very similar to each other.

cluster assignment and mean similarity.

This relationship between AR complexity and clustering assignment is further

noticeable in Figure 6.8 which gives a histogram of the Mount Wilson classes divided

by clustering assignment. This figure shows clear patterns between the clusterings

and Mount Wilson type distribution, where the clustering separates somewhat the

complex sunspots from the simple sunspots. This suggests that these configurations

are clustering based on some measure of AR complexity.

The Hellinger-based clusterings are correlated with sunspot size for some of the

Mount Wilson classes, see Table 6.8. Based on the mean and median number of

pixels, the Hellinger distance on the NMF coefficients tends to gather in Cluster 2

the smallest AR from classes α, β, and βγ. Similarly, the Hellinger distance on the
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Figure 6.8: Histograms of the Mount Wilson classes divided by clustering assignment
using the Hellinger distance. Cluster 1 contains more of the complex ARs while
Cluster 2 contains more of the simple ARs.

Number of Pixels
α β βγ βγδ All

Cluster 1 2 1 2 1 2 1 2 1 2
Mean, SVD Hellinger 278 260 582 270 823 577 1234 1354 756 422
Mean, NMF Hellinger 384 183 788 156 847 515 1418 880 882 283
Median, SVD Hellinger 148 128 477 70 612 472 1012 1172 588 174
Median, NMF Hellinger 265 121 580 56 631 393 1157 665 677 105

Table 6.8: Mean and median number of pixels of the ARs in each cluster under the
Hellinger clustering schemes. Cluster 1 contains the larger sunspots for all groups
when using NMF and for some of the groups when using SVD.
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SVD coefficients separates the β and βγ AR by size with Cluster 1 containing the

largest and Cluster 2 containing the smallest AR.

Since the Hellinger distance calculates differences between ARs based on their

respective distribution of dictionary coefficients, we can examine the coefficient dis-

tribution to obtain insight on what features the clustering algorithm is exploiting. For

simplicity, we examine the marginal histograms of the coefficients pooled from ARs

of a given cluster. When looking at the SVD coefficients, we see that their marginal

distributions are similar across clusters, except for the coefficients that correspond

to the second dictionary element of Figure 6.4. Recall that this second dictionary

element is associated with the average magnetic field value of a patch. If the corre-

sponding coefficient is close to zero, it means the average magnetic field in the patch

is also close to zero.

Figure 6.9 shows histograms of the coefficients of the second dictionary element.

The histograms correspond to patches from all ARs separated by cluster assignment.

The histograms show that Cluster 1 has a high concentration of patches with near zero

average magnetic field. In contrast, the larger peaks for Cluster 2 are centered around

+1 and −1. This suggests that the clustering assignments are influenced somewhat

by the amount of patches in an AR that have near zero average magnetic field values.

As we are considering only the core (sunspot) part of the AR, having 3×3 patch with

a near zero average magnetic field entails that the corresponding patch is likely to be

located along the neutral line separating strong magnetic fields of opposite polarity.

Thus the local distribution of magnetic field values is related to cluster assignments

when using the SVD coefficients. This is consistent with Figure 6.8 where cluster 1

contains more of the complex ARs (βγ and βγδ) and fewer simple ARs (α and β)

than cluster 2 as measured by the Mt. Wilson scheme.

Checking the individual ARs and their coefficient distributions in each cluster,

we see indeed that Cluster 1 does contain more ARs with patches having near zero
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Figure 6.9: Histograms of the marginal distributions of the coefficients corresponding
to the mean magnetic field value (dictionary element 2 in Figure 6.4) for Cluster 1
(left) and Cluster 2 (right) using the SVD coefficients. Cluster 1 ARs contain more
patches with near neutral magnetic field values.

average magnetic field. This tends to include more of the complex ARs in Cluster 1

since they are more likely to have a neutral line close to the regions of strong magnetic

fields that will therefore be included in the STARA masks.

It should be noted however that the correspondence is not perfect. There are some

ARs in Cluster 2 where the regions of opposing polarity are close to each other and

some ARs in Cluster 1 where the regions of opposing polarity are far apart. Thus the

distribution of average magnetic field values is only one factor in the natural geometry

of the ARs defined by the Hellinger distance. As mentioned previously, the size of

the AR is another factor, especially for β groups. This is consistent with Figure 6.8

where cluster 1 does contain some of the simple ARs which are less likely to have

strong magnetic fields around the neutral line.

Investigating the joint histograms of the NMF dictionary elements correspond-

ing to positive and negative magnetic field values reveals that the NMF Hellinger

clustering results are also influenced by the local magnetic field distribution.

All these observations indicate that the natural geometry exploited by both clus-

tering configurations is related to some form of complexity of the ARs.
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6.5.2 Discussion of Sunspot Results

We note that the Cluster 2 ARs containing the smallest sunspots are most similar

to each other while the Cluster 1 ARs are more dissimilar (see Tables 6.7 and 6.8).

This indicates that the Hellinger distance approaches are best for distinguishing be-

tween different types of larger or complex ARs.

When NMF is applied on datasets where all values in the dictionary and co-

efficient matrices are constrained to be nonnegative, its results are generally more

interpretable than SVD. In our application however, the magnetogram components

can be negative. Hence the NMF results are not particularly sparse and lose some

benefits of nonnegativity since the positive and negative magnetogram components

can cancel each other. This results in some loss of interpretability. Additionally, the

SVD results seem to be more interpretable due to separate treatment of the contin-

uum and magnetogram components. However, there is still some value in the NMF

approach as we see that the clustering on NMF coefficients are better at separating

the ARs by size than the SVD approach. Additionally, the NMF approaches tend

to agree more strongly with the Mount Wilson labels than their SVD counterparts

as is seen in Section 6.5.3 below. Future work could include using alternate forms of

NMF such as in [46] where sparsity and interpretability is preserved even when the

dictionary is no longer constrained to be nonnegative. Another variation on coupled

NMF that may be applicable is soft NMF [177] where the requirement that the two

modalities share the same regression coefficients is relaxed somewhat. Finally, future

work could perform factorization using a composite objective function comprised of

two terms corresponding to the two modalities that are scaled according to their noise

characteristics.
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Figure 6.10: Plot of the adjusted Rand index (ARI) using and Hellinger distances
within the neutral line and sunspots as a function of the weight. A weight of 0
corresponds to clustering with only the sunspots while a weight of 1 clusters with only
the neutral line. The different lines correspond to different numbers of clusters and the
corresponding labels from Table 6.6. Higher ARI indicates greater correspondence.

6.5.3 Clustering with Neutral Line Data

As described in Section 6.4.3, we analyze the effects of including data from the

neutral line in the clustering. We proceed by taking a weighted average of the dissim-

ilarities calculated from the sunspots and from the neutral line data matrices. Using

the ARI, we compare the results to labels based on the Mount Wilson classification

scheme, see Table 6.6 for the label definition. We use a grid of weights, starting from

a weight of 0 for a clustering using only patches within sunspots up to a weight of 1

for a clustering that takes into account only the neutral line data.

Figure 6.10 plots the ARI for the four different schemes as a function of the

weight. In nearly all cases, the ARI is above zero which indicates that the clustering

does slightly better than a random assignment. In general, the correspondence of

the clustering results with the Mount Wilson based labels decreases as the weight

approaches 1. This means that the natural clusterings associated with only the neutral

line data do not correspond as well with the Mount Wilson based labels. However

in several cases, including some information from the neutral line at lower weights

appears to increase the correspondence, e.g., the ARI increases for the 3 and 4 cluster
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cases for the SVD coefficients. This suggests that the neutral line and the sunspots

contain information about AR complexity that may be different.

Note that clustering separates the ARs based on the natural geometry in the

spaces we are considering. Thus we can influence the clustering by choosing the space.

For example, if we restrict our analysis to include only coefficients corresponding to

specific dictionary patches, then this will influence the clustering.

The gradients of magnetic field values across the neutral line is a key quantity

used in several indicators of potential eruptive activity [176]. We therefore repeated

the neutral line experiment where we focused only on the gradients within the mag-

netogram as follows. When we applied SVD to the data matrix Z extracted from

the neutral line, the resulting dictionary matrix A was very similar to that shown in

Figure 6.4. Note that elements 3 and 4 correspond to the gradient patterns within

the magnetogram data. Therefore, after learning A and H from Z, we kept only the

coefficients corresponding to dictionary elements 3 and 4, i.e. the 3rd and 4th rows

of H. We then estimated the Hellinger distance between the ARs’ underlying distri-

butions of these two coefficients. This restricted the neutral line analysis to include

only the coefficients corresponding to magnetogram gradients. For the data within

the sunspots, we included all coefficients as before.

Figure 6.11 shows the ARI as a function of the weight for this experiment. For all

cases, the ARI stays fairly constant until the weight increases to 0.9, after which it

drops dramatically. We can compare this to the results in Figure 6.10 (bottom left)

to determine if using only the neutral line gradient coefficients results in increased

correspondence with the Mount Wilson labels relative to using all of the neutral line

coefficients. From this comparison, the ARI is higher when using only the gradient

components for weights greater than 0.1 and less than 1. Thus the correspondence

with the Mount Wilson labels and the clustering is higher when we only include the

magnetogram gradient coefficients. Since the Mount Wilson scheme is related to the
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Figure 6.11: Plot of the ARI using the Hellinger distance within the neutral line on
only the coefficients corresponding to the SVD dictionary elements associated with
magnetogram gradients. The corresponding dictionary elements are similar to the
3rd and 4th elements in Figure 6.4. Focusing on the gradients results in a higher ARI
for higher weights than when all coefficients are used as seen in Figure 6.10.

complexity of the neutral line, this higher correspondence suggests that focusing on

the gradients in the neutral line results in a natural geometry that is more closely

aligned with the complexity of the neutral line than simply using all of the coefficients.

Applying supervised techniques would lead to improved correspondence.

The clear patterns in the ARI indicate that the relationship between the weight

and the ARI is unlikely to be due entirely to noise. Thus including data from the

neutral line with the data from the sunspots would add value in an unsupervised

setting and would likely lead to improved performance in a supervised setting.

We can investigate this further by estimating bounds on the Bayes error where

β groups are labeled as ‘simple’ and βγ and βγδ groups are labeled as ‘complex.’ α

groups are excluded to keep the number of simple and complex ARs roughly the same

(192 and 182, respectively). We estimate both the lower and upper bounds formed

from D̃q1 using the MST estimator described in Chapter III. We use this estimator

as the k-nn density estimator and the KDE are not easily defined in the space of

probability distributions.

Figure 6.12 shows the estimated bounds when using SVD. When the Hellinger
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Figure 6.12: D̃q1-based upper (plain line) and lower (dashed line) bounds on the
Bayes error when classifying sunspot groups as simple or complex for a variety of
weights compared to the error from an SVM classifier using SVD dictionaries. A
weight of r = 0 corresponds to using only the data from within the sunspots while
r = 1 corresponds to using only the neutral line data. The area around the neutral
line gives better results.

distance is used on the dictionary coefficients, the estimated bounds and SVM error

rate are generally lower when the weight r favors the neutral line data. This is

consistent with our previous results.

The NMF results are not shown, but similar trends are observed. The estimated

bounds and the SVM error rate generally decrease as the weight increases, suggesting

that the neutral line is better suited for this classification problem than the data from

within the sunspots when using NMF dictionaries. However, the estimated bounds

and error rates are generally still high (> 0.25).

In general, these results indicate that if the goal is to accurately classify ARs into

complex or simple ARs based on the Mount Wilson definition, then additional or

different features are required. The dictionary features may still be relevant for other

learning tasks such as predicting and detecting solar eruptive events.

6.5.4 Clustering of Regions Exhibiting Strong Field Polarity Reversal

Lines

We now analyze ARs exhibiting strong field polarity reversal lines by comparing

the natural clustering of these ARs to the calculated R value as described in Sec-
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tion 6.4.3. When we apply dimensionality reduction on this data using SVD, the

resulting dictionary is very similar to Figure 6.4 with the first two patches consist-

ing of uniform nonzero patches, the third and fourth patches consisting of gradients

in the magnetogram, and the fifth and sixth patches consisting of gradients in the

continuum.

As before, the mean silhouette width indicates that the appropriate number of

clusters is 2. When we cluster the ARs using the SVD coefficients corresponding to

all six patches, we obtain a correlation between cluster assignment and R of 0.09

(see Table 6.9). This isn’t particularly high which suggests that the natural geometry

based on the distribution of all six coefficients does not correlate well withR. However,

since the clustering is separating the ARs based on the natural geometry in the

spaces we are considering, we can influence the clustering by choosing the space. In

other words, if we restrict our analysis to only coefficients corresponding to specific

dictionary patches, then this will influence the clustering.

Restricting the clustering analysis to the SVD coefficients corresponding only to

the magnetogram components (i.e. elements 2, 3, and 4 in Figure 6.4) results in a

correlation of 0.30 between cluster assignment and R value. If we only consider the

gradient components (elements 3 and 4), then the correlation is 0.34.

The relationship between cluster assignment and R may not be linear as the cor-

relation between the clustering assignment using only the gradient components and

logR is 0.45. Comparing the magnetogram only components based clustering with

logR similarly increases the correlation coefficient. Given that clustering is an unsu-

pervised method and that we are only clustering into two groups, this correlation is

quite high. This suggests that the natural geometry of the image patch analysis in-

creasingly corresponds with R as we restrict the analysis to magnetogram gradients.

Supervised methods, such as regression, should lead to an even greater correspon-

dence.
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SVD NMF
All Mag. only Grad. only All

R 0.09 0.30 0.34 0.15
logR 0.02 0.37 0.45 0.08

Table 6.9: Magnitude of the correlation coefficient of the clustering assignment with
either R or logR when using all of the coefficients, only the coefficients corresponding
to the magnetogram component (SVD elements 2-4 in Figure 4), or only magne-
togram gradient coefficients (SVD elements 3-4 in Figure 4). For NMF, all of the
dictionary elements are associated with the magnetogram and many of them have
gradient components so we only perform clustering with all of the coefficients.

For NMF, when we include all of the coefficients, the correlation between R and

clustering assignment is 0.15. While this is small, we are again comparing the labels

of an unsupervised approach to a continuum of values. Thus we can expect that the

performance would be better in a supervised setting. If we compare the clusering to

logR, the correlation decreases to 0.08. It is difficult to restrict the NMF dictionary

to only continuum and magnetogram parts and gradients as most of the components

contain a gradient component in the magnetogram. Therefore we only cluster the

ARs using all NMF coefficients.

6.6 Conclusion

In this chapter, we introduced a reduced-dimension representation of an AR that

allows a data-driven unsupervised classification of ARs based on their local geometry.

The ROI that surrounds and includes the AR represents its most salient part and

must be provided by the user. We used STARA masks in conjunction with masks

situated around the neutral line, and compared our results with the Mount Wilson

classification in order to ease interpretation of the unsupervised scheme.

The Mount Wilson scheme focuses on the largest length scale when describing

the geometrical arrangements of the magnetic field, whereas our method focuses on

classifying ARs using information from fine length scale. We have shown that when
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Class. Scheme Cluster 1 Cluster 2

SVD Hellinger largest β, βγ sunspots; smallest β, βγ sunspots; high
majority of βγδ; high concentration of patches with
concentration of patches average magnetic field value
with average magnetic field close to +1 or −1; small
value ' 0; large Hellinger Hellinger distance between ARs
distance between ARs

NMF Hellinger largest α, β, βγ sunspots; smallest α, β, βγ sunspots;
majority of βγδ; large small Hellinger distance
Hellinger distance between ARs between ARs

Table 6.10: Summary of features distinguishing the clusters under the various classi-
fication schemes tested.

we analyze and cluster the ARs based on the global statistics of the local properties,

there are similarities to the classification based on the large scale characteristics. For

example, when clustering using the Hellinger distance, one cluster contained most

of the complex ARs. Other large scale properties such as the size of the AR also

influenced the clustering results. Table 6.10 summarizes the properties that are found

to influence the clustering under the two schemes.

In this comparison with the Mount Wilson scheme, we found that the STARA

masks were sometimes too restrictive which led to a mismatch between the Mount

Wilson label and the extracted data. For example, there were several cases where

an AR was labeled as a β class but the STARA mask only extracted magnetic field

values of one polarity. We showed that the neutral line contains additional information

about the complexity of the AR. For this reason, we expect that including information

beyond the STARA masks will lead to improved matching with the Mount Wilson

labels.

To investigate the possibility for our method to distinguish between potential

and non-potential fields, we considered a ROI made of pixels situated along high-

gradient, strong field polarity reversal lines. This is the same ROI as that used in

the computation of the R value, which has proved useful in flare prediction in a
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supervised context. We found that our clustering was correlated with the R value,

that is, the clustering based on the reduced dimension representation separates ARs

corresponding to low R from the ones with large R.
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CHAPTER VII

Application to HFO Data: Dimensionality

Reduction and Bayes Error Estimation

7.1 Introduction

About one third of epilepsy patients fail to obtain seizure control with available

pharmaceuticals. One of the few options for these refractory patients is resective

surgery—removing the portion of the brain thought to be causing the seizures. This

region is denoted the seizure onset zone (SOZ). In some cases, determining the SOZ

involves a highly invasive surgery to place electrodes on the brain’s surface, followed by

one to two weeks of recording and monitoring. A second invasive surgery is performed

if the SOZ can be identified and safely resected. A schematic relating the implanted

electrodes with the recorded data is shown in Fig 7.1.

A proposed biomarker to improve the localization of the SOZ are high frequency

oscillations (HFOs) [34, 157]. HFOs are high frequency (about 80–300 Hz), short

(< 50 ms), rare events occurring in intracranial EEG recorded at sampling rates of

several kHz. Example HFO detections and a recorded seizure are shown in Fig 7.2.

Much of the published research on HFOs uses human identified HFOs in short (10

to 20 minute) recordings [80, 104]. These results have shown that a high HFO occur-

rence rate is correlated with the SOZ. However, recent work is moving towards auto-

137



Figure 7.1: Diagram relating the recorded data with the implanted electrodes. A 5×7
grid of electrodes placed over a region of cortex. Each channel produces a separate
time series of data, with some channels being identified by clinicians as seizure onset
zone (SOZ). HFO detections are marked by solid magenta lines under the EEG trace.

Figure 7.2: Example HFO detections within 45 min of one channel of intracranial
EEG data. A seizure occurs at about 35 minutes. HFO detections (72 interictal and
preictal, 32 ictal) are shown as small yellow dots. Two HFOs are also shown using a
much smaller scale.
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mated identification and analysis of HFOs in long term, high resolution data, which

requires advanced computational and statistical techniques [74]. Quality recordings

may span 7-14 days, with over 100,000 HFO detections in several terabytes of data.

Thus, the next advances are expected to come through big data analysis of HFO fea-

tures, utilizing millions of recorded HFOs across as many patients as possible [202].

Relatively few research groups have analyzed HFO features in detail. The most

advanced analysis computed six features of about 300,000 HFOs in nine patients

and two controls, and utilized a global PCA across all channels followed by k-means

clustering [22, 23, 158]. The authors implicitly assumed that the distribution of these

HFO features lies on a linear manifold in feature space, and that the manifold is

consistent across time and space (i.e., recording electrode).

The other most advanced analysis compared HFOs produced in the motor cortex

via movement versus HFOs occurring in the SOZ, utilizing three features and a sup-

port vector machine (SVM) classifier [131]. Some differences were noted, but a more

general analysis that addresses the degree to which HFOs produced by pathological

activity or networks (denoted pathological HFOs or pHFOs) and HFOs produced

by normal, physiological activity (denoted normal HFOs or nHFOs) are observably

different has not been performed.

The goals of this chapter are to test the implicit assumptions previously used in

HFO feature analysis. Specifically, the goals are to 1) assess the type of manifold on

which HFO features lie, and 2) assess how discernible pHFOs are from nHFOs, based

on their feature-space distributions.

The general outline is as follows. To assess the linearity of the HFO-feature

manifold, a non-linear, local estimate of intrinsic dimension [31, 40] is compared with

a linear global estimate (PCA) applied to local subsets. This approach is similar to

that in Chapter V. The corresponding reduced dimension subspaces are individually

compared across time and space using a modified Grassmann distance, building off
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the work in [205]. We additionally use a greedy Fisher LDA algorithm (similar to the

greedy LDA in [198]) to identify a basis that maximally separates pHFOs from nHFOs.

Unsupervised clustering of the subspaces is then compared with channel groups based

on clinical markings of the SOZ and physical groupings of the electrodes. Lastly, we

assess the discernibility of nHFOs and pHFOs by estimating bounds on the Bayes

Error using the Henze-Penrose divergence (HPD) [15, 139] (see Chapter III).

7.2 Patient population and data

EEG data from adult patients with refractory epilepsy who underwent intracranial

EEG monitoring were selected from the IEEG Portal [197] and from the University of

Michigan. All patient data was included which met the following criteria: sampling

rate of at least 5 kHz, recording time greater than one hour, data recorded with tradi-

tional intracranial electrodes, and available meta-data regarding seizure times and the

resected volume or SOZ. This yielded 17 patients, (nine IEEG portal, eight U. of M.).

All data were acquired with approval of local institutional review boards (IRB), and

all patients consented to share their de-identified data. Of these 17 patients, 13 had

recorded seizures, nine were known to have resection and obtained seizure-freedom

(ILAE class I), with eight patients in common between these two categories. Because

these surgeries are relatively rare, this patient population size is moderately large for

analysis of intracranial EEG data.

HFOs were detected using the qHFO algorithm [74], resulting in over 1.6 million

HFOs in nearly 100,000 channel-hours of 5 kHz data. Each HFO was band pass

filtered between 80 to 500 Hz using an elliptical filter and 33 features were computed,

including duration, peak power, mean of the Teager-Kaiser energy [101], and various

spectral properties. Ictal is defined as during seizures, with seizures assumed to be

five minutes long if the length was not specified in available meta-data. Interictal is

defined as at least 30 minutes from the start or end of a seizure, based on [158].
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7.3 Dimensionality reduction

7.3.1 Consistency of local, non-linear intrinsic dimension

To assess both the linearity and local versus global nature of the HFO feature

manifold, the non-linear intrinsic dimension was computed via the k-nearest neighbor

(NN) based estimator in [31] and described in Appendix E. This nonlinear estimator

provides a local estimate of intrinsic dimension which enables us to identify local

variations in data manifolds. The result is an estimate of the intrinsic dimension for

each given HFO, which are then averaged to obtain the mean intrinsic dimension for a

given partition of the data. The consistency of the manifold is measured by comparing

the distribution of intrinsic dimension across time, space and patients. The specific

comparisons are: a) interictal versus ictal times, per channel, b) time variation within

interictal periods, per channel, and c) comparisons between channels, integrated over

time.

A variety of methods could be employed to compare the intrinsic dimension for

two disjoint sets of HFOs. However, the final dimension selected will be an integer.

Thus, small differences in the intrinsic dimension between two sets, no matter how

statistically significant, are not meaningfully different if the mean value for each set

round to the same integer.

To compare two sets of intrinsic dimension, we define a distance measure, θI ,

between collections of integers. Let the two sets of integers be A and B, and let ni

be the fraction of elements in A equal to i, and mi be the fraction of elements in B

equal to i. The probability that two elements in set A are equal is nTn, and the

probability that an element of A is equal to an element of B is nTm. A measure of

distance between A and B is how likely an element of A is equal to an element of B,

normalized by the likelihoods of elements being equal another element in the same
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Figure 7.3: Comparisons of the consistency of the intrinsic dimension (θI from Eq. 7.1)
for four comparisons, as described in the text. Note, 0◦ implies no difference and 90◦

implies maximal difference between the two collections of intrinsic dimension being
compared.

group:

θI = arccos

(
nTm√

nTn
√
mTm

)
, (7.1)

The value θI is the angle between n and m and provides an easy interpretation as to

the consistency of two different collections of local intrinsic dimension. This quantity

is also know as the angular distance or angular dissimilarity, and is the inverse cosine

of the Ochiai-Barkman coefficient [9, 154].

We compute the θI-distance for three different comparisons of HFOs: 1) a com-

parison of each pair of 30 minute time windows on a given channel for a given patient,

2) a comparison of ictal versus interictal periods, again on a given channel for a given

patient, and 3) a comparison of different channels in a given patient during interictal

periods. Interictal-ictal comparisons where one set of events is less than 50 HFOs

are ignored. Histograms of the distribution of θI for each type of comparison are

shown in Fig. 7.3. This figure involves over 5 million interictal time bin comparisons,

163 ictal versus interictal comparisons, over 36 thousand interictal channel-channel

comparisons and almost 10 thousand ictal channel-channel comparisons.

The intrinsic dimension is quite consistent across different time segments during

interictal times (strong peak near 0◦), but has some variance between ictal and in-
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terictal times (still peaked near 0◦ but the peak is wider). The dimension is less

consistent across channels, with comparisons during ictal times showing small peaks

at both 0◦ and 90◦, and interictal having the largest peak at 90◦, showing maximal dif-

ference. Thus we see that the intrinsic dimension varies significantly across channels,

especially for interictal HFOs.

7.3.2 Comparison with Global Linear Intrinsic Dimension

Next we compare the k-NN intrinsic dimension estimate of Section 7.3.1 with a

global, linear method to assess how linear and/or local the feature manifold is. The

most common global, linear method of intrinsic dimension estimation and dimen-

sionality reduction is principle component analysis (PCA), which we perform by first

centering the data and then using singular value decomposition (SVD) as in Chap-

ter V. PCA is performed multiple times for the same divisions of the HFO data as

done for Fig. 7.3. Subsets of HFOs with less than 50 events are ignored, as these are

deemed insufficient to estimate the PCA vectors in 33D. This results in PCA vec-

tors being computed for 606 of the 1318 channels (12 patients) for interictal HFOs,

171 channels for ictal HFOs (8 patients), and 163 channels comparing ictal versus

interictal (8 patients). In patients that had multiple recording sessions, channels are

counted once per each session.

To compare the k-NN (non-linear) and PCA intrinsic dimension per channel, we 1)

select the number of principle components equal to the non-linear intrinsic dimension

estimate, and then 2) report the fraction of the variance accounted for by that number

of principle components. This is repeated for all 606 channels (interictal) and 171

channels (ictal). When using either ictal or interictal HFOs, the median fraction of

variance was 99.8%, with 99%-tile of the channels being above 89.5% (interictal) and

97.1% (ictal). It is likely that that noise in the data could account for up to 10%

of the variance, and thus we conclude that the feature manifolds are approximately
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linear over the locality of a given channel and ictal state.

7.3.3 Comparison between Local Manifolds

In addition to the earlier comparison of the subspace dimensionality across chan-

nels, the next step is to directly compare the subspaces selected by the dimensionality

reduction. We use a generalization of distance in the Grassmann space, which allows

comparison of affine subspaces with unequal dimension [205]. The method augments

the principle angles (defined in [95]) with enough additional angles (all equal to π/2)

to increase the number of angles to the dimensionality of the larger space. An addi-

tional “direction vector” is also added to account for the affine offset.

We apply this generalization [205] to a new modification of the chordal distance,

defined as

θC = arcsin

(1

k

k∑
i=1

sin2 θi

)1/2
 , (7.2)

for k principle angles {θi}ki=1. The two modifications are 1) dividing by k, which allows

the distance to be independent on the dimensionality of the spaces being compared,

and 2) converting the distance measure back to an angle, which is more intuitive.

We then compare the subspaces obtained by PCA dimensionality reduction, for

the same divisions of the data as used for Fig. 7.3. However, we now ignore any

subsets of less than 50 HFOs, as these are deemed unreliable for computing the PCA

in 33D. Note this figure still involves over 200 thousand time bin comparisons, the

same 163 ictal versus interictal comparisons, and nearly 3,500 of each type of channel-

channel comparisons.

Results for these comparisons are shown in Fig. 7.4. We observe that the PCA

subspaces are quite consistent across different time bins, with the distributions for

PCA subspaces all peaking less than 15◦ and not extending much past 20◦.

144



θ [degrees]
0° 15° 30° 45° 60°

N
or

m
al

iz
ed

 c
ou

nt
s

0

0.2

0.4

0.6 Interical Time Bins (PCA)
Ictal vs Interictal (PCA)
Interictal Channels (PCA)
Ictal Channels (PCA)
Channels (LDA)

Figure 7.4: Comparison of the subspaces from the PCA and greedy Fisher LDA
dimensionality reduction, using θC (Eq. 7.2), for the same types of comparisons as
Fig. 7.3. Again, 0◦ implies maximally similar and 90◦ implies maximally different.

7.4 Pathological versus Normal HFOs

7.4.1 Dimensionality Reduction: Greedy Fisher LDA

While the subspaces obtained via PCA represent the variance well, they are not

necessarily the optimal directions for separating the feature distributions of pHFOs

and nHFOs. An alternate dimensionality reduction method is used: greedy Fisher’s

LDA. In this method, Fisher’s LDA is applied, resulting in a single basis direction.

The projection of the data in this direction is then subtracted from the data, and the

process is repeated.

Recall that Fisher’s LDA uses the sum of the covariance of each group, rather

than the covariance of the pooled groups [58]. Letting the mean and covariance of

the two groups be denoted µA, µB and ΣA, ΣB, respectively, the specific direction is

given by

w ∝ (ΣA + ΣB)−1 (µA − µB) . (7.3)

Note, the rank of the sum of the covariances will be reduced by one in each step.

Thus, to invert the matrix, the eigenvalue method is used, with the inverse of the

eigenvalues corresponding to the removed projections being set to zero.

We compute this basis, comparing ictal versus interictal times, for the 13 patients
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with recorded seizures. We select the number of basis vectors equal to the mean

intrinsic dimension. We again compare the basis vectors using Eq. 7.2, with the

results shown in Fig. 7.4. The LDA subspaces vary much more across channels than

the PCA subspaces, with the θC distribution for LDA being almost fully localized

between 30◦ and 50◦. Note that 45◦ implies that the subspaces overlap by half. Thus,

the Fisher LDA subspaces show that some differences in ictal versus interictal HFO

features are consistent between channels, while other differences are not conserved.

7.4.2 Bayes Error Estimates of pHFOs versus nHFOs

Next we quantify how distinct the feature distributions of pHFOs and nHFOs are,

per channel. This quantification serves as a guide for future work. We utilize the

Henze-Penrose divergence (HPD) [15, 139] to compute bounds on the Bayes Error.

Note that small upper bounds imply highly separable classes, whereas upper bounds

near 0.5 imply inseparable classes. We estimate the HPD bound using the nonpara-

metric ensemble estimator described in Chapter III which achieves the parametric

convergence rate.

The left panel of Fig. 7.5 shows the Bayes Error bound estimates for the 163 chan-

nels (eight patients) with at least 50 HFOs in each of the ictal and interictal states.

Channels are separated between SOZ (27 channels) and non-SOZ (124 channels) for

patients with ILEA Class I (the best) surgery outcome, and an “other” category

(12 channels), including channels from patients with either worse surgery outcomes,

no surgery, or missing meta-data.

Patients with Both SOZ and non-SOZ channels in ILAE class I patients (best

surgery outcome) have the Bayes Error rate bound to relatively small values. However,

channels in other patients have a more diffuse distribution of upper bounds, with the

most probable upper bound about 0.25. It is expected that ictal HFOs are almost

entirely pHFOs (on any channel), that interictal HFOs on non-SOZ channels are
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predominately nHFOs, and that interictal HFOs on SOZ channels are a mixture of

both pHFOs and nHFOs. Thus, it is expected that the Bayes Error bounds would

be lower for non-SOZ channels. Overall, these bounds suggest that there is sufficient

separation between pHFO and nHFO feature distributions to allow classification of

pHFOs and nHFOs in most channels.

The right panel of Fig. 7.5 displays the lower bound versus a linear error estimate.

The linear estimate was computed with 10-fold cross validation in the Fisher LDA

space by using a “box” classification boundary, with the threshold in each dimension

being the value for which the receiver operator curve has largest transverse distance

from the diagonal. Linear regression was also performed, resulting in an offset of

0.06 (0.04–0.08 at 95% C.L.) and a slope of 1.05 (0.82–1.28 at 95% C.L.). Thus, in

aggregate this “box” classifier is already relatively close to the bound on the Bayes

Error, though many individual channels are still quite far from the bound.

7.5 Clustering Channels based on subspaces

Given the observed variations in greedy Fisher LDA subspaces across channels,

we seek to compare the natural clustering of these subspaces with known groupings

of channels. The most relevant groupings of channels are the groups based on the

physical configuration of the recording electrodes (several grids or strips of electrodes

are implanted for each patient), as well as the clinically determined SOZ and resected

volume for ILAE Class I patients.

The unsupervised clustering is obtained by first converting the matrix of modified

chordal distances (7.2) between channels per each patient to a metric using EAC-DC

algorithm (see Appendix E.3). We select either two groups (as the SOZ and resected

volume clustering is binary) or the number of groups equal to the number of strips

and grids. The unsupervised clustering results are compared with these labels using

the adjusted Rand index (ARI) [167]. Unfortunately, the requirement that there be at
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least 50 ictal HFOs reduces the number of channels per patient significantly, resulting

in only a few (4–5) patients having enough channels to cluster. However, the ARI

never exceeded 0.02 for any of these comparisons in any patients, suggesting that the

primary distinction between channels is not the pathology or the grid/strip placing,

but other effects.

7.6 Conclusion

Overall, we observe that the HFO features tend to cluster on linear manifolds.

Both the subspaces of these manifolds and the local intrinsic dimension tend to be

consistent within interictal periods, but may change between interictal and ictal pe-

riods. We especially note significant differences in both the intrinsic dimension and

feature manifolds between different channels within the same patient. Thus, dimen-

sionality reduction and feature analysis must account for variations between channels.

The dominant cause of this inter-channel variation does not appear to be tissue pathol-

ogy or grid/strip groups in the recording. We also observe that pHFOs and nHFOs

are indeed distinct on a large number of channels, suggesting a strong potential for

classifying individual HFOs.

This analysis also demonstrates methods applicable to other discrete events, in-

cluding using the θI statistic for comparing local, intrinsic dimension for collections

of events, an affine Grassmann distance θC for comparing consistency of subspaces,

and estimating bounds on the Bayes error to assess the feasibility of low-error classi-

fication.
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CHAPTER VIII

Conclusion and Future Work

In this thesis, I have presented useful methods for exploiting opportunities and

countering challenges that arise in some big data problems. These methods are united

in their reliance on accurate estimation of distributional functionals. In this chapter,

I conclude the work included in this thesis and propose directions for future work.

8.1 Nonparametric Estimation of Distributional Functionals

In Chapter II, we presented two KDE-based ensemble estimators of functionals of

two distributions or divergence functionals that achieve the parametric convergence

rate. These estimators use basic kernel density estimators as the base estimators

and choose the weights based on the convergence rates of the base estimators. These

estimators are simpler to implement than many of the competing estimators. Variance

and central limit proofs are given that are simpler than previous work and require

less strict assumptions.

In Chapter III, we similarly presented two k-nn based ensemble estimators for

divergence functionals that also achieve the parametric rate. Due to the properties of

k-nn, these estimators can be computationally easier than the KDE-based estimators

in Chapter II while enjoying many of the same advantages.

In Chapter IV, we adapt the KDE and k-nn divergence functional ensemble es-
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timators to estimate mutual information measures between the random vectors X

and Y. We show that the parametric rate can be achieved both when the data only

have continuous components, and when X has only continuous components and Y

has only discrete components.

Some future work remains. In some cases, we are interested in the mutual infor-

mation between X and Y when one or both of them contains a mix of continuous and

discrete components. The convergence rates of plug-in estimators (such as KDE or

k-nn estimators) are currently unknown for this case. Other future work could include

extending the k-nn plug-in divergence results to mutual information estimation and

to more general density support sets and estimating functionals that are less smooth

(e.g. the total variation distance).

Another important area of future work involves extending the theoretical work

in this thesis to time series data. There are many important applications that in-

clude time series including sunspot images and HFO data. Therefore, it is important

to extend the theory to these cases. This would require a relaxation of the i.i.d.

assumption of the data which complicates the analysis. It is likely that a simple plug-

in estimator such as the kernel density estimator will have poor convergence rates.

Thus to improve the convergence rate via an ensemble estimator, we will first need

an expression for the convergence rate of the base estimator which will require more

advanced analysis techniques. This will open up other opportunities for future work

in this direction.

8.2 Sunspot Images

In Chapter V, we performed an image patch analysis of sunspot continuum and

magnetogram images. We estimated the local intrinsic dimension of the data via

a k-nn based entropy estimator and analyzed the correlation at different scales and

between the modalities. This paved the way for further analysis based on matrix

151



factorization in Chapter VI. Knowledge of the intrinsic dimension allowed us to choose

the dictionary size. Moreover the results of Section 5.3 showed that linear methods

are sufficient. The spatial and modal correlation analysis in Section 5.4 justified a

choice of a patch size of 3 × 3 and confirmed that both modalities (continuum and

magnetogram) should be used in matrix factorization.

Chapter VI focused on clustering the sunspot images using divergence as the

base dissimilarity measure. The divergence was estimated using the nonparametric

ensemble estimator described in Chapter III. We found that the resulting clusters

are correlated with physical phenomena such as the scale of the ARs. The clusters

were also correlated with measures associated with flares such as the R value and the

complexity of the AR as measured by the Mount Wilson classification scheme.

The local intrinsic dimension based on the k-NN approach combines both contin-

uum and magnetogram observations and provides some measure of local regularity

for those images. Further differences between the Mount Wilson classes may be found

by comparing the histograms or distributions of local intrinsic dimension of each in-

dividual AR instead of only comparing the means or pooled estimates as we did in

this thesis. There are several options to perform such comparisons. Each histogram

could be treated as a vector, or we could consider the underlying probability den-

sity function within the framework of functional analysis. Supervised (using Mount

Wilson classes) or unsupervised classification could be performed. Another option

would be to view the set of histograms belonging to a specific class as samples from a

distribution of vectors (or a distribution of probability density functions). Different

classes could then be compared using divergence measures.

In future work, we plan to study the efficiency of supervised techniques applied to

the reduced dimension representation. Supervised classification can always do at least

as well as unsupervised learning in the task of reproducing class labels (e.g. Mount

Wilson label). Thus if the goal is for example to reproduce the Mount Wilson classes,
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or to detect nonpotentiality using global statistics of local properties, then supervised

methods would lead to increased correspondence relative to our unsupervised results.

In case of flare prediction, the labels would be some indicator of flare activity such

as the strength of the largest flare that occurred within a specified time period after

the image was taken. Supervised techniques such as classification or regression could

be applied depending on the nature of the label (i.e. categorical vs. continuum). For

classification problems, estimation of the Bayes error via divergence estimators can

be helpful.

These methods of comparing AR images can also be adapted to a time series of

image pairs. For example, image pairs from a given point in time may be compared to

the image pairs from an earlier period to measure how much the ARs have changed.

The evolution of an AR may also be studied by defining class labels based on the

results from one of the clustering schemes in this thesis. From the clustering results, a

classifier may be trained that is then used to assign an AR to one of these clusters at

each time step. The evolution of the AR’s cluster assignment can then be examined.

To properly do this, the future theoretical work involving time series discussed in

Section 8.1 will be helpful.

8.3 HFO Data

In Chapter VII, we tested some of the implicit assumptions previously used in

HFO feature analysis. We observed that the HFO features tend to cluster on linear

manifolds that tend to be consistent within interictal periods. However, we found

that the manifolds may not be consistent between interictal and ictal periods and

between different channels within the same patient. Thus, dimensionality reduction

and feature analysis must account for these variations. We also observe that pHFOs

and nHFOs are indeed distinct on a large number of channels, suggesting a strong

potential for classifying individual HFOs.
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Future work will extend this analysis to a larger patient population, and classify

HFOs and/or recording channels based on HFO features. By including more patients,

it may be possible to extend this work to better detect the seizure onset zone within

the brain. The machine learning on distributions framework will apply in this case.

Given that HFOs occur in a time series, the future theoretical work discussed in

Section 8.1 will also be helpful here.
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APPENDIX A

Boundary Conditions

This appendix contains the proof for the boundary condition assumption A.5 for

rectangular kernels and for spherical kernels (Theorem II.1).

A.1 Rectangular Kernels

Consider a uniform rectangular kernel K(x) that satisfies K(x) = 1 for all x such

that ||x||1 ≤ 1/2. Also consider the family of probability densities f with rectangular

support S = [−1, 1]d. We will prove Theorem II.1 which is that that S satisfies the

following smoothness condition (A.5): for any polynomial px(u) : Rd → R of order

q ≤ r = bsc with coefficients that are r − q times differentiable wrt x,

∫
x∈S

 ∫
u:||u||1≤ 1

2
, x+uh/∈S

px(u)du


t

dx = vt(h), (A.1)

where vt(h) has the expansion

vt(h) =

r−q∑
i=1

ei,q,th
i + o

(
hr−q

)
.
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Note that the inner integral forces the x’s under consideration to be boundary points

via the constraint x+ uh /∈ S.

A.1.1 Single Coordinate Boundary Point

We begin by focusing on points x that are boundary points by virtue of a single

coordinate xi such that xi+uih /∈ S. Without loss of generality, assume that xi+uih >

1. The inner integral in (A.1) can then be evaluated first wrt all coordinates other

than i. Since all of these coordinates lie within the support, the inner integral over

these coordinates will amount to integration of the polynomial px(u) over a symmetric

d − 1 dimensional rectangular region |uj| ≤ 1
2

for all j 6= i. This yields a function∑q
m=1 p̃m(x)umi where the coefficients p̃m(x) are each r− q times differentiable wrt x.

With respect to the ui coordinate, the inner integral will have limits from 1−xi
h

to

1
2

for some 1 > xi > 1− h
2
. Consider the p̃q(x)uqi monomial term. The inner integral

wrt this term yields

q∑
m=1

p̃m(x)

1
2∫

1−xi
h

umi dui =

q∑
m=1

p̃m(x)
1

m+ 1

(
1

2m+1
−
(

1− xi
h

)m+1
)
. (A.2)

Raising the right hand side of (A.6) to the power of t results in an expression of the

form
qt∑
j=0

p̌j(x)

(
1− xi
h

)j
, (A.3)

where the coefficients p̌j(x) are r − q times differentiable wrt x. Integrating (A.3)

over all the coordinates in x other than xi results in an expression of the form

qt∑
j=0

p̄j(xi)

(
1− xi
h

)j
, (A.4)

where again the coefficientsp̄j(xi) are r − q times differentiable wrt xi. Note that
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since the other cooordinates of x other than xi are far away from the boundary, the

coefficients p̄j(xi) are independent of h. To evaluate the integral of (A.4), consider

the r − q term Taylor series expansion of p̄j(xi) around xi = 1. This will yield terms

of the form

1∫
1−h/2

(1− xi)j+k

hk
dxi = − (1− xi)j+k+1

hk(j + k + 1)

∣∣∣∣∣
xi=1

xi=1−h/2

=
hj+1

(j + k + 1)2j+k+1
,

for 0 ≤ j ≤ r − q, and 0 ≤ k ≤ qt. Combining terms results in the expansion

vt(h) =
∑r−q

i=1 ei,q,th
i + o (hr−q).

A.1.2 Multiple Coordinate Boundary Point

The case where multiple coordinates of the point x are near the boundary is a

straightforward extension of the single boundary point case so we only sketch the main

ideas here. As an example, consider the case where 2 of the coordinates are near the

boundary. Assume for notational ease that they are x1 and x2 and that x1 + u1h > 1

and x2 + u2h > 1. The inner integral in (A.1) can again be evaluated first wrt all

coordinates other than 1 and 2. This yields a function
∑q

m,j=1 p̃m,j(x)um1 u
j
2 where

the coefficients p̃m,j(x) are each r− q times differentiable wrt x. Integrating this wrt

x1 and x2 and then raising the result to the power of t yields a double sum similar

to (A.3). Integrating this over all the coordinates in x other than x1 and x2 gives a

double sum similar to (A.4). Then a Taylor series expansion of the coefficients and

integration over x1 and x2 yields the result.
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A.2 Spherical (Euclidean) Kernels

Consider a uniform circular kernel K(x) with K(x) = 1 for all x s.t. ||x||2 ≤ 1.

We also consider the family of probability densities with rectangular support S =

[−1, 1]d. In this section, we show that the boundary condition is satisfied for this

kernel and support. The smoothness condition reduces to the following: for any

polynomial px(u) : Rd → R of degree q ≤ r = bsc with coefficients that are r − q

times differentiable wrt x,

∫
x∈S

 ∫
u:||u||2≤1,x+uh/∈S

px(u)du


t

dx = vt(h), (A.5)

where vt(h) has the expansion

vt(h) =

r−q∑
i=1

ei,q,th
i + o(hr−q).

Note that the inner integral forces the x terms to be boundary points through the

constraint x+uh /∈ S. Note also that this proof is more difficult than for the uniform

rectangular kernel since in that case, the kernel aligns better with the boundary.

A.2.1 Single Coordinate Boundary Point.

As before, we begin by focusing on points x that are boundary points due to

a single coordinate xi s.t. xi + uih /∈ S. Without loss of generality, assume that

xi + uih > 1. We focus first on the inner integral in (A.5). We will use the following

lemma:

Lemma A.1. Let Dd(ρ) be a d-sphere with radius d and let
∑d

i=1 ni = q. Then

∫
Dd(r)

un1
1 u

n2
2 . . . undd du1 . . . dud = Cρd+q,
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where C is a constant that depends on the nis and d.

Proof. We convert to d-dimensional spherical coordinates to handle the integration.

Let r be the distance of a point u from the origin. We nave d− 1 angular coordinates

φi where φd−1 ranges from 0 to 2π and all other φi range from 0 to π. The conversion

from the spherical coordinates to Cartesian coordinates is then

u1 = r cos (φ1)

u2 = r sin (φ1) cos (φ2)

u3 = r sin (φ1) sin (φ2) cos (φ3)

...

ud−1 = r sin (φ1) · · · sin (φd−2) cos (φd−1)

ud = r sin (φ1) · · · sin (φd−2) sin (φd−1) .

The spherical volume element is then

rd−1 sind−2 (φ1) sind−3 (φ1) · · · sin (φd−1) dr dφ1 dφ2 · · · dφd−1.

Combining these results gives

∫
Dd(r)

un1
1 u

n2
2 . . . undd du1 . . . dud

=

ρ∫
0

2π∫
o

π∫
0

· · ·
π∫

0

rq+d−1
[
sinq−n1+d−2 (φ1) sinq−n1−nd+d−3 (φ2) · · ·

sinnd+nd−1+1 (φd−2) sinnd (φd−1)
]

[cosn1 (φ1) · · · cosnd (φd−1)] dφ1 · · · dφd−1dr

= Cρq+d.

160



The region of integration for the inner integral in (A.5) corresponds to a hyper-

spherical cap with radius 1 and height of 1−xi
h

. The inner integral can be calculated

using an approach similar to that used in [124] to calculate the volume of a hyper-

spherical cap. It is obtained by integrating the polynomial px(u) over a d− 1-sphere

with radius sin θ and height element d cos θ. This is done using Lemma A.1. We then

integrate over θ which has a range of 0 to φ = cos−1
(

1−xi
h

)
. Thus we have

∫
u:||u||2≤1,x+uh/∈S

px(u)du =

q∑
m=0

p̃m(x)

φ∫
0

sinm+d−1(θ) sin θumd dθ

=

q∑
m=0

p̃m(x)

φ∫
0

sinm+d(θ) cosm θdθ. (A.6)

From standard integral tables, we get that for n ≥ 2 and m ≥ 0

φ∫
0

sinn θ cosm θdθ = −sinn−1 φ cosm+1 φ

n+m
+
n− 1

n+m

φ∫
0

sinn−2 θ cosm θdθ. (A.7)

If n = 1, then we get

φ∫
0

sin θ cosm θdθ =
1

m+ 1
− cosm+1 φ

m+ 1
.

Since φ = cos−1
(

1−xi
h

)
, we have

cosφ =
1− xi
h

,

sinφ =

√
1−

(
1− xi
h

)2

.
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Therefore, if n is odd, we obtain

φ∫
0

sinn θ cosm θdθ =

(n−1)/2∑
`=0

c`

√1−
(

1− xi
h

)2
2`(

1− xi
h

)m+1

+ c, (A.8)

where the constants depend on m and n.

If n is even and m > 0, then the final term in the recursion in (A.7) reduces to

φ∫
0

cosm θdθ =
cosm−1 φ sinφ

m
+
m− 1

m

φ∫
0

cosm−2 θdθ.

If m = 2, then

φ∫
0

cos2 θdθ =
φ

2
+

1

4
sin(2φ)

=
φ

2
+

1

2
sinφ cosφ.

Therefore, if n and m are both even, then this gives

φ∫
0

sinn θ cosm θdθ =

(n−2)/2∑
`=0

c
′

`

√1−
(

1− xi
h

)2
2`+1(

1− xi
h

)m+1

+ c
′
cos−1

(
1− xi
h

)

+

(m−2)/2∑
`=0

c
′′

`

√1−
(

1− xi
h

)2
(1− xi

h

)2`+1

. (A.9)

On the other hand, if n is even and m is odd, we get

φ∫
0

sinn θ cosm θdθ =

(n−2)/2∑
`=0

c
′′′

`

√1−
(

1− xi
h

)2
2`+1(

1− xi
h

)m+1

+

(m−1)/2∑
`=0

c
′′′′

`

√1−
(

1− xi
h

)2
(1− xi

h

)2`

. (A.10)
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If d is odd, then combining (A.8) and (A.10) with (A.6) gives

∫
u:||u||2≤1,x+uh/∈S

px(u)du =

q∑
m=0

d+q∑
`=0

pm,`(x)

√1−
(

1− xi
h

)2
`(

1− xi
h

)m
,(A.11)

where the coefficients pm,`(x) are r − q times differentiable wrt x. Similarly, if d is

even, then

∫
u:||u||2≤1,x+uh/∈S

px(u)du =

q∑
m=0

d+q∑
`=0

p
′

m,`(x)

√1−
(

1− xi
h

)2
`(

1− xi
h

)m

+p
′
(x) cos−1

(
1− xi
h

)
, (A.12)

where again the coefficients p
′

m,`(x) and p
′
(x) are r − q times differentiable wrt x.

Raising (A.11) and (A.12) to the power of t gives respective expressions of the form

qt∑
m=0

(d+q)t∑
`=0

p̌m,`(x)

√1−
(

1− xi
h

)2
`(

1− xi
h

)m
, (A.13)

qt∑
m=0

(d+q)t∑
`=0

t∑
n=0

p̌m,`,n(x)

√1−
(

1− xi
h

)2
`(

1− xi
h

)m(
cos−1

(
1− xi
h

))n
,

(A.14)

where the coefficients p̌m,`(x) and p̌m,`,n(x) are all r − q times differentiable wrt x.

Integrating (A.13) and (A.14) over all the coordinates in x except for xi affects only

the p̌m,`(x) and p̌m,`,n(x) coefficients, resulting in respective expressions of the form

qt∑
m=0

(d+q)t∑
`=0

p̄m,`(xi)

√1−
(

1− xi
h

)2
`(

1− xi
h

)m
, (A.15)
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qt∑
m=0

(d+q)t∑
`=0

t∑
n=0

p̄m,`,n(xi)

√1−
(

1− xi
h

)2
`(

1− xi
h

)m(
cos−1

(
1− xi
h

))n
.

(A.16)

The coefficients p̄m,`(xi) and p̄m,`,n(xi) are r − q times differentiable wrt xi. Since

the other coordinates of x other than xi are far away from the boundary, the coeffi-

cients are independent of h. For the integral wrt xi of (A.15), taking a Taylor series

expansion of p̄m,`(xi) around xi = 1 yields terms of the form

1∫
1−h

√1−
(

1− xi
h

)2
`(

1− xi
h

)m+j

hjdxi = hj+1

1∫
0

(1− yi)
`
2 y

m+j−1
2

i dyi

= hj+1B

(
`+ 2

2
,
m+ j + 1

2

)
,

where 0 ≤ j ≤ r − q, 0 ≤ ` ≤ (d+ q)t, 0 ≤ m ≤ qt, and B(x, y) is the beta function.

Note that the first step uses the substitution of yi =
(

1−xi
h

)2
.

If d is even (i.e. (A.16)), a simple closed-form expression is not easy to obtain due

to the cos−1
(

1−xi
h

)
terms. However, by similarly applying a Taylor series expansion

to p̄m,`,n(xi) and substituting yi = 1−xi
h

gives terms of the form of

1∫
1−h

√1−
(

1− xi
h

)2
`(

1− xi
h

)m+j (
cos−1

(
1− xi
h

))n
hjdxi

= hj+1

1∫
0

(
1− y2

i

) `
2 ym+j

i

(
cos−1 yi

)n
dyi

= hj+1c`,m,j,n,

for 0 ≤ j ≤ r − q, 0 ≤ ` ≤ (d + q)t, 0 ≤ m ≤ qt, and 0 ≤ n ≤ t. Combining terms

results in the expansion vt(h) =
∑r−q

i=1 ei,q,th
i + o(hr−q).
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A.2.2 Multiple Coordinate Boundary Point

The case where multiple coordinates of the point x are near the boundary is a

fairly straightforward extension of the single boundary point case. Consider the case

where 2 of the coordinates are near the boundary, e.g., x1 and x2 with x1+u1h > 1 and

x2 +u2h > 1. The region of integration for the inner integral can be decomposed into

two parts: a hyperspherical cap wrt x1 and the remaining area (denoted, respectively,

as A1 and A2). The remaining area A2 can be decomposed further into two other

areas: a hyperspherical cap wrt x2 (denoted B1) and a height chosen s.t. B1 just

intersects A1 on their boundaries. Integrating over the remainder of A2 is achieved

by integrating along x2 over d−1-dimensional hyperspherical caps from the boundary

of B1 to the boundary of A2. Thus integrating over these regions yields an expression

similar to (A.6). Following a similar procedure will then yield the result.
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APPENDIX B

Proofs for KDE Plug-in Estimators

This appendix contains the proofs for the KDE approaches.

B.1 Proof of Theorem II.2 (Bias)

In this appendix, we prove the bias results in Thm. IV.1. The bias of the base

kernel density plug-in estimator G̃h1,h2 can be expressed as

B
[
G̃h1,h2

]
= E

[
g
(
f̃1,h1(Z), f̃2,h2(Z)

)
− g (f1(Z), f2(Z))

]
= E

[
g
(
f̃1,h1(Z), f̃2,h2(Z)

)
− g

(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)]
+E

[
g
(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)
− g (f1(Z), f2(Z))

]
, (B.1)

where Z is drawn from f2. The first term is the “variance” term while the second

is the “bias” term. We bound these terms using Taylor series expansions under

the assumption that g is infinitely differentiable. The Taylor series expansion of

the variance term in (D.1) will depend on variance-like terms of the KDEs while the

Taylor series expansion of the bias term in (D.1) will depend on the bias of the KDEs.

The Taylor series expansion of g
(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)
around f1(Z) and f2(Z)
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is

g
(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)
=
∞∑
i=0

∞∑
j=0

 ∂i+jg(x, y)

∂xi∂yj

∣∣∣∣x=f1(Z)
y=f2(Z)

 Bi
Z

[
f̃1,h1(Z)

]
Bj

Z

[
f̃2,h2(Z)

]
i!j!

(B.2)

where Bj
Z

[
f̃i,hi(Z)

]
=
(
EZf̃i,hi(Z)− fi(Z)

)j
is the bias of f̃i,hi at the point Z raised

to the power of j. This expansion can be used to control the second term (the bias

term) in (D.1). To accomplish this, we require an expression for EZf̃i,hi(Z)− fi(Z) =

BZ

[
f̃i,hi(Z)

]
.

To obtain an expression for BZ

[
f̃i,hi(Z)

]
, we consider separately the cases when

Z is in the interior of the support S or when Z is near the boundary of the support.

A point X ∈ S is defined to be in the interior of S if for all Y /∈ S, K
(
X−Y
hi

)
= 0. A

point X ∈ S is near the boundary of the support if it is not in the interior. Denote

the region in the interior and near the boundary wrt hi as SIi and SBi , respectively.

We will need the following.

Lemma B.1. Let Z be a realization of the density f2 independent of f̃i,hi for i = 1, 2.

Assume that the densities f1 and f2 belong to Σ(s, L). Then for Z ∈ SIi,

EZ

[
f̃i,hi(Z)

]
= fi(Z) +

bs/2c∑
j=ν/2

ci,j(Z)h2j
i +O (hsi ) . (B.3)

Proof. Obtaining the lower order terms in (B.3) is a common result in kernel density

estimation. However, since we also require the higher order terms, we present the

proof here. Additionally, some of the results in this proof will be useful later. From

the linearity of the KDE, we have that if X is drawn from fi and is independent of
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Z, then

EZf̃i,hi(Z) = EZ

[
1

hdi
K

(
X− Z

hi

)]
=

∫
1

hdi
K

(
x− Z

hi

)
fi(x)dx

=

∫
K (t) fi(thi + Z)dt, (B.4)

where the last step follows from the substitution t = x−Z
hi

. Since the density fi belongs

to Σ(s,K), using multi-index notation we can expand it as

fi(thi + Z) = fi(Z) +
∑

0<|α|≤bsc

Dαfi(Z)

α!
(thi)

α +O (‖thi‖s) , (B.5)

where α! = α1!α2! . . . αd! and Y α = Y α1
1 Y α2

2 . . . Y αd
d . Combining (B.4) and (B.5) gives

EZf̃i,hi(Z) = fi(Z) +
∑

0<|α|≤bsc

Dαfi(Z)

α!
h
|α|
i

∫
tαK(t)dt+O(hsi )

= fi(Z) +

bs/2c∑
j=ν/2

ci,j(Z)h2j
i +O(hsi ),

where the last step follows from the fact that K is symmetric and of order ν.

To obtain a similar result for the case when Z is near the boundary of S, we use

assumption A.5.

Lemma B.2. Let γ(x, y) be an arbitrary function satisfying supx,y |γ(x, y)| < ∞.

Let S satisfy the boundary smoothness conditions of Assumption A.5. Assume that

the densities f1 and f2 belong to Σ(s, L) and let Z be a realization of the density f2

independent of f̃i,hi for i = 1, 2. Let h
′
= min (h1, h2). Then

E
[
1{Z∈SBi}γ (f1(Z), f2(Z)) Bt

Z

[
f̃i,hi(Z)

]]
=

r∑
j=1

c4,i,j,th
j
i + o (hri ) (B.6)
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E
[
1{Z∈SB1

∩SB2}γ (f1(Z), f2(Z)) Bt
Z

[
f̃1,h1(Z)

]
Bq

Z

[
f̃2,h2(Z)

]]
=

r−1∑
j=0

r−1∑
i=0

c4,j,i,q,th
j
1h

i
2h
′

+o
((
h
′
)r)

(B.7)

Proof. For fixed X near the boundary of S, we have

E
[
f̃i,hi(X)

]
− fi(X) =

1

hdi

∫
Y :Y ∈S

K

(
X − Y
hi

)
fi(Y )dY − fi(X)

=

 1

hdi

∫
Y :K

“
X−Y
hi

”
>0

K

(
X − Y
hi

)
fi(Y )dY − fi(X)


−

 1

hdi

∫
Y :Y /∈S

K

(
X − Y
hi

)
fi(Y )dY


= T1,i(X)− T2,i(X).

Note that in T1,i(X), we are extending the integral beyond the support of the

density fi. However, by using the same Taylor series expansion method as in the

proof of Lemma B.1, we always evaluate fi and its derivatives at the point X which

is within the support of fi. Thus it does not matter how we define an extension of

fi since the Taylor series will remain the same. Thus T1,i(X) results in an identical

expression to that obtained from (B.3).

For the T2,i(X) term, we expand it as follows using multi-index notation as

T2,i(X) =
1

hdi

∫
Y :Y /∈S

K

(
X − Y
hi

)
fi(Y )dY

=

∫
u:hiu+X/∈S,K(u)>0

K (u) fi(X + hiu)du

=
∑
|α|≤r

h
|α|
i

α!

∫
u:hiu+X/∈S,K(u)>0

K (u)Dαfi(X)uαdu+ o (hri ) .
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Recognizing that the |α|th derivative of fi is r−|α| times differentiable, we can apply

assumption A.5 to obtain the expectation of T2,i(X) wrt X:

E [T2,i(X)] =
1

hdi

∫
X

∫
Y :Y /∈S

K

(
X − Y
hi

)
fi(Y )dY f2(X)dx

=
∑
|α|≤r

h
|α|
i

α!

∫
X

∫
u:hiu+X/∈S,K(u)>0

K (u)Dαfi(X)uαduf2(X)dX + o (hri )

=
∑
|α|≤r

h
|α|
i

α!

 ∑
1≤|β|≤r−|α|

eβ,r−|α|h
|β|
i + o

(
h
r−|α|
i

)+ o (hri )

=
r∑
j=1

ejh
j
i + o (hri ) .

Similarly, we find that

E
[
(T2,i(X))t

]
=

1

hdti

∫
X

 ∫
Y :Y /∈S

K

(
X − Y
hi

)
fi(Y )dY

t

f2(X)dx

=

∫
X

∑
|α|≤r

h
|α|
i

α!

∫
u:hiu+X/∈S,K(u)>0

K (u)Dαfi(X)uαdu


t

f2(X)dX

=
r∑
j=1

ej,th
j
i + o (hri ) .

Combining these results gives

E
[
1{Z∈SB}γ (f1(Z), f2(Z))

(
EZ

[
f̃i,hi(Z)

]
− fi(Z)

)t]
= E

[
γ (f1(Z), f2(Z)) (T1,i(Z)− T2,i(Z))t

]
= E

[
γ (f1(Z), f2(Z))

t∑
j=0

(
t

j

)
(T1,i(Z))j (−T2,i(Z))t−j

]

=
r∑
j=1

c4,i,j,th
j
i + o (hri ) ,

where the constants are functionals of the kernel, γ, and the densities.
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The expression in (B.7) can be proved in a similar manner.

Applying Lemmas B.1 and B.2 to (B.2) gives

E
[
g
(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)
− g (f1(Z), f2(Z))

]
=

r∑
j=1

(
c4,1,jh

j
1 + c4,2,jh

j
2

)
+

r−1∑
j=0

r−1∑
i=0

c5,i,jh
j
1h

i
2h
′
+ o (hr1 + hr2) .

For the variance term (the first term) in (D.1), the truncated Taylor series expan-

sion of g
(
f̃1,h1(Z), f̃2,h2(Z)

)
around EZf̃1,h1(Z) and EZf̃2,h2(Z) gives

g
(
f̃1,h1(Z), f̃2,h2(Z)

)
=

λ∑
i=0

λ∑
j=0

 ∂i+jg(x, y)

∂xi∂yj

∣∣∣∣x=EZ f̃1,h1
(Z)

y=EZ f̃2,h2
(Z)

 ẽi1,h1
(Z)ẽj2,h2

(Z)

i!j!

+o
(
ẽλ1,h1

(Z) + ẽλ2,h2
(Z)
)

(B.8)

where ẽi,hi(Z) := f̃i,hi(Z)−EZf̃i,hi(Z). To control the variance term in (D.1), we thus

require expressions for EZ

[
ẽji,hi(Z)

]
.

Lemma B.3. Let Z be a realization of the density f2 that is in the interior of the

support and is independent of f̃i,hi for i = 1, 2. Let n(q) be the set of integer divisors

of q including 1 but excluding q. Then,

EZ

[
ẽqi,hi(Z)

]
=


∑

j∈n(q)
1

(N2hd2)
q−j

∑bs/2c
m=0 c6,i,q,j,m(Z)h2m

i +O
(

1
Ni

)
, q ≥ 2

0, q = 1,

(B.9)

EZ

[
ẽq1,h1

(Z)ẽl2,h2
(Z)
]

=



(∑
i∈n(q)

1

(N1hd1)
q−i

∑bs/2c
m=0 c6,1,q,i,m(Z)h2m

1

)
× q, l ≥ 2(∑

j∈n(l)
1

(N2hd2)
l−j

∑bs/2c
t=0 c6,2,l,j,t(Z)h2t

2

)
+O

(
1
N1

+ 1
N2

)
,

0, q = 1 or l = 1

(B.10)
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where c6,i,q,j,m is a functional of f1 and f2.

Proof. Define the random variable Vi(Z) = K
(

Xi−Z
h2

)
− EZK

(
Xi−Z
h2

)
. This gives

ẽ2,h2(Z) = f̃2,h2(Z)− EZf̃2,h2(Z)

=
1

N2hd2

N2∑
i=1

Vi(Z).

Clearly, EZVi(Z) = 0. From (B.4), we have for integer j ≥ 1

EZ

[
Kj

(
Xi − Z

h2

)]
=

∫
Kj (t) f2(th2 + Z)dt

= hd2

bs/2c∑
m=0

c3,2,j,m(Z)h2m
2 ,

where the constants c3,2,j,m depend on the density f2, its derivatives, and the moments

of the kernel Kj. Note that since K is symmetric, the odd moments of Kj are zero

for Z in the interior of the support. However, all even moments may now be nonzero

since Kj may now be nonnegative. By the binomial theorem,

EZ

[
Vj
i (Z)

]
=

j∑
k=0

(
j

k

)
EZ

[
Kk

(
Xi − Z

h2

)]
EZ

[
K

(
Xi − Z

h2

)]j−k

=

j∑
k=0

(
j

k

)
hd2O

(
h
d(j−k)
2

) bs/2c∑
m=0

c3,2,k,m(Z)h2m
2

= hd2

bs/2c∑
m=0

c3,2,j,m(Z)h2m
2 +O

(
h2d
)
.

We can use these expressions to simplify EZ

[
ẽq2,h2

(Z)
]
. As an example, let q = 2.

Then since the Xis are independent,

EZ

[
ẽ2

2,h2
(Z)
]

=
1

N2h2d
2

EZV2
i (Z)

=
1

N2hd2

bs/2c∑
m=0

c3,2,2,m(Z)h2m
2 +O

(
1

N2

)
.
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Similarly, we find that

EZ

[
ẽ3

2,h2
(Z)
]

=
1

N2
2h

3d
2

EZV3
i (Z)

=
1(

N2hd2
)2

bs/2c∑
m=0

c3,2,3,m(Z)h2m
2 + o

(
1

N2

)
.

For q = 4, we have

EZ

[
ẽ4

2,h2
(Z)
]

=
1

N3
2h

4d
2

EZV4
i (Z) +

N2 − 1

N3
2h

4d
2

(
EZV2

i (Z)
)2

=
1(

N2hd2
)3

bs/2c∑
m=0

c3,2,4,m(Z)h2m
2 +

1(
N2hd2

)2

bs/2c∑
m=0

c6,2,2,m(Z)h2m
2 + o

(
1

N2

)
.

The pattern is then for q ≥ 2,

EZ

[
ẽq2,h2

(Z)
]

=
∑
i∈n(q)

1(
N2hd2

)q−i bs/2c∑
m=0

c6,2,q,i,m(Z)h2m
2 +O

(
1

N2

)
.

For any integer q, the largest possible factor is q/2. Thus for given q, the smallest

possible exponent on the N2h
d
2 term is q/2. This increases as q increases. A similar

expression holds for EZ

[
ẽq1,h1

(Z)
]

except the Xis are replaced with Yi, f2 is replaced

with f1, and N2 and h2 are replaced with N1 and h1, respectively, all resulting in

different constants. Then since ẽ1,h1(Z) and ẽ2,h2(Z) are conditionally independent

given Z,

EZ

[
ẽq1,h1

(Z)ẽl2,h2
(Z)
]

= O

(
1

N1

+
1

N2

)
+

∑
i∈n(q)

1(
N1hd1

)q−i bs/2c∑
m=0

c6,1,q,i,m(Z)h2m
1


×

∑
j∈n(l)

1(
N2hd2

)l−j bs/2c∑
t=0

c6,2,l,j,t(Z)h2t
2

 .
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Applying Lemma B.3 to (B.8) when taking the conditional expectation given Z

in the interior gives an expression of the form

λ/2∑
j=1

bs/2c∑
m=0

(
c7,1,j,m

(
EZf̃1,h1(Z),EZf̃2,h2(Z)

) h2m
1(

N1hd1
)j

+ c7,2,j,m

(
EZf̃2,h2(Z),EZf̃2,h2(Z)

) h2m
2(

N2hd2
)j
)

+O

 1(
N1hd1

)λ
2

+
1(

N2hd2
)λ

2


+

λ/2∑
j=1

bs/2c∑
m=0

λ/2∑
i=1

bs/2c∑
n=0

c7,j,i,m,n

(
EZf̃2,h2(Z),EZf̃2,h2(Z)

) h2m
1 h2n

2(
N1hd1

)j (
N2hd2

)i . (B.11)

Note that the functionals c7,i,j,m and c7,j,i,m,n depend on the derivatives of g and

EZf̃i,hi(Z) which depends on hi. To apply ensemble estimation, we need to separate

the dependence on hi from the constants. If we use ODin1, then it is sufficient to

note that in the interior of the support, EZf̃i,hi(Z) = fi(Z) + o(1) and therefore

c
(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)
= c (f1(Z), f2(Z)) + o(1) for some functional c. The terms

in (B.11) reduce to

c7,1,1,0 (f1(Z), f2(Z))
1

N1hd1
+ c7,2,1,0 (f1(Z), f2(Z))

1

N2hd2
+ o

(
1

N1hd1
+

1

N2hd2

)
.

For ODin2, we need the higher order terms. To separate the dependence on hi

from the constants, we need more information about the functional g and its deriva-

tives. Consider the special case where the functional g(x, y) has derivatives of the

form of xαyβ with α, β < 0. This includes the important cases of the KL diver-

gence and the Renyi divergence. The generalized binomial theorem states that if(
α
m

)
:= α(α−1)...(α−m+1)

m!
and if q and t are real numbers with |q| > |t|, then for any

complex number α,

(q + t)α =
∞∑
m=0

(
α

m

)
qα−mtm. (B.12)

Since the densities are bounded away from zero, for sufficiently small hi, we have that
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fi(Z) >
∣∣∣∑bs/2cj=ν/2 ci,j(Z)h2j

i +O (hsi )
∣∣∣ . Applying the generalized binomial theorem and

Lemma B.1 gives that

(
EZf̃1,h1(Z)

)α
=

∞∑
m=0

(
α

m

)
fα−mi (Z)

 bs/2c∑
j=ν/2

ci,j(Z)h2j
i +O (hsi )

m

.

Since m is an integer, the exponents of the hi terms are also integers. Thus (B.11)

gives in this case

EZ

[
g
(
f̃1,h1(Z), f̃2,h2(Z)

)
− g

(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)]
=

λ/2∑
j=1

bs/2c∑
m=0

(
c8,1,j,m (Z)

h2m
1(

N1hd1
)j + c8,2,j,m (Z)

h2m
2(

N2hd2
)j
)

+

λ/2∑
j=1

bs/2c∑
m=0

λ/2∑
i=1

bs/2c∑
n=0

c8,j,i,m,n (Z)
h2m

1 h2n
2(

N1hd1
)j (

N2hd2
)i

+O

 1(
N1hd1

)λ
2

+
1(

N2hd2
)λ

2

+ hs1 + hs2

 . (B.13)

As before, the case for Z close to the boundary of the support is more compli-

cated. However, by using a similar technique to the proof of Lemma B.2 for Z at the

boundary and combining with the previous results, we find that for general g,

E
[
g
(
f̃1,h1(Z), f̃2,h2(Z)

)
− g

(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)]
= c9,1

1

N1hd1
+ c9,2

1

N2hd2

+o

(
1

N1hd1
+

1

N2hd2

)
.

(B.14)

If g(x, y) has derivatives of the form of xαyβ with α, β < 0, then we can similarly
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obtain

E
[
g
(
f̃1,h1(Z), f̃2,h2(Z)

)
− g

(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)]
=

λ/2∑
j=1

r∑
m=0

(
c9,1,j,m

hm1(
N1hd1

)j + c9,2,j,m
hm2(

N2hd2
)j
)

+

λ/2∑
j=1

r∑
m=0

λ/2∑
i=1

r∑
n=0

c9,j,i,m,n
hm1 h

n
2(

N1hd1
)j (

N2hd2
)i

+O

 1(
N1hd1

)λ
2

+
1(

N2hd2
)λ

2

+ hs1 + hs2

 . (B.15)

Combining (B.8) with either (B.14) or (B.15) completes the proof.

B.2 Proof of Theorem II.3 (Variance)

To bound the variance of the plug-in estimator G̃h1,h2 , we will use the Efron-Stein

inequality [53]:

Lemma B.4 (Efron-Stein Inequality). Let X1, . . . ,Xn,X
′
1, . . . ,X

′
n be independent

random variables on the space S. Then if f : S × · · · × S → R, we have that

V [f(X1, . . . ,Xn)] ≤ 1

2

n∑
i=1

E
[(
f(X1, . . . ,Xn)− f(X1, . . . ,X

′

i, . . . ,Xn)
)2
]
.

Suppose we have samples {X1, . . . ,XN2 ,Y1, . . . ,YN1} and
{
X
′
1, . . . ,XN2 ,Y1, . . . ,YN1

}
and denote the respective estimators as G̃h1,h2 and G̃

′

h1,h2
. We have that

∣∣∣G̃h1,h2 − G̃
′

h1,h2

∣∣∣ ≤ 1

N2

∣∣∣g (f̃1,h1(X1), f̃2,h2(X1)
)
− g

(
f̃1,h1(X

′

1), f̃2,h2(X
′

1)
)∣∣∣

+
1

N2

N2∑
j=2

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣ .
(B.16)
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Since g is Lipschitz continuous with constant Cg, we have

∣∣∣g (f̃1,h1(X1), f̃2,h2(X1)
)
− g

(
f̃1,h1(X

′

1), f̃2,h2(X
′

1)
)∣∣∣ ≤ Cg

∣∣∣f̃1,h1(X1)− f̃1,h1(X
′

1)
∣∣∣

+Cg

∣∣∣f̃2,h2(X1)− f̃2,h2(X
′

1)
∣∣∣ ,

(B.17)

∣∣∣f̃1,h1(X1)− f̃1,h1(X
′

1)
∣∣∣ =

1

N1hd1

∣∣∣∣∣
N1∑
i=1

(
K

(
X1 −Yi

h1

)
−K

(
X
′
1 −Yi

h1

))∣∣∣∣∣
≤ 1

N1hd1

N1∑
i=1

∣∣∣∣K (X1 −Yi

h1

)
−K

(
X
′
1 −Yi

h1

)∣∣∣∣
=⇒ E

[∣∣∣f̃1,h1(X1)− f̃1,h1(X
′

1)
∣∣∣2] ≤ 1

N1h2d
1

N1∑
i=1

E

[(
K

(
X1 −Yi

h1

)
−K

(
X
′
1 −Yi

h1

))2
]
,

(B.18)

where the last step follows from Jensen’s inequality. By making the substitution

ui = X1−Yi

h1
and u

′
i =

X
′
1−Yi

h1
, this gives

1

h2d
1

E

[(
K

(
X1 −Yi

h1

)
−K

(
X
′
1 −Yi

h1

))2
]

=
1

h2d

∫ (
K

(
X1 −Yi

h1

)
−K

(
X
′
1 −Yi

h1

))2

f2(X1)f2(X
′

1)f1(Yi)dX1dX
′

1dYi

≤ 2||K||2∞.

Combining this with (C.19) gives

E
[∣∣∣f̃1,h1(X1)− f̃1,h1(X

′

1)
∣∣∣2] ≤ 2||K||2∞.

Similarly,

E
[∣∣∣f̃2,h2(X1)− f̃2,h2(X

′

1)
∣∣∣2] ≤ 2||K||2∞.
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Combining these results with (C.18) gives

E
[(
g
(
f̃1,h1(X1), f̃2,h2(X1)

)
− g

(
f̃1,h1(X

′

1), f̃2,h2(X
′

1)
))2

]
≤ 8C2

g ||K||2∞. (B.19)

The second term in (D.5) is controlled in a similar way. From the Lipschitz

condition,

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣2
≤ C2

g

∣∣∣f̃2,h2(Xj)− f̃
′

2,h2
(Xj)

∣∣∣2
=

C2
g

M2
2h

2d
2

(
K

(
Xj −X1

h

)
−K

(
Xj −X

′
1

h

))2

.

The h2d
2 terms are eliminated by making the substitutions of uj =

Xj−X1

h2
and u

′
j =

Xj−X
′
1

h2
within the expectation to obtain

E
[∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣2] ≤ 2C2
g ||K||2∞
M2

2

(B.20)

=⇒ E

( N2∑
j=2

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣)2
 (B.21)

=

N2∑
j=2

N2∑
i=2

E
[∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣
×
∣∣∣g (f̃1,h1(Xi), f̃2,h2(Xi)

)
− g

(
f̃1,h1(Xi), f̃

′

2,h2
(Xi)

)∣∣∣]
≤ M2

2 E
[∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣2]
≤ 2C2

g ||K||2∞, (B.22)

where we use the Cauchy Schwarz inequality to bound the expectation within each
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summand. Finally, applying Jensen’s inequality and (B.19) and (C.27) gives

E
[∣∣∣G̃h1,h2 − G̃

′

h1,h2

∣∣∣2] ≤ 2

N2
2

E
[∣∣∣g (f̃1,h1(X1), f̃2,h2(X1)

)
− g

(
f̃1,h1(X

′

1), f̃2,h2(X
′

1)
)∣∣∣2]

+
2

N2
2

E

( N2∑
j=2

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣)2


≤
20C2

g ||K||2∞
N2

2

.

Now suppose we have samples {X1, . . . ,XN2 ,Y1, . . . ,YN1} and
{
X1, . . . ,XN2 ,Y

′
1, . . . ,YN1

}
and denote the respective estimators as G̃h1,h2 and G̃

′

h1,h2
. Then

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃
′

1,h1
(Xj), f̃2,h2(Xj)

)∣∣∣ ≤ Cg

∣∣∣f̃1,h1(Xj)− f̃
′

1,h1
(Xj)

∣∣∣
=

Cg
N1hd1

∣∣∣∣K (Xj −Y1

h1

)
−K

(
Xj −Y

′
1

h1

)∣∣∣∣
=⇒ E

[∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃
′

1,h1
(Xj), f̃2,h2(Xj)

)∣∣∣2] ≤ 2C2
g ||K||2∞
N2

1

.

Thus using a similar argument as was used to obtain (C.27),

E
[∣∣∣G̃h1,h2 − G̃

′

h1,h2

∣∣∣2] ≤ 1

N2
2

E

( N2∑
j=1

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃
′

1,h1
(Xj), f̃2,h2(Xj)

)∣∣∣)2


≤
2C2

g ||K||2∞
N2

2

.

Applying the Efron-Stein inequality gives

V
[
G̃h1,h2

]
≤

10C2
g ||K||2∞
N2

+
C2
g ||K||2∞N1

N2
2

.
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B.3 Proof of Theorem II.6 (CLT)

We are interested in the asymptotic distribution of

√
N2

(
G̃h1,h2 − E

[
G̃h1,h2

])
=

1√
N2

N2∑
j=1

(
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)
− EXj

[
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)])
+

1√
N2

N2∑
j=1

(
EXj

[
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)]
− E

[
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)])
.

Note that by the standard central limit theorem [51], the second term converges in

distribution to a Gaussian random variable. If the first term converges in probability

to a constant (specifically, 0), then we can use Slutsky’s theorem [78] to find the

asymptotic distribution. So now we focus on the first term which we denote as VN2 .

To prove convergence in probability, we will use Chebyshev’s inequality. Note that

E [VN2 ] = 0. To bound the variance of VN2 , we again use the Efron-Stein inequality.

Let X
′
1 be drawn from f2 and denote VN2 and V

′
N2

as the sequences using X1 and

X
′
1, respectively. Then

VN2 −V
′

N2
=

1√
N2

(
g
(
f̃1,h1(X1), f̃2,h2(X1)

)
− EX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)])
− 1√

N2

(
g
(
f̃1,h1(X

′

1), f̃2,h2(X
′

1)
)
− EX

′
1

[
g
(
f̃1,h1(X

′

1), f̃2,h2(X
′

1)
)])

+
1√
N2

N2∑
j=2

(
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

))
.(B.23)

Note that

E
[(
g
(
f̃1,h1(X1), f̃2,h2(X1)

)
− EX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)])2
]

= E
[
VX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)]]
.

If we condition on X1, then by the standard central limit theorem
√
Nihdi

(
f̃i,hi(X1)− EX1

[
f̃i,hi(X1)

])
converges in distribution to a zero mean Gaussian random variable with variance

σ2
i (X1) = O(1). This is true even if X1 is close to the boundary of the support of the
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densities. The KDEs f̃1,h1(X1) and f̃2,h2(X1) are conditionally independent given X1

as are their limiting distributions. Thus the KDEs converge jointly in distribution to

a Gaussian random vector with zero mean, zero covariance, and their respective vari-

ances. By the delta method [103], we have that if g(x, y) is continuously differentiable

with respect to both x and y at EX1

[
f̃i,hi(X1)

]
for i = 1, 2, respectively, then

VX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)]
= O

(
1

N1hd1
+

1

N2hd2

)
= o(1),

provided that Nih
d
i →∞. Thus E

[
VX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)]]
= o(1). A similar

result holds when we replace X1 with X
′
1.

For the third term in (B.23),

E

( N2∑
j=2

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣)2


=

N2∑
j=2

N2∑
i=2

E
[∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣ ∣∣∣g (f̃1,h1(Xi), f̃2,h2(Xi)
)
− g

(
f̃1,h1(Xi), f̃

′

2,h2
(Xi)

)∣∣∣] .
There are M2 terms where i = j and we have from Appendix D.2 (see (B.20)) that

E
[∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣2] ≤ 2C2
g ||K||2∞
M2

2

.

Thus these terms are O
(

1
M2

)
. There are M2

2 −M2 terms when i 6= j. In this case,

we can do four substitutions of the form uj =
Xj−X1

h2
to obtain

E
[∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣ ∣∣∣g (f̃1,h1(Xi), f̃2,h2(Xi)
)
− g

(
f̃1,h1(Xi), f̃

′

2,h2
(Xi)

)∣∣∣] ≤ 4C2
g ||K||2∞h2d

2

M2
2

.
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Then since hd2 = o(1), we get

E

( N2∑
j=2

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃1,h1(Xj), f̃

′

2,h2
(Xj)

)∣∣∣)2
 = o(1), (B.24)

=⇒ E
[(

VN2 −V
′

N2

)2
]
≤ 3

N2

E
[(
g
(
f̃1,h1(X1), f̃2,h2(X1)

)
− EX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)])2
]

+
3

N2

E
[(
g
(
f̃1,h1(X

′

1), f̃2,h2(X
′

1)
)
− EX

′
1

[
g
(
f̃1,h1(X

′

1), f̃2,h2(X
′

1)
)])2

]

+
3

N2

E

( N2∑
j=2

(
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃
′

1,h1
(Xj), f̃

′

2,h2
(Xj)

)))2


= o

(
1

N2

)
.

Now consider samples {X1, . . . ,XN2 ,Y1, . . . ,YN1} and
{
X1, . . . ,XN2 ,Y

′
1, . . . ,YN1

}
and the respective sequences VN2 and V

′
N2

. Then

VN2 −V
′

N2
=

1√
N2

N2∑
j=1

(
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃
′

1,h1
(Xj), f̃2,h2(Xj)

))
.

Using a similar argument as that used to obtain (B.24), we have that if hd1 = o(1)

and N1 →∞, then

E

( N2∑
j=2

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃
′

1,h1
(Xj), f̃2,h2(Xj)

)∣∣∣)2
 = o(1)

=⇒ E
[(

VN2 −V
′

N2

)2
]

= o

(
1

N2

)
.

Applying the Efron-Stein inequality gives

V [VN2 ] = o

(
N2 +N1

N2

)
= o(1).
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Thus by Chebyshev’s inequality,

Pr (|VN2| > ε) ≤ V [VN2 ]

ε2
= o(1),

and therefore VN2 converges to zero in probability. By Slutsky’s theorem,
√
N2

(
G̃h1,h2 − E

[
G̃h1,h2

])
converges in distribution to a zero mean Gaussian random variable with variance

V
[
EX

[
g
(
f̃1,h1(X), f̃2,h2(X)

)]]
,

where X is drawn from f2.

For the weighted ensemble estimator, we wish to know the asymptotic distribution

of
√
N2

(
G̃w − E

[
G̃w

])
where G̃w =

∑
l∈l̄ w(l)G̃h(l). We have that

√
N2

(
G̃w − E

[
G̃w

])
=

1√
N2

N2∑
j=1

∑
l∈l̄

w(l)
(
g
(
f̃1,h(l)(Xj), f̃2,h(l)(Xj)

)
− EXj

[
g
(
f̃1,h(l)(Xj), f̃2,h(l)(Xj)

)])

+
1√
N2

N2∑
j=1

EXj

∑
l∈l̄

w(l)g
(
f̃1,h(l)(Xj), f̃2,h(l)(Xj)

)− E

∑
l∈l̄

w(l)g
(
f̃1,h(l)(Xj), f̃2,h(l)(Xj)

) .

The second term again converges in distribution to a Gaussian random variable by

the central limit theorem. The mean and variance are, respectively, zero and

V

∑
l∈l̄

w(l)EX

[
g
(
f̃1,h(l)(X), f̃2,h(l)(X)

)] .
The first term is equal to

∑
l∈l̄

w(l)

(
1√
N2

N2∑
j=1

(
g
(
f̃1,h(l)(Xj), f̃2,h(l)(Xj)

)
− EXj

[
g
(
f̃1,h(l)(Xj), f̃2,h(l)(Xj)

)]))
=

∑
l∈l̄

w(l)oP (1)

= oP (1),

where oP (1) denotes convergence to zero in probability. In the last step, we used
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the fact that if two random variables converge in probability to constants, then their

linear combination converges in probability to the linear combination of the constants.

Combining this result with Slutsky’s theorem completes the proof.

B.4 Proof of Theorem II.7 (Uniform MSE)

Since the MSE is equal to the square of the bias plus the variance, we can upper

bound the left hand side of (2.9) with

sup
p,q∈Σ(s,K,ε0,ε∞)

E
[(

G̃w0 −G(p, q)
)2
]

= sup
p,q∈Σ(s,K,ε0,ε∞)

(
Bias

(
G̃w0

)2

+ Var
(
G̃w0

))
≤ sup

p,q∈Σ(s,K,ε0,ε∞)

Bias
(
G̃w0

)2

+ sup
p,q∈Σ(s,K,ε0,ε∞)

Var
(
G̃w0

)
.

From the assumptions (lipschitz, kernel bounded, weight calculated from relaxed opt.

prob), we have that

sup
p,q∈Σ(s,K,ε0,ε∞)

Var
(
G̃w0

)
≤ sup

p,q∈Σ(s,K,ε0,ε∞)

11C2
g ||w0||22||K||∞

N

=
11C2

g ||w0||22||K||∞
N

,

where the last step follows from the fact that all of the terms are independent of p

and q.

For the bias, recall that if g is infinitely differentiable and if the optimal weight

w0 is calculated using the relaxed convex optimization problem, then

Bias
(
G̃w0

)
=

∑
i∈J

ci(p, q)εN
−1/2,

=⇒ Bias
(
G̃w0

)2

=
ε2

N

(∑
i∈J

ci(p, q)

)2

. (B.25)

We use a topology argument to bound the supremum of this term. We will use the
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Extreme Value Theorem [151]:

Theorem B.5 (Extreme Value Theorem). Let f : X → R be continuous. If X is

compact, then for every x ∈ X, there exist points c, d ∈ X s.t. f(c) ≤ f(x) ≤ f(d).

By this theorem, f achieves its minimum and maximum on X. Our approach is to

first show that the functionals ci(p, q) are continuous wrt p and q in some appropriate

norm. We will then show that the space Σ(s,K, ε0, ε∞) is compact wrt this norm.

The Extreme Value Theorem can then be applied to bound the supremum of (B.25).

We first define the norm. Let α = s − r > 0. We use the standard norm on the

space Σ(s,K) [55]:

||f || = ||f ||Σ(s,K)

= ||f ||Cr + max
|β|=r
|Dβf |C0,α

where

||f ||Cr = max
|β|≤r

sup
x∈S
|Dβf(x)|,

|f |C0,α = sup
x 6=y∈S

|f(x)− f(y)|
|x− y|α

.

Lemma B.6. The functionals cm(p, q) are continuous wrt the norm max(||p||Cr , ||q||Cr).

Proof. The functionals cm(p, q) depend on terms of the form

c(p, q) =

∫

∂i+jg(t1, t2)

∂ti1∂t
j
2

∣∣∣∣
t1 = p(x)

t2 = q(x)


Dβp(x)Dγq(x)q(x)dx. (B.26)

It is sufficient to show that this is continuous. Let ε > 0 and max (||p− p0||Cr , ||q − q0||Cr) <
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δ where δ > 0 will be chosen later. Then by applying the triangle inequality for inte-

gration and adding and subtracting terms, we have that

|c(p, q)− c(p0, q0)|

≤
∫
∣∣∣∣∣∣∣∣∣∣∣∣∣


∂i+jg(t1, t2)

∂ti1∂t
j
2

∣∣∣∣
t1 = p(x)

t2 = q(x)


Dβp(x)Dγq(x) (q(x)− q0(x))

∣∣∣∣∣∣∣∣∣∣∣∣∣
dx

+

∫
∣∣∣∣∣∣∣∣∣∣∣∣∣


∂i+jg(t1, t2)

∂ti1∂t
j
2

∣∣∣∣
t1 = p(x)

t2 = q(x)


Dβp(x)q0(x) (Dγq(x)−Dγq0(x))

∣∣∣∣∣∣∣∣∣∣∣∣∣
dx

+

∫
∣∣∣∣∣∣∣∣∣∣∣∣∣
Dβp0(x)Dγq0(x)q0(x)




∂i+jg(t1, t2)

∂ti1∂t
j
2

∣∣∣∣
t1 = p(x)

t2 = q(x)


−


∂i+jg(t1, t2)

∂ti1∂t
j
2

∣∣∣∣
t1 = p0(x)

t2 = q0(x)





∣∣∣∣∣∣∣∣∣∣∣∣∣
dx

+

∫
∣∣∣∣∣∣∣∣∣∣∣∣∣


∂i+jg(t1, t2)

∂ti1∂t
j
2

∣∣∣∣
t1 = p(x)

t2 = q(x)


Dγq0(x)q0(x)

(
Dβp(x)−Dβp0(x)

)
∣∣∣∣∣∣∣∣∣∣∣∣∣
dx. (B.27)

By Assumption A.4, the absolute value of the mixed derivatives of g is bounded on

the range defined for p and q by some constant Ci,j. Also, q0(x) ≤ ε∞. Furthermore,

since Dγq0 and Dβp are continuous, and since S ⊂ Rd is compact, then the absolute

value of the derivatives Dγq0 and Dβp is also bounded by a constant ε
′
∞. Let δ0 > 0.

Then since the mixed derivatives of g are continuous on the interval [ε0, ε∞], they are
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uniformly continuous. Therefore, we can choose δ small enough s.t.

∣∣∣∣∣∣∣∣∣∣∣∣∣


∂i+jg(t1, t2)

∂ti1∂t
j
2

∣∣∣∣
t1 = p(x)

t2 = q(x)


−


∂i+jg(t1, t2)

∂ti1∂t
j
2

∣∣∣∣
t1 = p0(x)

t2 = q0(x)



∣∣∣∣∣∣∣∣∣∣∣∣∣
< δ0. (B.28)

Combining all of these results with (B.27) gives

|c(p, q)− c(p0, q0)| ≤ λ(S)δCijε
′

∞ (2 + ε∞)

+λ(S)ε
′

∞ε∞ (2δ0 + Cijδ) ,

where λ(S) is the Lebesgue measure of S. This is bounded since S is compact. Let

δ
′
0 > 0 be s.t. if max (||p− p0||Cr , ||q − q0||Cr) < δ

′
0, then (B.28) is less than ε

4λ(S)ε′∞ε∞
.

Let δ1 = ε
4λ(S)Cijε

′
∞(1+ε∞)

. Then if δ < min(δ
′
0, δ1), then

|c(p, q)− c(p0, q0)| < ε.

Given that each ci(p, q) is continuous, then
(∑

i∈J ci(p, q)
)2

is also continuous wrt

p and q.

We now argue that Σ(s,K) is compact. First, a set is relatively compact if its

closure is compact. By the Arzela-Ascoli theorem [72], the space Σ(s,K) is relatively

compact in the topology induced by the ‖·‖Σ(t,K) norm for any t < s. We choose t = r.

It can then be shown that under the ‖·‖Σ(r,K) norm, Σ(s,K) is complete [55]. Since

Σ(s,K) is contained in a metric space, then it is also closed and therefore equal to its

closure. Thus Σ(s,K) is compact. Then since Σ(s,K, ε0, ε∞) is closed in Σ(s,K), it

is also compact. Therefore, since for each p, q ∈ Σ(s,K, ε0, ε∞),
(∑

i∈J ci(p, q)
)2
<∞,
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by the Extreme Value Theorem we have

sup
p,q∈Σ(s,K,ε0,ε∞)

Bias
(
G̃w0

)2

= sup
p,q∈Σ(s,K,ε0,ε∞)

ε2

N

(∑
i∈J

ci(p, q)

)2

=
ε2

N
C,

where we use the fact that J is finite (see Section 2.2.3 for the set J when using

ODin1 or ODin2).
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APPENDIX C

Proofs for k-nn Plug-in Estimators

This appendix contains the proofs involving the k-nn plug-in estimators of diver-

gence functionals.

C.1 Proof of Theorem III.1 (Bias)

In this section, we prove the bias results in Thm. III.1. The bias of the base k-nn

plug-in estimator Ĝk1,k2 can be expressed as

B
[
Ĝk1,k2

]
= E

[
g
(
f̂1,k1(Z), f̂2,k2(Z)

)
− g (f1(Z), f2(Z))

]
= E

[
g
(
f̂1,k1(Z), f̂2,k2(Z)

)
− g

(
EZ,ρ1,k1 (Z)f̂1,k1(Z),EZ,ρ2,k2 (Z)f̂2,k2(Z)

)]
+E

[
g
(
EZ,ρ1,k1 (Z)f̂1,k1(Z),EZ,ρ2,k2 (Z)f̂2,k2(Z)

)
− g (f1(Z), f2(Z))

]
,(C.1)

where Z is drawn from f2 and ρi,ki(Z) is the kith nearest neighbor distance of Z in the

respective samples. For notational simplicity, let ρi,ki(Z) = ρi,ki . We take a similar

approach to the bias proof for the KDE plug-in estimator. In fact, the k-nn density

estimator can be viewed as a kernel density estimator. Let K be the uniform kernel
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on the unit ball. That is,

K(x) =


1
cd
, ||x|| < 1

0, otherwise,

where cd is the volume of the unit ball in Rd. Then we have that

f̂1,k1(Z) =
1

N1ρd1,k1

N1∑
i=1

K

(
Z−Yi

ρ1,k1

)
,

f̂2,k2(Z) =
1

N2ρd2,k2

N2∑
i=1

K

(
Z−Xi

ρ2,k2

)
.

The fact that the k-nn distances are random requires extra care. However, we can

condition on these distances with these representations which enables us to use some

of the same tools as in the KDE approach. Define

Ski(Z) =
{
X ∈ Rd : ‖X − Z‖ < ρi,ki

}
,

=⇒ Pr (Ski(Z)) =

∫
Ski (Z)

fi(x)dx.

Note that from [129], we have that

EZ,ρi,ki
f̂i,ki(Z) =

ki − 1

Ni

1

ρdi,ki

1

Pr (Ski(Z))

∫
Ski (Z)

K

(
Z− x
ρi,ki

)
fi(x)dx (C.2)

The Taylor series expansion of g
(
EZ,ρ1,k1

f̂1,k1(Z),EZ,ρ2,k2
f̂2,k2(Z)

)
around f1(Z)

and f2(Z) is

g
(
EZ,ρ1,k1

f̂1,k1(Z),EZ,ρ2,k2
f̂2,k2(Z)

)
=
∞∑
i=0

∞∑
j=0

 ∂i+jg(x, y)

∂xi∂yj

∣∣∣∣x=f1(Z)
y=f2(Z)

 Bi
Z,ρ1,k1

[
f̂1,k1(Z)

]
Bj

Z,ρ2,k2

[
f̂2,k2(Z)

]
i!j!

,

(C.3)
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where Bj
Z,ρi,ki

[
f̂i,ki(Z)

]
=
(
EZ,ρi,ki

f̂i,ki(Z)− fi(Z)
)j

. We thus require an expression

for BZ,ρi,ki

[
f̂i,ki(Z)

]
. Since we are conditioning on ρi,ki , we can consider separately

the cases when Z is in the interior of the support S or when Z is near the boundary

of the support. As before, A point X ∈ S is defined to be in the interior ofS if for

all Y /∈ S, K
(
X−Y
hi

)
= 0. A pointX ∈ S is near the boundary of the support if it is

not in the interior. Denote the region in the interior and near the boundary wrt ρi,ki

as SIi and SBi , respectively. Recall that we assume that S = [0, 1]d, the unit cube.

Consider now
∫
Ski (Z)

K
(

Z−x
ρi,ki

)
fi(x)dx. Substituting u = x−Z

ρi,ki
and then taking a

Taylor series expansion of fi using multi-index notation gives

∫
Ski (Z)

K

(
x− Z

ρi,ki

)
fi(x)dx = ρdi,ki

∫
||u||<1

K (u) fi(Z + uρi,ki)du

=
∑
|α|≤bsc

Dαfi(Z)

α!
ρ
d+|α|
i,ki

∫
u:Z+uρi,ki∈S

uαK(u)du,+O
(
ρd+s
i,ki

)

=⇒ EZ,ρi,ki
f̂i,ki(Z) =

ki − 1

Ni

1

Pr (Ski(Z))

 ∑
|α|≤bsc

Dαfi(Z)

α!
ρ
|α|
i,ki

∫
u:Z+uρi,ki∈S

uαK(u)du+O
(
ρsi,ki

) .

(C.4)

Lemma C.1. Let γ(x, y) be an arbitrary function satisfying supx,y |γ(x, y)| <∞. Let

S = [0, 1]d and let f1, f2 ∈ Σ(s, L). Let Z be a realization of the density f2 independent

of f̂i,ki for i = 1, 2. Then for any integer λ ≥ 0,

E
[
γ (f1(Z), f2(Z)) Bq

Z,ρi,ki

[
f̂i,ki(Z)

]]
=

bsc∑
j=1

c15,i,j,q

(
ki
Ni

) j
d

+
λ∑

m=0

bsc∑
j=0

m+j 6=0

c15,i,q,j,m

k
1+m

2
i

(
ki
Ni

) j
d

+O

((
ki
Ni

)min(s,d)
d

+
1

k
2+λ

2
i

)
.

Proof. We use the substitution Ti = Pr (Ski(Z)) which is the kth order statistic of a

uniform random variable [129]. Therefore, Ti has a beta distribution with parameters
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ki and Ni − ki + 1. This gives

E
[
γ (f1(Z), f2(Z)) Bq

Z,ρi,ki

[
f̂i,ki(Z)

]]
= (ki − 1)

(
Ni − 1

ki − 1

)∫
S

1∫
0

tk−1(1− t)n−kBq
Z,ρi,ki

[
f̂i,ki(Z)

]
dtfi(Z)γ (f1(Z), f2(Z)) dZ

= (ki − 1)

(
Ni − 1

ki − 1

) 1∫
0

tk−1(1− t)n−k
∫
S

Bq
Z,ρi,ki

[
f̂i,ki(Z)

]
fi(Z)γ (f1(Z), f2(Z)) dZdt

= (ki − 1)

(
Ni − 1

ki − 1

) 1∫
0

tk−1(1− t)n−k
∫
SIi

Bq
Z,ρi,ki

[
f̂i,ki(Z)

]
fi(Z)γ (f1(Z), f2(Z)) dZdt

+(ki − 1)

(
Ni − 1

ki − 1

) 1∫
0

tk−1(1− t)n−k
∫
SBi

Bq
Z,ρi,ki

[
f̂i,ki(Z)

]
fi(Z)γ (f1(Z), f2(Z)) dZdt.

Note that Ti monotonically increases with ρi,ki and is therefore invertible. Thus ρi,ki

and Ti are deterministically related and ρi,ki can be viewed as a function of Ti. Thus

we can consider separately the cases where Z is in SIi and SBi even after making the

change of variables.

We first consider Z ∈ SIi . It is clear in this case by (C.4) and the symmetry of

K(u) that

EZ,ρi,ki

[
f̂i,ki(Z)

]
=
ki − 1

Ni

1

Pr (Ski(Z))

fi(Z) +

bs/2c∑
j=1

ci,j(Z)ρ2j
i,ki

+O
(
ρsi,ki

) .

For q ≥ 2, we obtain by the binomial theorem,

(
EZ,ρi,ki

f̂i,ki(Z)
)j

=

(
ki − 1

Ni

1

Pr (Ski(Z))

)jf ji (Z) +

bs/2c∑
n=1

ci,j,n(Z)ρ2n
i,ki

+O
(
ρsi,ki

) ,

Bq
Z,ρi,ki

[
f̂i,ki(Z)

]
=

q∑
j=0

(
q

j

)(
EZ,ρi,ki

f̂i,ki(Z)
)j

(fi(Z))q−j (−1)j

=

q∑
j=0

(
q

j

)(
ki − 1

Ni

1

Pr (Ski(Z))

)j
(−1)j

f qi (Z) +

bs/2c∑
n=1

ci,j,n(Z)fi(Z)q−jρ2n
i,ki

+O
(
ρsi,ki

) .
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By applying concentration inequality arguments [184], it can be shown that with high

probability, (
ki − 1

Ni

1

Pr (Ski(Z))

)j
= θ

 1(
1 +

√
6√
ki

)j
 . (C.5)

Then applying the binomial theorem in reverse gives (with high probability)

q∑
j=0

(
q

j

)(
ki − 1

Ni

1

Pr (Ski(Z))

)j
(−1)j =

(
1− 1

1 +
√

6√
ki

)q

=

(
6

ki

) q
2 1(

1 +
√

6
ki

)q
=

(
6

ki

) q
2
∞∑
j=0

(
−q
j

)
(−1)j

(
6

ki

) j
2

=
λ−1∑
j=0

θ

(
1

k
q+j
2

i

)
+O

(
1

k
q+λ

2
i

)
,

where λ is any nonnegative integer. Thus

E

[
q∑
j=0

(
q

j

)(
ki − 1

Ni

1

Pr (Ski(Z))

)j
(−1)jf qi (Z)

]
=

λ−1∑
j=0

c3,i,j,q
1

k
q+j
2

i

+O

(
1

k
q+λ

2
i

)
.

For q = 1, we have

(ki − 1)

(
Ni − 1

ki − 1

) 1∫
0

tki−2(1− t)n−ki
∫
SIi

fi(Z)f2(Z)dzdt−
∫
SIi

fi(Z)f2(Z)dz = 0.

For the terms that include ρλi,ki for some positive integer λ, we have for Z ∈ SIi

that

E
[
ρλi,ki

ki − 1

Ni

1

Pr (Ski(Z))

]
= (ki − 1)

(
Ni − 1

ki − 1

) 1∫
0

tki−2(1− t)n−ki
∫
SIi

ρλi,kif2(Z)dZdt.

We now find an expression for ρi,ki in terms of Ti when Z ∈ SIi . Recall that Ti =
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Pr (Ski(Z)). By Taylor series expansion,

Ti =

∫
Ski (Z)

fi(x)dx

= ρdi,ki

fi(Z)cd +

bs/2c∑
j=1

c4,i,j(Z)ρ2j
i,ki

+O
(
ρsi,ki

)
=⇒ ρi,ki =

T
1
d
i(

fi(Z)cd +
∑bs/2c

j=1 c4,i,j(Z)ρ2j
i,ki

+O
(
ρsi,ki

)) 1
d

. (C.6)

Note that as ρi,ki ↓ 0, we have that
∣∣∣∑bs/2cj=1 c4,i,j(Z)ρ2j

i,ki
+O

(
ρsi,ki

)∣∣∣ < fi(Z)cd for

sufficiently small ρi,ki since we assume that fi(x) ≥ ε0 > 0. Therefore, we can apply

the generalized binomial theorem to obtain

fi(Z)cd +

bs/2c∑
j=1

c4,i,j(Z)ρ2j
i,ki

+O
(
ρsi,ki

)− 1
d

=
∞∑
m=0

(
−1/d

m

)
(fi(Z)cd)

−1/d−m

×

bs/2c∑
j=1

c4,i,j(Z)ρ2j
i,ki

+O
(
ρsi,ki

)m

= (fi(Z)cd)
−1/d +

bs/2c∑
j=1

c5,i,j(Z)ρ2j
i,ki

+O
(
ρsi,ki

)
.

Using this expression in (C.6) and resubstituting the LHS into the RHS gives that

ρi,ki =

(
Ti

fi(Z)cd

) 1
d

+

bs/2c∑
j=1

c6,i,j(Z)T
2j/d
i +O

(
T
s/d
i

)
,

=⇒ ρλi,ki =

(
Ti

fi(Z)cd

)λ
d

+

bs/2c∑
j=1

c7,i,j(Z)T
2jλ/d
i +O

(
T
sλ/d
i

)
.
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Therefore,

E
[
ρλi,ki

ki − 1

Ni

1

Pr (Ski(Z))

]
= (ki − 1)

(
Ni − 1

ki − 1

) 1∫
0

tki−2+λ/d(1− t)n−ki
∫
SIi

f2(Z)

(fi(Z)cd)
λ/d

dZdt

+

bs/2c∑
j=1

(ki − 1)

(
Ni − 1

ki − 1

) 1∫
0

tki−2+2jλ/d(1− t)n−ki
∫
SIi

f2(Z)c7,i,j(Z)dZdt

= c7,i,0

(
ki
Ni

)λ/d
+

bs/2c∑
j=1

c7,i,j

(
ki
Ni

)2λj/d

+O

((
ki
Ni

) s
d

)
.

Combining this result with (C.5) gives for q ≥ 2 and any integer λ ≥ 0

Ni

(
Ni − 1

ki − 1

) 1∫
0

tki−2(1− t)Ni−ki
∫
SIi

Bq
Z,ρi,ki

[
f̂i,ki(Z)

]
fi(Z)γ (f1(Z), f2(Z)) dZdt

=
λ−1∑
j=0

c3,i,j,q
1

k
q+j
2

+O

(
1

k
q+λ

2

+

(
ki
Ni

) s
d

)
+

λ−1∑
m=0

bs/2c∑
j=1

c7,i,j,m,q

(
ki
Ni

)2j/d
1

k
q−1+m

2
i

.

Similarly, for q = 1,

Ni

(
Ni − 1

ki − 1

) 1∫
0

tki−2(1− t)Ni−ki
∫
SIi

BZ,ρi,ki

[
f̂i,ki(Z)

]
fi(Z)γ (f1(Z), f2(Z)) dZdt

=

bs/2c∑
j=1

c7,i,j,m,1

(
ki
Ni

)2j/d

+O

((
ki
Ni

) s
d

)
.

We now consider the case where Z ∈ SBi . We take a similar approach as in the
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KDE case where we extend the density beyond the boundary. This gives

BZ,ρi,ki

[
f̂i,ki(Z)

]
=

ki − 1

Ni

1

ρdi,ki

1

Pr (Ski(Z))

∫
Ski (Z)∩S

K

(
Z− x
ρi,ki

)
fi(x)dx

=
ki − 1

Ni

1

ρdi,ki

1

Pr (Ski(Z))

∫
Ski (Z)

K

(
Z− x
ρi,ki

)
fi(x)dx− fi(Z)

−ki − 1

Ni

1

ρdi,ki

1

Pr (Ski(Z))

∫
x/∈S

K

(
Z− x
ρi,ki

)
fi(x)dx

= T1(Z, ρi,ki)− T2(Z, ρi,ki).

The expression for T1(Z, ρi,ki) is identical to that when Z ∈ SIi and so taking the

expectation gives the same results. Therefore, we focus on T2(Z, ρi,ki). As before, we

substitute u = (Z− x)/ρi,ki inside the integral and take a Taylor series expansion of

fi to get ∑
|α|≤bsc

Dαfi(Z)

α!
ρ
d+|α|
i,ki

∫
u:Z+uρi,ki /∈S

uαK(u)du+O
(
ρd+s
i,ki

)
.

As before, we can again substitute Ti = Pr (Ski(Z)). However, we need to find an

expression for ρi,ki in terms of Ti for Z ∈ SBi . Note that

Ti =

∫
z∈Ski (Z)∩S

fi(z)dz.

=

∫
z∈Ski (Z)

f(z)dz −
∫

z∈Ski (Z)∩SC

f(z)dz

= ρdi,ki

fi(Z)cd +

bs/2c∑
j=1

c4,i,j(Z)ρi,ki
2j +O(ρsi,ki)


−

∫
z∈Ski (Z)∩SC

 ∑
|α|≤bsc

(z − Z)α

α!
Dαf(Z) +O ((z − Z)s)

 dz. (C.7)

We need to simplify the second integral in (C.7) before solving for ρi,ki . If we assume

that the support S = [0, 1]d, then we can use the techniques used in Appendix ????
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to show that the unit cube satisfies the boundary conditions for the KDE plug-in

estimators.

Assume that d is odd as as the case for even d will be similar. We first consider

the case where only a single coordinate Z(1) is close to the boundary. Without loss

of generality, we assume that Z(1) is close to 1. Then for a given α, we can use (???)

(A.11) to obtain

∫
z∈Ski (Z)∩SC

(z − Z)α

α!
Dαfi(Z)dz = ρ

d+|α|
i,ki

|α|∑
m=0

d+|α|∑
`=0

pm,`,α,i(Z)

√1−
(

1− Z(1)

ρi,ki

)2
`(

1− Z(1)

ρi,ki

)m
,

(C.8)

where pm,`,α,i(Z) is bsc − |α| times differentiable wrt Z. Now expand pm,`,α,i(Z) only

in the Z(1) coordinate at Z(1) = 1 to get

pm,`,α,i(Z) =

bsc−|α|∑
j=0

∂jpm,`,α,i(1,Z(2), . . . ,Z(d))

∂Zj
(1)

(
1− Z(1)

)n
j!

.

Substituting this into (C.8) and substituting W =
1−Z(1)

ρi,ki
gives

|α|∑
m=0

d+|α|∑
`=0

bsc−|α|∑
j=0

∂jpm,`,α,i(1,Z(2), . . . ,Z(d))

∂Zj
(1)

1

j!

√1−
(

1− Z(1)

ρi,ki

)2
`(

1− Z(1)

ρi,ki

)m+j

ρ
j+d+|α|
i,ki

=

|α|∑
m=0

d+|α|∑
`=0

bsc−|α|∑
j=0

p
′

m,`,α,i(Z
′
)
(√

1−W2
)`

Wm+jρ
j+d+|α|
i,ki

,

where Z
′

= (1,Z(2), . . . ,Z(d)) and p
′

m,`,α,i(Z
′
) =

∂jpm,`,α,i(1,Z(2),...,Z(d))

∂Zj
(1)

1
j!

. The variable

W ranges from 0 to 1. Thus we have separated the dependence on ρi,ki . Substituting
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these results into (C.7) gives

Ti = ρdi,ki

fi(Z)cd +

bs/2c∑
j=1

c4,i,j(Z)ρi,ki
2j +O(ρsi,ki)


−ρdi,ki

∑
|α|≤bsc

|α|∑
m=0

d+|α|∑
`=0

bsc−|α|∑
j=0

p
′

m,`,α,i(Z
′
)
(√

1−W2
)`

Wm+jρ
j+|α|
i,ki

.

By substituting Z(1) = 1−Wρi,ki in the first term and taking a Taylor series expansion

of fi(Z)−1/d and c4,i,j(Z) at Z(1) = 1 gives

bsc∑
j=0

c8,i,j(Z
′′
)ρj+di,ki

+O
(
ρs+di,ki

)
,

where Z
′′

= (W,Z(2), . . . ,Z(d)). Thus we can write

Ti = ρdi,ki

 bsc∑
j=0

c9,i,j(Z
′′
)ρji,ki +O

(
ρsi,ki

)
=⇒ ρi,ki =

t
1
d(∑bsc

j=0 c9,i,j(Z
′′)ρji,ki +O

(
ρsi,ki

)) 1
d

. (C.9)

Then since ρi,ki ↓ 0, applying the generalized binomial theorem to the denominator

gives

 bsc∑
j=0

c9,i,j(Z
′′
)ρji,ki +O

(
ρsi,ki

)− 1
d

=
∞∑
m=0

(
−1/d

m

)
c9,i,0(Z

′′
)−

1
d
−j

 bsc∑
j=1

c9,i,j(Z
′′
)ρji,ki +O

(
ρsi,ki

)m

= c9,i,0(Z
′′
)−

1
d +

bsc∑
j=1

c10,i,j(Z
′′
)ρji,ki +O

(
ρsi,ki

)
.

Applying this result to (C.9) gives

ρi,ki =

(
Ti

c9,i,0(Z′′)

) 1
d

+ T
1
d
i

bsc∑
j=1

c10,i,j(Z
′′
)ρji,ki +O

(
T

1
d
i ρ

s
i,ki

)
. (C.10)
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Resubstituting the LHS of (C.10) into the RHS multiple times then gives

ρi,ki =

bsc∑
j=1

c11,i,j(Z
′′
)T

j
d
i +O

(
T

s
d
i

)

=⇒ ρλi,ki =

bsc∑
j=1

c12,i,j,λ(Z
′′
)T

jλ
d
i +O

(
T

sλ
d
i

)
.

Given these results and the fact that Ti has a beta distribution, we have that

E
[
1{Z∈SBi}EZ,ρi,ki

[
ki − 1

Ni

1

Pr (Ski(Z))
ρλi,ki

]]
=

ki − 1

Ni

(
Ni − 1

ki − 1

) 1∫
0

tk−2(1− t)n−k
∫
S

ρλi,kifi(Z)dZdt.

Taking a Taylor series expansion of fi at Z(1) = 1 gives

fi(Z) =

bsc∑
j=0

∂jfi(Z
′
)

∂Zj
(1)

W jρji,ki +O
(
ρsi,ki

)
.

Combining all of these results gives that E
[
1{Z∈SBi}EZ,ρi,ki

[
ki−1
Ni

1

Pr(Ski (Z))
ρλi,ki

]]
has

terms of the form of

(ki − 1)

(
Ni − 1

ki − 1

) 1∫
0

tk−2+λ+1
d (1− t)n−kdt =

(
ki
Ni

)λ+1
d

+ o

(
ki
Ni

)
.

Therefore,

E [T2(Z, ρi,ki)] = (ki − 1)

(
Ni − 1

ki − 1

) 1∫
0

tki−2(1− t)Ni−ki
∫
SBi

 bsc∑
j=0

c13,i,j(Z
′′
)t

j+1
d +O

(
t
s
d

) dZ
′′
dt

=

bsc∑
j=1

c14,i,j

(
ki
Ni

) j
d

+O

((
ki
Ni

)min(s,d)/d
)
. (C.11)
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For E [(T1(Z, ρi,ki)− T2(Z, ρi,ki))
q], we have by the binomial theorem that

(T1(Z, ρi,ki)− T2(Z, ρi,ki))
q =

q∑
j=0

(
q

j

)
T1(Z, ρi,ki)

jT2(Z, ρi,ki)
q−j.

Applying a similar analysis gives similar results.

For the case when Ski(Z) intersects multiple boundary points, a similar approach

can be used to prove the boundary conditions for the KDE plug-in estimator in

Appendix ????. This will yield a similar expression to (C.11). Combining all results

with the fact that γ(x, y) is bounded finishes the proof.

Lemma C.2. Let γ(x, y) be an arbitrary function satisfying supx,y |γ(x, y)| <∞. Let

Z be a realization of the density f2 independent of f̂i,ki for i = 1, 2. Then for any

integer λ ≥ 0

E
[
γ(f1(Z), f2(Z))Bt

Z,ρ1,k1

[
f̂1,k1(Z)

]
Bq

Z,ρ2,k2

[
f̂2,k2(Z)

]]
=

bsc∑
j=0

bsc∑
i=0
i+j 6=0

c16,i,j,q,t

(
k1

N1

) i
d
(
k2

N2

) j
d

+O

(
max

(
k1

N1

,
k2

N2

)min(s,d)
d

+
1

min(k1, k2)
2+λ

2

)

+
λ∑

m=0

bsc∑
j=0

m+j 6=0

λ∑
n=0

bsc∑
i=0

n+i 6=0

c16,i,j,q,t,m,n

k
1+m

2
1 k

1+n
2

2

(
k1

N1

) i
d
(
k2

N2

) j
d

.

Proof. Note that ρ1,k1 and ρ2,k2 are conditionally independent of each other given Z.

Applying similar techniques as in the proof of Lemma C.1 yields the result.

Applying Lemmas C.1 and C.2 to (C.3) gives

E
[
g
(
EZ,ρ1,k1 (Z)f̂1,k1(Z),EZ,ρ2,k2 (Z)f̂2,k2(Z)

)
− g (f1(Z), f2(Z))

]
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=

bsc∑
j=0

bsc∑
i=0
i+j 6=0

c18,i,j

(
k1

N1

) i
d
(
k2

N2

) j
d

+O

(
max

(
k1

N1

,
k2

N2

)min(s,d)
d

+
1

min(k1, k2)
2+λ

2

)

+
λ∑

m=0

r∑
j=0

j+m 6=0

(
c17,1,j,m

k
1+m

2
1

(
k1

N1

) j
d

+
c17,2,j,m

k
1+m

2
2

(
k2

N2

) j
d

)
+

r∑
j=1

(
c17,1,j

(
k1

N1

) j
d

+ c17,2,j

(
k2

N2

) j
d

)

+
λ∑

m=0

bsc∑
j=0

m+j 6=0

λ∑
n=0

bsc∑
i=0

n+i 6=0

c18,i,j,m,n

k
1+m

2
1 k

1+n
2

2

(
k1

N1

) i
d
(
k2

N2

) j
d

. (C.12)

We now focus on the first term in (D.1). The truncated Taylor series expansion

of g
(
f̂1,k1(Z), f̂2,k2(Z)

)
around EZ,ρ1,k1

f̂1,k1(Z) and EZ,ρ2,k2
f̂2,k2(Z) gives

g
(
f̂1,k1(Z), f̂2,k2(Z)

)
=

ν∑
i=0

ν∑
j=0

 ∂i+jg(x, y)

∂xi∂yj

∣∣∣∣x=EZ,ρ1,k1
f̂1,k1 (Z)

y=EZ,ρ2,k2
f̂2,k2 (Z)

 êi1,k1(Z)êj2,k2(Z)

i!j!
+o
(
êν1,k1(Z) + êν2,k2(Z)

)
,

(C.13)

where êi,ki := f̂i,ki(Z)−EZ,ρi,ki
f̂i,ki(Z). We thus require expressions for EZ,ρi,ki

[
êji,ki(Z)

]
to control this expression.

Lemma C.3. Let Z be a realization of the density f2 that is in the interior of the

support wrt ρi,ki and is independent of f̂i,ki for i = 1, 2. Let n(q) be the set of integer

divisors of q including 1 but excluding q. Then,

EZ,ρi,ki

[
êqi,ki(Z)

]
=


ki−1

Ni Pr(Ski (Z))

∑
j∈n(q)

1“
Niρdi,ki

”q−j ∑bs/2cm=0 c,i,q,j,m(Z)ρ2m
i,ki
, q ≥ 2

0, q = 1

EZ,ρ1,k1 ,ρ2,k2

[
êq1,k1(Z)êl2,k2(Z)

]
=



ki−1

Ni Pr(Ski (Z))

(∑
j∈n(q)

1

(N1ρd1,k1)
q−j

∑bs/2c
m=0 c,1,q,j,m(Z)ρ2m

1,k1

)
× q, l ≥ 2(∑

i∈n(l)
1

(N2ρd2,k2)
l−i

∑bs/2c
t=0 c,2,l,i,t(Z)ρ2t

2,k2

)
+O

(
1
N1

+ 1
N2

)
,

0, q = 1 or l = 1.
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Proof. The proof is very similar to the analagous statement on the KDE results in

Lemma ????. Define the random variable Vi(Z) = K
(

Xi−Z
ρ2,k2

)
− EZ,ρ2,k2

K
(

Xi−Z
ρ2,k2

)
.

Then

ê2,k2(Z) = f̂2,k2(Z)− EZ,ρ2,k2
f̂2,k2(Z)

=
1

N2ρd2,k2

N2∑
i=1

Vi(Z).

As before, EZ,ρ2,k2
Vi(Z) = 0. From previous results, we have for j ≥ 1,

EZ,ρ2,k2

[
Kj

(
Xi − Z

ρ2,k2

)]
= EZ,ρ2,k2

[
K

(
Xi − Z

ρ2,k2

)]
=

k2 − 1

N2

ρd2,k2
Pr (Sk2(Z))

bs/2c∑
m=0

c2,m(Z)ρ2m
2,k2

+O
(
ρs2,k2

)
.

By the binomial theorem,

EZ,ρ2,k2

[
Vj
i (Z)

]
=

j∑
n=0

(
j

n

)
EZ,ρ2,k2

[
Kj

(
Xi − Z

ρ2,k2

)]
EZ,ρ2,k2

[
K

(
Xi − Z

ρ2,k2

)]j−n

=

j∑
n=0

(
j

n

)k2 − 1

N2

ρd2,k2
Pr (Sk2(Z))

bs/2c∑
m=0

c2,m(Z)ρ2m
2,k2

O

( ρd2,k2
Pr (Sk2(Z))

k2 − 1

N2

)j−n


=
k2 − 1

N2

ρd2,k2
Pr (Sk2(Z))

bs/2c∑
m=0

c2,m(Z)ρ2m
2,k2

+O

( ρd2,k2
Pr (Sk2(Z))

k2 − 1

N2

)2
 .

Given these results and the fact that with high probability

(
1

Pr (Sk2(Z))

k2 − 1

N2

)2

= O

(
1

k

)
,

a similar procedure as in the proof of Lemma ???? gives the result.
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For general g, we can only say that

∂i+jg(x, y)

∂xi∂yj

∣∣∣∣x=EZ,ρ1,k1
f̂1,k1 (Z)

y=EZ,ρ2,k2
f̂2,k2 (Z)

= O(1).

By applying similar techniques as in the proofs of Lemmas C.1 and C.2, it can then be

shown with the application of Lemma C.3 that the expected value of (C.13) reduces

to

E
[
g
(
EZ,ρ1,k1 (Z)f̂1,k1(Z),EZ,ρ2,k2 (Z)f̂2,k2(Z)

)]
+O

(
1

k1

+
1

k2

)
. (C.14)

If g(x, y) has mixed derivatives of the form of xαyβ for α, β ∈ R, we can apply the

generalized binomial theorem prior to taking the expectation as for the KDE plug-in

estimator to show that

E
[
g
(
f̂1,k1(Z), f̂2,k2(Z)

)
− g

(
EZ,ρ1,k1 (Z)f̂1,k1(Z),EZ,ρ2,k2 (Z)f̂2,k2(Z)

)]

=

ν/2∑
j=1

r∑
m=0

ν/2∑
i=1

r∑
n=0

c19,j,i,m,n

kj1k
i
2

(
k1

N1

)m
d
(
k2

N2

)n
d

+O

(
1

k
ν/2
1

+
1

k
ν/2
2

+

(
k1

N1

) s
d

+

(
k2

N2

) s
d

)

+

ν/2∑
j=1

r∑
m=0

(
c19,1,j,m

kj1

(
k1

N1

)m
d

+
c19,2,j,m

kj2

(
k2

N2

)m
d

)
. (C.15)

Combining (C.3) with either (C.14) or (C.15) completes the proof.

C.2 Proof of Theorem III.2 (Variance)

To bound the variance of the plug-in estimator Ĝk1,k2 , we will again use the Efron-

Stein inequality [53] (Lemma B.4). Suppose we have samples {X1, . . . ,XN2 ,Y1, . . . ,YN1}

and
{
X
′
1, . . . ,XN2 ,Y1, . . . ,YN1

}
and denote the respective estimators as Ĝk1,k2 and
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Ĝ
′

k1,k2
. We have that

∣∣∣Ĝk1,k2 − Ĝ
′

k1,k2

∣∣∣ ≤ 1

N2

∣∣∣g (f̂1,k1(X1), f̂2,k2(X1)
)
− g

(
f̂1,k1(X

′

1), f̂2,k2(X
′

1)
)∣∣∣

+
1

N2

N2∑
j=2

∣∣∣g (f̂1,k1(Xj), f̂2,k2(Xj)
)
− g

(
f̂1,k1(Xj), f̂

′

2,k2
(Xj)

)∣∣∣ .(C.16)

Define Pki(Xj) = Pr (Ski(Xj)). This is a random variable denoting the proba-

bility that a point drawn from fi falls into the kith nearest neighbor ball of Xj. As

mentioned in Appendix C.1, the distribution of Pki(Xj) is independent of Xj and fi

and is a beta random variable [62] with density

fki (pki) =
Mi!

(ki − 1)!(Mi − ki)!
pki−1
ki

(1− pki)
Mi−ki .

Define

f̄i,ki(Xj) = fi(Xj)
ki − 1

MiPki(Xj)
.

We then have that with high probability [184],

f̂i,ki(Xj) = f̄i,ki(Xj) +O

((
ki
Mi

) 2
d

)
. (C.17)

The following lemma can be used to control the first term in (D.5)

Lemma C.4.

E
[∣∣∣g (f̂1,k1(X1), f̂2,k2(X1)

)
− g

(
f̂1,k1(X

′

1), f̂2,k2(X
′

1)
)∣∣∣2] = O(1).

Proof. Since g is Lipschitz continuous with constant Cg, we have

∣∣∣g (f̂1,k1(X1), f̂2,k2(X1)
)
− g

(
f̂1,k1(X

′

1), f̂2,k2(X
′

1)
)∣∣∣ ≤ Cg

(∣∣∣f̂1,k1(X1)− f̂1,k1(X
′

1)
∣∣∣+
∣∣∣f̂2,k2(X1)− f̂2,k2(X

′

1)
∣∣∣) .(C.18)

204



From the triangle inequality, Jensen’s inequality, and (C.17), we get

E
[∣∣∣f̃i,hi(X1)− f̃i,hi(X

′

1)
∣∣∣2] ≤ 2E

[(
f̂i,ki(X1)

)2
]

≤ 4E
[(

f̄i,ki(X1)
)2
]

+O

((
ki
Mi

) 4
d

)

= 4E
[
f 2
i (X1)

] (ki − 1)2

M2
i

· Mi(Mi − 1)

(ki − 1)(ki − 2)
+O

((
ki
Mi

) 4
d

)
.(C.19)

Combining (C.19) with (C.18) after applying Jensen’s inequality gives the result.

To control the second term in (D.5), consider the following events:

� A1(Xi): X1 is strictly within the k2-nn ball around Xi wrt the sample {X1, . . . ,XN2} \{Xi}

.

� A2(Xi): X1 is the k2th nearest neighbor of Xi wrt the sample {X1, . . . ,XN2} \{Xi}

.

� A3(Xi): X1 is strictly outside of the k2-nn ball around Xi wrt the sample

{X1, . . . ,XN2} \{Xi} .

� B1(Xi): X
′
1 is strictly within the k2-nn ball around Xi wrt the sample

{
X
′
1,X2, . . . ,XN2

}
\{Xi}

.

� B2(Xi): X
′
1 is the k2th nearest neighbor of Xi wrt the sample

{
X
′
1,X2, . . . ,XN2

}
\{Xi}.

� B3(Xi) : X
′
1 is strictly outside the k2-nn ball around Xi wrt the sample

{
X
′
1,X2, . . . ,XN2

}
\{Xi}.

� BE(Xi) = (A1(Xi) ∩B3(Xi)) ∪ (A3(Xi) ∩B1(Xi)).

� BE1(Xi,Xj) = BE(Xi) ∩ [BE(Xj) ∪ A2(Xj) ∪B2(Xj)].

� BE2(Xi,Xj) = A2(Xi) ∩ [A2(Xj) ∪B2(Xj)].

� BE3(Xi,Xj) = B2(Xi) ∩B2(Xj).
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Note that if neither BE1(Xi,Xj), BE2(Xi,Xj), nor BE3(Xi,Xj) hold, then

∣∣∣g (f̂1,k1(Xi), f̂2,k2(Xi)
)
− g

(
f̂1,k1(Xi), f̂

′

2,k2
(Xi)

)∣∣∣ ∣∣∣g (f̂1,k1(Xi), f̂2,k2(Xi)
)
− g

(
f̂1,k1(Xi), f̂

′

2,k2
(Xi)

)∣∣∣ = 0,

(C.20)

since either f̂
′

2,k2
(Xi) = f̂2,k2(Xi) or f̂

′

2,k2
(Xj) = f̂2,k2(Xj). The same result holds if Xi

or Xj are switched. Thus we only need to focus on the cases where these events are

true. Note that since the samples are iid, the probability that A2(Xi) occurs is 1/N2.

Similarly, the probability of B2(Xi) is 1/N2.

Claim C.5. The following hold:

1. Pr (BE1(Xi,Xj)) = O

((
k2
M2

)2
)

2. Pr (BE2(Xi,Xj)) = O
(

1
N2

2

)
3. Pr (BE3(Xi,Xj)) = O

(
1
N2

2

)
Proof. For the first expression, consider first the case BE(Xi) ∩ BE(Xj). If Xi and

Xj are far apart with disjoint k2-nn balls, we can treat the probability of BE(Xi)

and BE(Xj) separately within each ball which is O
(
k2
M2

)
in each case. This gives a

combined probability of O

((
k2
M2

)2
)

when the balls are disjoint. On the other hand,

the probability that the k2-nn balls intersect is O
(
k2
M2

)
. In this case, the probability

of the event BE(Xi) ∩ BE(Xj) is O
(
k2
M2

)
. Combining these facts proves the claim

for BE(Xi) ∩BE(Xj).

Now consider BE(Xi) ∩ A2(Xj). In a similar manner as above, if the two k2-

nn balls are disjoint, we treat the probability of the two events separately within

each ball separately giving a combined probability of O
(
k2
M2

2

)
. Again, the prob-

ability that the k2-nn balls intersect is O
(
k2
M2

)
and the resulting probability of

BE(Xi) ∩ A2(Xj) is O
(
k2
M2

)
giving a combined probability of O

((
k2
M2

)2
)
. Simi-

larly, Pr (BE(Xi) ∩B2(Xj)) = O

((
k2
M2

)2
)

which completes the proof for the first

expression.
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For the second and third expressions, note that since the points
{
X
′
1,X1,X2, . . . ,XN2

}
are all iid, A2(Xi) is independent of A2(Xj) and B2(Xj) and B2(Xi) is independent

of B2(Xj). Thus the probability of each of the intersecting events is 1/N2
2 which

completes the proof.

From the Lipschitz condition,

∣∣∣g (f̂1,k1(Xj), f̂2,k2(Xj)
)
− g

(
f̂1,k1(Xj), f̂

′

2,k2
(Xj)

)∣∣∣2 ≤ C2
g

∣∣∣f̂2,k2(Xj)− f̂
′

2,k2
(Xj)

∣∣∣2(C.21)

Now suppose that A1(Xj) ∩B3(Xj) occurs. In this case, f̂
′

2,k2
(Xj) = k2−1

k2
f̄2,k2+1(Xj).

To obtain a bound for E
[∣∣∣f̂2,k2(Xj)− f̂

′

2,k2
(Xj)

∣∣∣2], we need the joint distribution of

f̄2,k2(Xj) and f̄2,k2+1(Xj) as

∣∣∣f̂2,k2(Xj)− f̂
′

2,k2
(Xj)

∣∣∣2 ≤ 2

∣∣∣∣f̄2,k2(Xj)−
k2 − 1

k2

f̄2,k2+1(Xj)

∣∣∣∣2+O

((
k2

M2

) 4
d

)
. (C.22)

Lemma C.6. The density function of the joint distribution of Pk2 and Pk2+1 is

fPk2 ,Pk2+1
(p, q) = 1{p≤q}

M2!

(k2 − 1)! (M2 − k2 − 1)!
pk2−1 (1− q)M2−k2−1 . (C.23)

Proof. For Pk2 , let rk2 be the corresponding k-nn radius. Let δp, δq > 0. We are in-

terested in the event {p ≤ Pk2 ≤ p+ δp, q ≤ Pk2+1 ≤ q + δq}. Consider the following

events:

� C1: There are k2 − 1 points within the radius rk2 .

� C2: The k2th point is in the interval [rk2 , rk2 + ε(δp)].

� C3: The k2 + 1th point is in the interval [rk2+1, rk2+1 + ε(δq)].

� C4: The remaining M2 − k2 − 1 points are outside the radius rk2+1 + ε(δq).

� C5: rk2 ≤ rk2+1
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We have that

Pr (p ≤ Pk2 ≤ p+ δp, q ≤ Pk2+1 ≤ q + δq) = Pr

(
5⋂
i=1

Ci

)
.

Of the M2! different ways to permute the M2 points, there are (k2− 1)! permutations

for the points inside the k2-nn ball and (M2 − k2 − 1)! permutations for the points

outside the (k2 + 1)-nn ball. So the number of different point configurations with

k2− 1 points inside rk2 and M2− k2− 1 points outside rk2+1 is M2!
(k2−1)!(M2−k2−1)!

. This

gives

Pr (p ≤ Pk2 ≤ p+ δp, q ≤ Pk2+1 ≤ q + δq) = 1{p≤q}
M2!

(k2 − 1)!(M2 − k2 − 1)!
pk2−1(1−q)M2−k2−1δpδq.

(C.24)

The pk2−1 term is the probability that k2− 1 points fall within a ball of radius p (the

coverage probability). The (1 − q)M2−k2−1 term is the probability that M2 − k2 − 1

points fall outside a ball of radius with coverage probability q. The δq and δp terms

correspond to the events that one point falls exactly at radius p and another point

falls exactly at radius q. The LHS of (C.24) is equal to the probability of these

events. The combinatorial term then accurately accounts for the different possible

combinations. From (C.24), we get the density in (C.23).

From Lemma C.6,

E
[
f̄2,k2(Xj)f̄2,k2+1(Xj)

]
= E

[
f 2

2 (Xj)
k2(k2 − 1)

M2
2 Pk2(Xj)Pk2+1(Xj)

]
= E

[
f 2

2 (Xj)
] k2(M2 − 1)

(k2 − 1)M2

.
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Then since E
[
P−2
k2

]
= M2(M2−1)

(k2−1)(k2−2)
, we obtain

E

[∣∣∣∣f̄2,k2(Xj)−
k2 − 1

k2

f̄2,k2+1(Xj)

∣∣∣∣2
]

= E
[
f 2

2 (Xj)
]M2 − 1

M2

· 2

k2 (k2 − 2)

= O

(
1

k2
2

)
. (C.25)

A similar result follows if A3(Xi) ∩B1(Xi) holds instead. Then (C.20) gives

E

( N2∑
j=2

∣∣∣g (f̂1,k1(Xj), f̂2,k2(Xj)
)
− g

(
f̂1,k1(Xj), f̂

′

2,k2
(Xj)

)∣∣∣)2


=

N2∑
i=2

N2∑
j=2

E
[∣∣∣g (f̂1,k1(Xi), f̂2,k2(Xi)

)
− g

(
f̂1,k1(Xi), f̂

′

2,k2
(Xi)

)∣∣∣ ∣∣∣g (f̂1,k1(Xj), f̂2,k2(Xj)
)
− g

(
f̂1,k1(Xj), f̂

′

2,k2
(Xj)

)∣∣∣]

≤
N2∑
i=2

N2∑
j=2

2E

[∣∣∣g (f̂1,k1(Xi), f̂2,k2(Xi)
)
− g

(
f̂1,k1(Xi), f̂

′

2,k2
(Xi)

)∣∣∣ ∣∣∣g (f̂1,k1(Xj), f̂2,k2(Xj)
)
− g

(
f̂1,k1(Xj), f̂

′

2,k2
(Xj)

)∣∣∣∣∣∣ 3⋃
`=1

BE`(Xi,Xj)

]
Pr

(
3⋃
`=1

BE`(Xi,Xj)

)
(C.26)

Combining the results from (C.26), (C.21), (C.22), (C.25), and Claim C.5 with the

Cauchy-Schwarz inequality gives

LHS (C.26) ≤ 2M2
2 E
[∣∣∣g (f̂1,k1(Xi), f̂2,k2(Xi)

)
− g

(
f̂1,k1(Xi), f̂

′

2,k2
(Xi)

)∣∣∣2∣∣∣∣BE1(Xi,Xj)

]
Pr (BE1(Xi,Xj)) +O

(
M2

2

N2
2

)
≤ 2M2

2C
2
gE
[∣∣∣f̂2,k2(Xj)− f̂

′

2,k2
(Xj)

∣∣∣2∣∣∣∣BE1(Xi,Xj)

]
Pr (BE1(Xi,Xj)) +O(1)

≤ 4M2
2C

2
gE

[∣∣∣∣f̄2,k2(Xj)−
k2 − 1

k2

f̄2,k2+1(Xj)

∣∣∣∣2
∣∣∣∣∣BE1(Xi,Xj)

]
Pr (BE1(Xi,Xj)) +O

((
k2

M2

) 4
d

+ 1

)

= O

(
M2

2 ·
1

k2
2

·
(
k2

M2

)2
)

+O

((
k2

M2

) 4
d

+ 1

)
= O(1). (C.27)
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Applying Jensen’s inequality to (D.5) and applying (C.27) and Lemma C.4 gives

E
[∣∣∣Ĝk1,k2 − Ĝ

′

k1,k2

∣∣∣2] ≤ 2

N2
2

E
[∣∣∣g (f̂1,k1(X1), f̂2,k2(X1)

)
− g

(
f̂1,k1(X

′

1), f̂2,k2(X
′

1)
)∣∣∣2]

+
2

N2
2

E

( N2∑
j=2

∣∣∣g (f̂1,k1(Xj), f̂2,k2(Xj)
)
− g

(
f̂1,k1(Xj), f̂

′

2,k2
(Xj)

)∣∣∣)2


= O

(
1

N2
2

)
.

Now suppose we have samples {X1, . . . ,XN2 ,Y1, . . . ,YN1} and
{
X1, . . . ,XN2 ,Y

′
1, . . . ,YN1

}
and denote the respective estimators as Ĝk1,k2 and Ĝ

′

k1,k2
. Then

∣∣∣g (f̂1,k1(Xj), f̂2,k2(Xj)
)
− g

(
f̂
′

1,k1
(Xj), f̂2,k2(Xj)

)∣∣∣ ≤ Cg

∣∣∣f̂1,k1(Xj)− f̂
′

1,k1
(Xj)

∣∣∣
Thus by similar arguments as was used to obtain (C.27),

E
[∣∣∣Ĝk1,k2 − Ĝ

′

k1,k2

∣∣∣2] ≤ 1

N2
2

E

( N2∑
j=1

∣∣∣g (f̂1,k1(Xj), f̂2,k2(Xj)
)
− g

(
f̂
′

1,k1
(Xj), f̂2,k2(Xj)

)∣∣∣)2


= O

(
1

N2
2

)
.

Applying the Efron-Stein inequality gives

V
[
Ĝk1,k2

]
= O

(
1

N2

+
N1

N2
2

)
.

C.3 Proof of Theorem III.4 (CLT)

We use Lemma C.7 which is adapted from [186]:

Lemma C.7. Let the random variables {YM,i}Ni=1 belong to a zero mean, unit vari-

ance, interchangeable process for all values of M . Assume that Cov(YM,1,YM,2) and
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Cov(Y2
M,1,Y

2
M,2) are o(1) as M →∞. Then the random variable

SN,M =

∑N
i=1 YM,i√

V
[∑N

i=1 YM,i

] (C.28)

converges in distribution to a standard normal random variable.

The proof of this lemma is identical to that in [186] (See “Proof of Theorem 3.3 and

Theorem 5.3” in [186]). The relaxed assumptions in Lemma C.7 enable us to prove

the central limit theorem under more relaxed conditions on the densities. Assume for

simplicity that N1 = M2 = M and k1(l) = k2(l) = k(l). Define

YM,i =

∑
l∈l̄ w(l)g

(
f̂1,k(l)Xi), f̂2,k(l)Xi

)
− E

[∑
l∈l̄ w(l)g

(
f̂1,k(l)Xi), f̂2,k(l)Xi

)]
√

V
[∑

l∈l̄ w(l)g
(
f̂1,k(l)Xi), f̂2,k(l)Xi

)] .

(C.29)

This gives

SN,M =
Ĝw − E

[
Ĝw

]
√

V
[
Ĝw

] .

To bound the covariance between YM,1 and YM,2 and between Y2
M,1 and Y2

M,2, it

is necessary to show that the denominator of YM,i converges to a nonzero constant or

to zero sufficiently slowly. The numerator and denominator of YM,i are, respectively,

∑
l∈l̄

w(l)g
(
f̂1,k(l)(Xi), f̂2,k(l)(Xi)

)
− E

∑
l∈l̄

w(l)g
(
f̂1,k(l)(Xi), f̂2,k(l)(Xi)

)
=
∑
l∈l̄

w(l)
(
g
(
f̂1,k(l)(Xi), f̂2,k(l)(Xi)

)
− E

[
g
(
f̂1,k(l)(Xi), f̂2,k(l)(Xi)

)])
,

√√√√√V

∑
l∈l̄

w(l)g
(
f̂1,k(l)(Xi), f̂2,k(l)(Xi)

)
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=

√∑
l∈l̄

∑
l′∈l̄

w(l)w(l′)Cov
(
g
(
f̂1,k(l)(Xi), f̂2,k(l)(Xi)

)
, g
(
f̂1,k(l′)(Xi), f̂2,k(l′)(Xi)

))
.

(C.30)

Thus we require bounds on Cov
(
g
(
f̂1,k(l)(Xi), f̂2,k(l)(Xi)

)
, g
(
f̂1,k(l′)(Xj), f̂2,k(l′)(Xj)

))
to bound the covariance between YM,1 and YM,2.

Define M(Z) := Z − EZ and ēi,k(l)(Z) := f̂i,k(l)(Z)− EZf̂i,k(l)(Z). A Taylor series

expansion of g
(
f̂1,k(l)(Xn), f̂2,k(l)(Xn)

)
around EXn f̂1,k(l)(Xn) and EXn f̂2,k(l)(Xn) gives

g
(
f̂1,k(l)(Xn), f̂2,k(l)(Xn)

)
=

1∑
i=0

1∑
j=0

 ∂i+jg(x, y)

∂xi∂yj

∣∣∣∣x=EXn f̂1,k(l)(Xn)

y=EXn f̂2,k(l)(Xn)

 ēi1,k(l)(Xn)ēj2,k(l)(Xn)

i!j!

+o
(
ē1,k(l)(Xn) + ē2,k(l)(Xn) + ē1,k(l)(Xn)ē2,k(l)(Xn)

)
Define

p(l)
n := M

(
g
(
EXn f̂1,k(l)(Xn),EXn f̂2,k(l)(Xn)

))
,

q(l)
n := M

(
∂

∂x
g
(
EXn f̂1,k(l)(Xn),EXn f̂2,k(l)(Xn)

)
ē1,k(l)(Xn)

)
,

r(l)
n := M

(
∂

∂y
g
(
EXn f̂1,k(l)(Xn),EXn f̂2,k(l)(Xn)

)
ē2,k(l)(Xn)

)
,

s(l)
n := M

(
∂2

∂x∂y
g
(
EXn f̂1,k(l)(Xn),EXn f̂2,k(l)(Xn)

)
ē1,k(l)(Xn)ē2,k(l)(Xn)

)
,

t(l)
n := M

(
o
(
ē1,k(l)(Xn) + ē2,k(l)(Xn) + ē1,k(l)(Xn)ē2,k(l)(Xn)

))
.

This gives

Cov
(
g
(
f̂1,k(l)(Xi), f̂2,k(l)(Xi)

)
, g
(
f̂1,k(l′)(Xj), f̂2,k(l′)(Xj)

))

= E
[(

p
(l)
i + q

(l)
i + r

(l)
i + s

(l)
i + t

(l)
i

)(
p

(l′)
j + q

(l′)
j + r

(l′)
j + s

(l′)
j + t

(l′)
j

)]
. (C.31)

Lemma C.8. Let l, l′ ∈ l̄ be fixed and k(l)→∞ as M →∞ for each l ∈ l̄. Let γ1(x)

and γ2(x) be arbitrary functions with supx |γi(x)| < ∞, i = 1, 2. Then if q + r ≥ 1
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and q′ + r′ ≥ 1,

Cov
(
γ1(Xi)ēi,k(l)(Xi), γ2(Xj)ēi,k(l′)(Xj)

)
= O

(
1√

k(l)k(l′)

)
,

Cov
(
γ1(Xi)ē

q
1,k(l)(Xi)ē

r
2,k(l)(Xi), γ2(Xj)ē

q′

1,k(l′)(Xj)ē
r′

2,k(l′)(Xj)
)

= O

(
1√

k(l)q+rk(l′)q′+r′

)
.

Proof. These results follow from an application of Cauchy-Schwarz and Lemma C.3.

Lemma C.9. Let l, l′ ∈ l̄ be fixed and k(l)→∞ as M →∞ for each l ∈ l̄. Then

Cov
(
g
(
f̂1,k(l)(Xi), f̂2,k(l)(Xi)

)
, g
(
f̂1,k(l′)(Xj), f̂2,k(l′)(Xj)

))

=


E
[
p

(l)
i p

(l′)
i

]
+O

(
1√

k(l)k(l′)

)
, i = j

O

(
1√

k(l)k(l′)

)
+ o

(
1

k(l′)

)
, i 6= j.

Proof. Consider first i = j. Applying Lemma C.8 to (C.31) gives

Cov
(
g
(
f̂1,k(l)(Xi), f̂2,k(l)(Xi)

)
, g
(
f̂1,k(l′)(Xi), f̂2,k(l′)(Xi)

))
= E

[
p

(l)
i p

(l′)
i

]
+O

(
1√

k(l)k(l′)

)
.

When i 6= j, E
[
p

(l)
i

(
p

(l′)
j + q

(l′)
j + r

(l′)
j + s

(l′)
j + t

(l′)
j

)]
= 0 since Xi and Xj are
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independent. A direct application of Lemma C.8 gives

E
[
q

(l)
i q

(l′)
j

]
= O

(
1√

k(l)k(l′)

)
,

E
[
q

(l)
i r

(l′)
j

]
= O

(
1√

k(l)k(l′)

)
,

E
[
q

(l)
i s

(l′)
j

]
= O

(
1√

k(l)k(l′)2

)
,

E
[
s

(l)
i s

(l′)
j

]
= O

(
1

k(l)k(l′)

)
,

E
[
s

(l)
i r

(l′)
j

]
= O

(
1√

k(l)2k(l′)

)
,

E
[
r

(l)
i r

(l′)
j

]
= O

(
1√

k(l)k(l′)

)
.

To handle the implicit constants in the t
(l)
i terms, Cauchy-Schwarz can be applied

with Lemma C.8 to get

E
[
q

(l)
i t

(l′)
j

]
= o

(
1

k(l′)

)
,

E
[
r

(l)
i t

(l′)
j

]
= o

(
1

k(l′)

)
,

E
[
s

(l)
i t

(l′)
j

]
= o

(
1

k(l′)

)
,

E
[
t

(l)
i t

(l′)
j

]
= o

(
1

k(l′)

)
.

Combining these results with (C.31) completes the proof.

Since pi(l) = M (g (f1(Xi), f2(Xi))) + o(1), E
[
p

(l)
i p

(l′)
i

]
is guaranteed to be a

nonzero constant if

E
[
g (f1(Xi), f2(Xi))

2] 6= E [g (f1(Xi), f2(Xi))]
2 . (C.32)

In this case, applying Lemma C.9 to (C.29) gives Cov (YM,1,YM,2) = o(1) as long as
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k(l)→∞ as M →∞ for each l ∈ l̄. Unfortunately, the condition in (C.32) does not

hold for the important case of f -divergence functionals when the densities f1 and f2

are equal almost everywhere. However, we still have that the denominator in (C.29)

converges more slowly to zero than the numerator as long as k(l), k(l′) → ∞ at the

same rate for each l, l′ ∈ l̄ as the o
(

1
k(l′)

)
goes to zero faster than O

(
1√

k(l)k(l′)

)
.

Thus we still get Cov (YM,1,YM,2) = o(1) in this case.

For the covariance between Y2
M,1 and Y2

M,2, we only need to focus on the numerator

terms as the denominator terms will be similar as before. Thus the numerator of the

covariance is

∑
l∈l̄

∑
l′∈l̄

∑
j∈l̄

∑
j′∈l̄

Cov
[(

p
(l)
1 + q

(l)
1 + r

(l)
1 + s

(l)
1

)(
p

(l′)
1 + q

(l′)
1 + r

(l′)
1 + s

(l′)
1

)
,

(
p

(j)
2 + q

(j)
2 + r

(j)
2 + s

(j)
2

)(
p

(j′)
2 + q

(j′)
2 + r

(j′)
2 + s

(j′)
2

)]
.

If l = l′ and j = j′, then the previous results apply and we get O
(

1
M

)
+ o

(
1

k(l′)

)
.

For the general case, the terms with either p
(l)
1 p

(l′)
1 in the left hand side or p

(j)
2 p

(j′)
2

in the right hand side are zero due to independence. For the remaining terms, note

that the proof of Lemma 10 in [141] gives under certain conditions that for functions

γ1(x) and γ2(x) under the same assumptions as in Lemma C.8,

Cov
[
γ1(X1)ēs1,k(l)(X1)ēq2,k(l)(X1)ēs

′

1,k(l′)(X1)ēq
′

2,k(l′)(X1),

γ2(X2)ēt1,k(j)(X2)ēr2,k(j)(X2)ēt
′

1,k(j′)(X2)ēr
′

1,k(j′)(X2)
]

= O

(
1

k(l)
s+q
2 k(l′)

s′+q′
2 k(j)

t+r
2 k(j′)

t′+r′
2

)
. (C.33)

As stated in [141], the conditions required for this expression to hold are “(1) There

must be at least one positive exponent on both sides of the arguments in the covari-

ance. (2) {s + s′ + t + t′ 6= 1} ∩ {q + q′ + r + r′ 6= 1}.” If neither of the conditions
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holds in condition (2), then the covariance in (C.33) reduces to the covariance with

only one error term on each side. If only one of the conditions holds, then the covari-

ance is zero. This means that if k(l), k(l′) → ∞ at the same rate for each l, l′ ∈ l̄,

then (C.33) reduces to o
(

1
k(l)

)
. Combining this result with the previous result on

the denominator of YM,i gives that Cov
(
Y2
M,1,Y

2
M,2

)
= o(1). Then by Lemma C.7,

Ĝw−E[Ĝw]q
V[Ĝw]

converges in distribution to a standard normal random variable.
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APPENDIX D

Proofs for Mutual Information Extension

In this appendix, we prove the convergence results given in Chapter IV.

D.1 Proof of Theorem IV.1 (Bias)

The proof of the bias results in Theorem IV.1 is similar to the proof of the bias

results for the divergence functional estimators in Chapter II and so we only sketch

it here. The primary differences deal with the product of the marginal KDEs.

The bias of G̃hX ,hY can be expressed as

B
[
G̃hX ,hY

]
= E

[
g

(
f̃X,hX (X)f̃Y,hY (Y)

f̃Z,hZ (X,Y)

)
− g

(
fX(X)fY (Y)

fXY (X,Y)

)]

= E

g( f̃X,hX (X)f̃Y,hY (Y)

f̃Z,hZ (X,Y)

)
− g

EZX
[
f̃X,hX (X)

]
EZY

[
f̃Y,hY (Y)

]
EZX, Y f̃Z,hZ (X,Y)


+E

g
EZX

[
f̃X,hX (X)

]
EZY

[
f̃Y,hY (Y)

]
EZX, Y f̃Z,hZ (X,Y)

− g(fX(X)fY (Y)

fXY (X,Y)

) ,(D.1)

where X and Y are drawn jointly from fXY . We can view these terms as a variance-

like component (the first term) and a bias-like component, where the respective Taylor

series expansions depend on variance-like or bias-like terms of the KDEs.
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We first consider the bias-like term, i.e. the second term in (D.1). The Taylor

series expansion of g

(
EZX[f̃X,hX (X)]EZY [f̃Y,hY (Y)]

EZX,Y f̃Z,hZ (X,Y)

)
around fX(X)fY (Y) and fXY (X,Y)

gives an expansion with terms of the form of

Bi
Z

[
f̃X,hX (X)f̃Y,hY (Y)

]
=

(
EZX

[
f̃X,hX (X)

]
EZY

[
f̃Y,hY (Y)

]
− fX(X)fY (Y)

)i
,

Bi
Z

[
f̃Z,hZ (X,Y)

]
=

(
EZX, Y f̃Z,hZ (X,Y)− fXY (X,Y)

)i
.

Since we are not doing boundary correction, we need to consider separately the

cases when Z is in the interior of the support SX × SY and when Z is close to the

boundary of the support. For precise definitions, a point Z = (X, Y ) ∈ SX ×SY is in

the interior of SX × SY if for all Z
′
/∈ SX × SY , KX

(
X−X′

hX

)
KY

(
Y−Y ′

hY

)
= 0, and a

point Z ∈ SX × SY is near the boundary of the support if it is not in the interior.

It can be shown by Taylor series expansions of the probability densities that for

Z = (X,Y) drawn from fXY in the interior of SX × SY , then

EZX
[
f̃X,hX (X)

]
= fX(X) +

bs/2c∑
j=1

cX,j(X)h2j
X +O (hsX) , (D.2)

EZY
[
f̃Y,hY (Y)

]
= fY (Y) +

bs/2c∑
j=1

cY,j(Y)h2j
Y +O (hsY ) ,

EZX, Y
[
f̃Z,hZ (Z)

]
= fXY (X,Y) +

bs/2c∑
i=0
i+j 6=0

bs/2c∑
j=0

cXY,i,j(X,Y)h2i
Xh

2j
Y +O (hsX + hsY ) .

For a point near the boundary of the support, we extend the expectation beyond

the support of the density. As an example if X is near the boundary of SX , then we
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get

EX

[
f̃i,hi(X)

]
− fi(X) =

1

hdXX

∫
V :V ∈SX

KX

(
X− V
hX

)
fX(V )dV − fX(X)

=

 1

hdXX

∫
V :KX

“
X−V
hX

”
>0

KX

(
X− V
hX

)
fX(V )dV − fX(X)


−

 1

hdXX

∫
V :V /∈SX

KX

(
X− V
hX

)
fX(V )dV


= T1,X(X)− T2,X(X). (D.3)

As in [145], we only evaulate the density fX and its derivatives at points within the

support when we take its Taylor series expansion. Thus the exact manner in which

we define the extension of fX does not matter as long as the Taylor series remains

the same and as long as the extension is smooth. Thus the expected value of T1,X(X)

gives an expression of the form of (D.2). For the T2,X(X) term, we perform a similar

Taylor series expansion and then apply the condition in assumption A.5 to obtain

E [T2,X(X)] =
r∑
i=1

eih
i
X + o (hrX) .

Similar expressions can be found for f̃Y,hY and f̃Z,hZ and for when (D.3) is raised to a

power t. Applying this result gives for the second term in (D.1),

r∑
j=0
i+j 6=0

r∑
i=0

c10,i,jh
i
Xh

j
Y +O (hsX + hsY ) .

For the first term in (D.1), a Taylor series expansion of g
(

f̃X,hX (X)f̃Y,hY (Y)

f̃Z,hZ (X,Y)

)
around

EZX
[
f̃X,hX (X)

]
EZY

[
f̃Y,hY (Y)

]
and EZX, Y f̃Z,hZ (X,Y) gives an expansion with terms
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of the form of

ẽqZ,hZ (Z) =
(
f̃Z,hZ (Z)− EZZ

[
f̃Z,hZ (Z)

])q
,

ẽqXY,hX ,hY (Z) =
(
f̃X,hX (X)f̃Y,hY (Y)− EZX

[
f̃X,hX (X)

]
EZY

[
f̃Y,hY (Y)

])q
.

By following a procedure similar to that in [145], we can take the expected value of

these expressions to obtain terms of the form

1

NhdXX
,

1

NhdYY
,

1

N2hdXX hdYY
, (D.4)

and their respective powers. For general functionals g, we can only guarantee that the

mixed derivatives of g evaluated at EZX
[
f̃X,hX (X)

]
EZY

[
f̃Y,hY (Y)

]
and EZX, Y f̃Z,hZ (X,Y)

converge to the mixed derivative evaluated at fX(X)fY (Y) and fXY (X,Y) at some

rate o(1). Thus we are left with the following terms in the bias:

o

(
1

NhdXX
+

1

NhdYY

)

However, if we know that g (t1, t2) has j, l-th order mixed derivatives ∂j+l

∂tj1∂t
l
2

that depend

on t1 and t2 only through tα1 t
β
2 for some α, β ∈ R, then by the generalized binomial

theorem, we find that

(
EZXf̃X,hX (X)

)α
=

∞∑
m=0

(
α

m

)
fα−mX (X)

bs/2c∑
j=1

ci,j(X)h2j
X +O (hsX)

m

.

A similar result holds for
(
EZYf̃Y,hY (Y)

)α
and

(
EZZ f̃Z,hZ (Z)

)α
. Combining these

expressions with (D.4) completes the proof.
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D.2 Proof of Theorem IV.2 (Variance)

As for the bias, the proof of the variance result in Theorem IV.2 is similar to the

proof of the variance result in Chapter II and so we do not present all of the details.

The primary differences again deal with the product of the marginal KDEs. The

proof uses the Efron-Stein inequality as for the divergence functional estimators.

In this case we consider the samples {Z1, . . . ,ZN} and
{
Z
′
1, . . . ,Z

′
N

}
and the

respective estimators G̃hX ,hY and G̃
′

hX ,hY
. By the triangle inequality,

∣∣∣G̃hX ,hY − G̃
′

hX ,hY

∣∣∣ ≤ 1

N

∣∣∣∣∣g
(

f̃X,hX (X1)f̃Y,hY (Y1)

f̃Z,hZ (X1,Y1)

)
− g

(
f̃X,hX (X

′
1)f̃Y,hY (Y

′
1)

f̃Z,hZ (X
′
1,Y

′
1)

)∣∣∣∣∣
+

1

N

N2∑
j=2

∣∣∣∣∣g
(

f̃X,hX (X1)f̃Y,hY (Y1)

f̃Z,hZ (X1,Y1)

)
− g

(
f̃
′

X,hX
(X1)f̃

′

Y,hY
(Y1)

f̃
′
Z,hZ

(X1,Y1)

)∣∣∣∣∣ .(D.5)

By the Lipschitz condition on g, the first term in (D.5) can be decomposed into terms

of the form of ∣∣∣f̃Z,hZ (Z1)− f̃Z,hZ (Z
′

1)
∣∣∣ ,∣∣∣f̃X,hX (X1)f̃Y,hY (Y1)− f̃X,hX (X
′

1)f̃
′

Y,hY
(Y1)

∣∣∣ .
By making a substitution in the expectation, it can be shown that

E
[∣∣∣f̃Z,hZ (Z1)− f̃Z,hZ (Z

′

1)
∣∣∣2] ≤ 2||KX ·KY ||2∞.

For the product of the marginal KDEs, we have that

f̃X,hX (X1)f̃Y,hY (Y1) =
1

M2hdXX hdYY

N∑
i=2

N∑
j=2

KX

(
X1 −Xi

hX

)
KY

(
Y1 −Yj

hY

)
=

1

M
f̃Z,hZ (Z1) +

1

M2hdXX hdYY

∑
i 6=j

KX

(
X1 −Xi

hX

)
KY

(
Y1 −Yj

hY

)
.

By applying the triangle inequality, Jensen’s inequality, and similar substitutions, we
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get

E
[∣∣∣f̃X,hX (X1)f̃Y,hY (Y1)− f̃X,hX (X

′

1)f̃Y,hY (Y
′

1)
∣∣∣2] ≤ E

[
2

M2

∣∣∣f̃Z,hZ (Z1)− f̃Z,hZ (Z
′

1)
∣∣∣2]

+
2(M − 1)

M3h2dX
X h2dY

Y

×

∑
i 6=j

E
[(
KX

(
X1 −Xi

hX

)
KY

(
Y1 −Yj

hY

)

−KX

(
X
′
1 −Xi

hX

)
KY

(
Y
′
1 −Yj

hY

))2
]

≤ 4 + 2(M − 1)2

M2
||KX ·KY ||2.

For the second term in (D.5), it can be shown that

E
[∣∣∣f̃Z,hZ (Zi)− f̃

′

Z,hZ
(Zi)

∣∣∣2] =
1

M2h2dX
X h2dY

Y

E
[(
KX

(
X1 −Xi

hX

)
KY

(
Y1 −Yj

hY

)
−KX

(
X
′
1 −Xi

hX

)
KY

(
Y
′
1 −Yj

hY

))2
]

≤ 2||KX ·KY ||2∞
M2

.

By a similar approach,

f̃X,hX (Xi)f̃Y,hY (Yi)− f̃
′

X,hX
(Xi)f̃

′

Y,hY
(Yi)

= f̃Z,hZ (Zi)− f̃
′

Z,hZ
(Zi) +

1

M2hdXX hdYY

∑
n=2
n6=i

KY

(
Yi −Yn

hY

)(
KX

(
Xi −X1

hX

)
−KX

(
Xi −X

′
1

hX

))

+
∑
n=2
n6=i

KX

(
Xi −Xn

hX

)(
KY

(
Yi −Y1

hY

)
−KY

(
Yi −Y

′
1

hY

)) ,

=⇒ E
[∣∣∣f̃X,hX (Xi)f̃Y,hY (Yi)− f̃

′

X,hX
(Xi)f̃

′

Y,hY
(Yi)

∣∣∣2] ≤ 6||KX ·KY ||2∞
(

1

M2
+

(M − 2)2

M4

)
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We can then apply the Cauchy Schwarz inequality to bound the square of the

second term in (D.5) to get

E

( N2∑
j=2

∣∣∣∣∣g
(

f̃X,hX (X1)f̃Y,hY (Y1)

f̃Z,hZ (X1,Y1)

)
− g

(
f̃
′

X,hX
(X1)f̃

′

Y,hY
(Y1)

f̃
′
Z,hZ

(X1,Y1)

)∣∣∣∣∣
)2
 ≤ 14C2

g ||KX ·KY ||2∞.

Applying Jensen’s inequality in conjunction with these results gives

E
[∣∣∣G̃hX ,hY − G̃

′

hX ,hY

∣∣∣2] ≤ 44C2
g ||KX ·KY ||2∞

N2
.

Applying the Efron-Stein inequality finishes the proof.

D.3 Theory for Mixed Random Variables

D.3.1 Proof of Theorem IV.4 (Bias)

Let hX|y = lN−βy for some positive l and 0 < β < 1
dX

. Under assumptions

A.0−A.5, we prove that for general g, the bias of the plug-in estimator G̃hX ,hX|Y

B
[
G̃hX ,hX|Y

]
=

r∑
j=0
i+j 6=0

r∑
i=0

c13,i,jh
i
X l

jN−jβ +
c14,X

NhdXX
+

c14,y

ldXN1−βdX

+O

(
hsX +N−sβ +

1

NhdXX
+

1

N1−βdX
+

1

N

)
. (D.6)

Furthermore, if g (t1, t2) has j, l-th order mixed derivatives ∂j+l

∂tj1∂t
l
2

that depend on t1

and t2 only through tα1 t
β
2 for some α, β ∈ R, then for any positive integer λ ≥ 2, the
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bias is

B
[
G̃hX ,hX|Y

]
=

r∑
j=0
i+j 6=0

r∑
i=0

c13,i,jh
i
X l

jN−jβ +

λ/2∑
j=1

λ/2∑
i=1

r∑
m=0

r∑
n=0

c14,j,i,m,n
hmX l

nN−nβ(
NhdXX

)j
(ldXN1−βdX )i

+

λ/2∑
j=1

r∑
m=0

r∑
n=0

c14,m,n,j,X
hmX l

nN−nβ(
NhdXX

)j + c14,m,n,j,Y
hmX l

nN−nβ

(ldXN1−βdX )j


+O

hsX +N−sβ +
1(

NhdXX

)λ/2 +
1

(N1−βdX )λ/2
+

1

N

 . (D.7)

We only prove (D.6) as the proof of (D.7) is identical. The bias of G̃hX ,hX|Y is

B
[
G̃hX ,hX|Y

]
= E

[
G̃hX ,hX|Y

]
−G(X; Y)

= E

[∑
y∈SY

Ny

N
G̃hX ,hX|y − g

(
fX(X)

fX|Y (X|Y)

)]

= E

[
E

[∑
y∈SY

Ny

N
G̃hX ,hX|y − g

(
fX(X)

fX|Y (X|Y)

)∣∣∣∣∣Y,Y1, . . . ,YN

]]

= E

[∑
y∈SY

Ny

N
E
[(

G̃hX ,hX|y − g
(

fX(X)

fX|Y (X|Y)

))∣∣∣∣Y,Y1, . . . ,YN

]]

= E

[∑
y∈SY

Ny

N
B
[
G̃hX ,hX|y

∣∣∣Y1, . . . ,YN

]]
,

where we use the law of total expectation and the fact that
∑

y∈SY
Ny

N
= 1. Let

hX|y = lN−βy for some positive l and 0 < β < 1
dX

. From Theorem 1, the conditional
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bias of G̃hX ,hX|y given Y1, . . . ,YN is

B
[
G̃hX ,hX|y

∣∣∣Y1, . . . ,YN

]
=

r∑
j=0
i+j 6=0

r∑
i=0

c10,i,jh
i
XhjX|y +

c11,X

Nyh
dX
X

+
c11,y

Nyh
dX
X|y

+O

(
hsX + hsX|y +

1

Nyh
dX
X

+
1

Nyh
dX
X|y

)

=
r∑
j=0
i+j 6=0

r∑
i=0

c10,i,jh
i
X l

jN−jβy +
c11,X

Nyh
dX
X

+
c11,y

ldXN1−βdX
y

+O

(
hsX + N−sβy +

1

Nyh
dX
X

+
1

N1−βdX
y

)
. (D.8)

Ny is a binomial random variable Multiplying (D.8) by Ny results in terms of the

form of N1−γ
y with γ ≥ 0. Ny is a binomial random variable with parameter fY (y),N

trials, and mean NfY (y). We can compute the fractional moments of a binomial

random variable by using the generalized binomial theorem to obtain

E
[
Nα
y

]
=

∞∑
i=0

 α

i

 (NfY (y))α−i E
[
(NY −NfY (y))i

]

=
∞∑
i=0

 α

i

 (NfY (y))α−i
bi/2c∑
n=0

cn,i(fY (y))Nn

=
∞∑
i=0

 α

i

 fY (y)α−i
bi/2c∑
n=0

cn,i(fY (y))Nα−i+n,

where we use the following expression for the i-th central moment of a binomial

random variable derived by Riordan [170]:

E
[
(NY −NfY (y))i

]
=

bi/2c∑
n=0

cn,i(fY (y))Nn.

If α = 1 − γ, then dividing by N results in terms of the form of N−γ−i+n. Since
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n ≤ bi/2c, −γ − i + n is always less than zero and is only greater than −1 if i = 0.

This completes the proof.

D.3.2 Proof of Theorem IV.5 (Variance)

As for the bias, we assume that hX|y = lN−βy for some positive l and 0 < β < 1
dX

.

By the law of total variance, we have

V
[
G̃hX ,hX|Y

]
= E

[
V
[
G̃hX ,hX|Y

∣∣∣Y1, . . . ,YN

]]
+ V

[
E
[
G̃hX ,hX|Y

∣∣∣Y1, . . . ,YN

]]
.

(D.9)

Note that given all of the Yi’s, the estimators G̃hX ,hX|y are all independent since they

use different sets of Xi’s for each y. By Theorem 2, we have

V
[
G̃hX ,hX|Y

∣∣∣Y1, . . . ,YN

]
= O

(∑
y∈SY

N2
y

N2
· 1

Ny

)

= O

(∑
y∈SY

Ny

N2

)
.

Taking the expectation wrt Y1, . . .YN then gives O
(

1
N

)
for the first term in (D.9).

For the second term in (D.9), from (D.8) we have that for general g

E
[
G̃hX ,hX|y

∣∣∣Y1, . . . ,YN

]
= O

(
r∑
j=0

N−jβy +
1

Ny

+ N−sβy + N1−βdX
y

)
= O (f (Ny)) .

By the Efron-Stein inequality, we have that if N
′
y is an independent and identically
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distributed realization of Ny, then

V

[∑
y∈SY

Ny

N
f (Ny)

]
≤ 1

2N2

∑
y∈SY

E
[(

Nyf (Ny)−N
′

yf
(
N
′

y

))2
]

= O

(
1

N2
E
[(

Nyf (Ny)−N
′

yf
(
N
′

y

))2
])

= O

(
1

N2
V [Nyf (Ny)]

)
, (D.10)

where the second step follows from the fact that SY is finite and the last step follows

from the fact that Ny and N
′
y are iid. The expression V [Nyf (Ny)] is simply a sum

of terms of the form of V
[
Nγ
y

]
where 0 < γ ≤ 1. Even the covariance terms can be

bounded by the square root of the product of these terms by the Cauchy Schwarz

inequality.

Let py = fY (y). Consider the Taylor series expansion of the function h(x) = xγ

at the point Npy. This is

h(x) = (Npy)
γ + γ (Npy)

γ−1 (x−Npy) +
γ(γ − 1)

2
(Npy)

γ−2 (x−Npy)2

+
∞∑
k=3

γ(γ − 1) . . . (γ − k + 1)

k!
(Npy)

γ−k (x−Npy)2 . (D.11)

From Riordan [170], we know that the ith central moment of Ny is O
(
N bi/2c

)
. Then

since γ ≤ 1, the last terms in (D.11) are O (N−1) when x = Ny and we take the

expectation. Thus

E
[
Nγ
y

]
= (Npy)

γ +
γ(γ − 1)

2
(Npy)

γ−1 (1− py) +O
(
N−1

)
=⇒ E

[
Nγ
y

]2
= (Npy)

2γ + γ(γ − 1)(1− py) (Npy)
2γ−1 +

(
γ(γ − 1)

2

)2

(Npy)
2γ−2

+O
(
N−1

)
.
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By a similar Taylor series expansion, we have that

E
[
N2γ
y

]
= (Npy)

2γ + γ(2γ − 1)(1− py) (Npy)
2γ−1 +O

(
N−1

)
.

Combining these results gives

V
[
Nγ
y

]
= E

[
N2γ
y

]
− E

[
Nγ
y

]2
= O

(
N2γ−1 +N2γ−2 +N−1

)
= O (N) ,

where the last step follows from the fact that γ ≤ 1. Combining this result with

(D.10) gives

V
[
E
[
G̃hX ,hX|Y

∣∣∣Y1, . . . ,YN

]]
= O

(
1

N

)
.

By the law of total variance, V
[
G̃hX ,hX|Y

]
= O

(
1
N

)
.
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APPENDIX E

Details on Methods Applied to Sunspot Images

and HFO Data

This appendix contains details on some of the methods used to analyze the sunspot

images.

E.1 Intrinsic Dimension Estimation of Manifolds

Consider data that are described in an extrinsic Euclidean space of d dimensions.

However, suppose the data actually lie on a lower dimensional manifoldM. Thus the

intrinsic dimension m of the data corresponds to the dimension of M. For example,

data may be given to us in a 3 dimensional space but lie on the surface of a sphere.

Thus the intrinsic dimension of the data would be 2.

In some cases, data points from the same data set may lie on different manifolds.

For example, part of the data with an extrinsic dimension of 3 could lie on the surface

of a sphere (m = 2) while another part may lie on a circle (m = 1). We then say that

data points from these different manifolds have a different local intrinsic dimension.

The local intrinsic dimension gives some measure of the local complexity of the image.

Additionally, the local intrinsic dimension is useful for dictionary learning because we
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can use it to determine whether different-sized dictionaries should be used for different

regions, e.g. within the sunspots and outside of the sunspots.

We now describe the k-NN estimator of intrinsic dimension in more detail. For

a set of independently identically distributed random vectors Zn = {z1, . . . , zn} with

values in a compact subset of Rd, the k-nearest neighbors of zi in Zn are the k points

in Zn\{zi} closest to zi as measured by the Euclidean distance || · ||. The k-NN graph

is then formed by assigning edges between a point in Zn and its k-nearest neighbors.

The intrinsic dimension is related to the total edge length of the k-NN graph and can

be estimated based on this relationship. The k-NN graph is then formed by assigning

edges between a point in Zn and its k-nearest neighbors and has total edge length

defined as

Lγ,k(Zn) =
n∑
i=1

∑
z∈Nk,i

||z− zi||γ,

where γ > 0 is a power weighting constant and Nk,i is the set of k nearest neighbors

of zi. It has been shown that for large n,

Lγ,k(Zn) = nα(m)c+ εn,

where α = (m− γ)/m, c is a constant with respect to α(m), and εn is an error term

that decreases to zero a.s. as n → ∞ [40]. A global intrinsic dimension estimate m̂

is found based on this relationship using non-linear least squares over different values

of n [31].

A local estimate of intrinsic dimension at a point zi can be found by running the

algorithm over a smaller neighborhood about zi. The variance of this local estimate

is then reduced by smoothing via majority voting in a neighborhood of zi [31].
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E.2 Matrix Factorization

As mentioned in Section 6.2, the goal of matrix factorization is to accurately

decompose the 2m2× n data matrix Z into the product of two matrices A (with size

2m2 × r) and H (with size r × n), where A has fewer columns than rows (r < 2m2).

The matrix A is the dictionary and the matrix H is the coefficient matrix. The

columns of A form a basis for the data in Z.

The two matrix factorization methods we use are singular value decomposition

(SVD) and nonnegative matrix factorization (NMF). These two methods can be

viewed as solving two different optimization problems where the objective function is

the same but the constraints differ. Let A = [a1, a2, . . . , ar] and H = [h1,h2, . . .hn].

For SVD, the optimization problem is

minA,H ||Z−AH||2F

subject to aTi aj =


1, i = j

0, i 6= j

.

In words, SVD requires the columns of A to be orthonormal.

For standard NMF, the optimization problem is

minA,H ||Z−AH||2F

subject to ai ≥ 0, ∀i = 1, . . . , r

hi ≥ 0, ∀i = 1, . . . , n

,

where a ≥ 0 applied to a vector a implies that all of a’s entries are greater than or

equal to 0. In our problem, only the continuum is nonnegative so we only apply the

constraint to the continuum part of the matrix A. So if ai and bi are both vectors

with length m2 corresponding to the continuum and magnetogram parts, respectively,
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then we have A =

 a1 a2 . . . ar

b1 b2 . . . br

. The NMF method we use also constrains

the columns of H to lie on a simplex, i.e.
∑r

j=1 hi(j) = 1. Thus the optimization

problem for our approach to NMF is

minA,H ||Z−AH||2F

subject to ai ≥ 0, ∀i = 1, . . . , r

hi ≥ 0, ∀i = 1, . . . , n∑r
j=1 hi(j) = 1, ∀i = 1, . . . , n

.

This problem is not convex and is solved in an alternating manner by fixing H, finding

the matrix A that solves the problem assuming H is fixed, and then solving for H

while A is fixed. This process is repeated until the algorithm converges to a local

minimum. See [125] for more details on the convergence analysis.

E.3 The EAC-DC Clustering Method

Let V = {v1, v2, . . . , vN} be a set of vertices and let E = {eij}, where eij denotes

an edge between vertices vi, vj, i, j ∈ {1, . . . , N}, be a set of undirected edges between

them. The pair (V,E) = G is the corresponding undirected graph. In our application,

V corresponds to the set of AR image pairs being clustered and E contains all possible

edges between the vertices. The weight of an edge eij is defined as wij and measures

the base dissimilarity between two vertices vi and vj. In many applications, the base

dissimilarity is the Euclidean distance. In our case, we use the Hellinger distance as

the base dissimilarity measure.

A spanning tree T of the graph G is a connected acyclic subgraph that passes

through all N vertices of the graph and the weight of T is the sum of all the edge

weights used to construct the tree,
∑

eij∈T wij. A minimal spanning tree of G is a
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spanning tree which has the minimal weight minT
∑

eij∈T wij.

Prim’s algorithm [164] is used by [67] to construct the dual rooted MST. In Prim’s

algorithm, the MST is grown sequentially where at each step, a single edge is added.

This edge corresponds to the edge with minimal weight that connects a previously

unconnected vertex to the existing tree. The root of the MST corresponds to the

beginning vertex. For the dual rooted MST, we begin with two vertices vi and vj and

construct the minimal spanning trees Ti and Tj. At each step, the two edges that

would grow both trees Ti and Tj using Prim’s algorithm are proposed and the edge

with minimal weight is added. This continues until Ti and Tj connect. The weight

of the final edge added in this algorithm defines a new metric between the vertices vi

and vj. This process is repeated for all pairs of vertices and this new metric is used

as input to spectral clustering [67].

A primary advantage of this metric based on the hitting time of the two MSTs

is that it depends on the MST topology of the data. Thus if two vertices belong to

the same cluster, then the MST distance between them will be small since cluster

points will be close together. This is the case even if the vertices are far away from

each other (e.g. on opposite ends of the cluster). However, if the two vertices are

in different clusters that are well separated, then the MST distance between them

will be large. See Figure E.1 for an example. Thus this method of clustering is very

robust to the shape of the clusters. [67] contains many more examples.

The MST based metric can be computationally intensive to compute as Prim’s

algorithm must be run as many times as there are pairs of vertices. To counter this,

[67] proposed the EAC-DC algorithm which uses the information from only a subset

of the dual rooted MSTs. This is done by calculating the dual rooted MSTs for a

random pair of vertices. Three clusters are defined for each run: all vertices that are

connected to one of the roots in the MSTs form two of the clusters (one for each root)

while all points that are not connected to either of the MSTs are assigned to a third
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Figure E.1: Dual rooted Prim tree built on a 2-dimensional data set when the roots
are chosen from the same class (left) and different classes (right). The X’s mark the
roots of the trees and the dashed line is the last connected edge. The length of the last
connected edge is greater when the roots belong to clusters that are more separated.

“rejection” cluster. A co-association measure for two vertices is then defined as the

number of times those vertices are contained in the same non-rejection cluster divided

by the total number of runs (dual rooted MSTs). This co-association measure forms

a similarity measure to which spectral clustering is applied.
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[29] Bühlmann, P., and S. Van De Geer (2011), Statistics for high-dimensional data:
methods, theory and applications, Springer Science & Business Media.

[30] Cadavid, A. C., J. K. Lawrence, and A. Ruzmaikin (2008), Principal Com-
ponents and Independent Component Analysis of Solar and Space Data,
Sol. Phys., 248, 247–261, doi:10.1007/s11207-007-9026-2.

[31] Carter, K. M., R. Raich, and A. O. Hero III (2010), On local intrinsic dimen-
sion estimation and its applications, Signal Processing, IEEE Transactions on,
58 (2), 650–663.

[32] Chai, B., D. Walther, D. Beck, and L. Fei-Fei (2009), Exploring functional
connectivities of the human brain using multivariate information analysis, in
Advances in neural information processing systems, pp. 270–278.

[33] Chernoff, H. (1952), A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations, The Annals of Mathematical Statistics, pp.
493–507.

[34] Cho, J., D. Koo, E. Joo, D. Seo, S. Hong, P. Jiruska, and S. Hong (2014),
Resection of individually identified high-rate high-frequency oscillations region
is associated with favorable outcome in neocortical epilepsy, Epilepsia, 55, 1872–
83.

[35] Colak, T., and R. Qahwaji (2008), Automated McIntosh-Based Classification of
Sunspot Groups Using MDI Images, Solar Physics, 248, 277–296, doi:10.1007/
s11207-007-9094-3.

[36] Colak, T., and R. Qahwaji (2009), Automated Solar Activity Prediction: A
hybrid computer platform using machine learning and solar imaging for au-
tomated prediction of solar flares, Space Weather, 7, S06001, doi:10.1029/
2008SW000401.

[37] Comon, P., and C. Jutten (2010), Handbook of Blind Source Separation: In-
dependent Component Analysis and Blind Deconvolution, Academic Press, Ox-
ford.

237



[38] Conlon, P. A., P. T. Gallagher, R. T. J. McAteer, J. Ireland, C. A. Young,
P. Kestener, R. J. Hewett, and K. Maguire (2008), Multifractal Proper-
ties of Evolving Active Regions, Sol. Phys., 248, 297–309, doi:10.1007/
s11207-007-9074-7.

[39] Conlon, P. A., R. T. J. McAteer, P. T. Gallagher, and L. Fennell (2010), Quan-
tifying the Evolving Magnetic Structure of Active Regions, ApJ, 722, 577–585,
doi:10.1088/0004-637X/722/1/577.

[40] Costa, J. A., and A. O. Hero III (2006), Determining intrinsic dimension and
entropy of high-dimensional shape spaces, in Statistics and Analysis of Shapes,
pp. 231–252, Springer.

[41] Cover, T. M., and J. A. Thomas (2012), Elements of information theory, John
Wiley & Sons.

[42] Csiszar, I. (1967), Information-type measures of difference of probability distri-
butions and indirect observations, Studia Sci. MAth. Hungar., 2, 299–318.

[43] Darbellay, G. A., I. Vajda, et al. (1999), Estimation of the information by
an adaptive partitioning of the observation space, IEEE Trans. Information
Theory, 45 (4), 1315–1321.

[44] DeForest, C. (2004), On re-sampling of solar images, Solar Physics, 219 (1),
3–23.

[45] Dhillon, I. S., S. Mallela, and R. Kumar (2003), A divisive information theo-
retic feature clustering algorithm for text classification, The Journal of Machine
Learning Research, 3, 1265–1287.

[46] Ding, C., T. Li, and M. I. Jordan (2010), Convex and semi-nonnegative matrix
factorizations, Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 32 (1), 45–55.

[47] Dobigeon, N., J.-Y. Tourneret, C. Richard, J. Bermudez, S. Mclaughlin, and
A. O. Hero (2014), Nonlinear unmixing of hyperspectral images: Models and
algorithms, Signal Processing Magazine, IEEE, 31 (1), 82–94.

[48] Doquire, G., B. Frénay, M. Verleysen, et al. (2013), Risk estimation and fea-
ture selection, in European Symposium on Artificial Neural Networks (ESANN
2013).

[49] Dudok de Wit, T., S. Moussaoui, C. Guennou, F. Auchère, G. Cessateur,
M. Kretzschmar, L. A. Vieira, and F. F. Goryaev (2013), Coronal Temper-
ature Maps from Solar EUV Images: A Blind Source Separation Approach,
Sol. Phys., 283, 31–47, doi:10.1007/s11207-012-0142-2.

238



[50] Dudok DeWit, T., and F. Auchère (2007), Multispectral analysis of solar EUV
images: linking temperature to morphology, A&A, 466, 347–355, doi:10.1051/
0004-6361:20066764.

[51] Durrett, R. (2010), Probability: Theory and Examples, Cambridge University
Press.

[52] Edelman, A., T. A. Arias, and S. T. Smith (1998), The geometry of algorithms
with orthogonality constraints, SIAM journal on Matrix Analysis and Applica-
tions, 20 (2), 303–353.

[53] Efron, B., and C. Stein (1981), The jackknife estimate of variance, The Annals
of Statistics, pp. 586–596.

[54] Elad, M., and M. Aharon (2006), Image denoising via sparse and redundant
representations over learned dictionaries, Image Processing, IEEE Transactions
on, 15 (12), 3736–3745, doi:10.1109/TIP.2006.881969.

[55] Evans, L. C. (2010), Partial differential equations, American Mathematical So-
ciety.

[56] Falconer, D. A., R. L. Moore, and G. A. Gary (2008), Magnetogram Measures
of Total Nonpotentiality for Prediction of Solar Coronal Mass Ejections from
Active Regions of Any Degree of Magnetic Complexity, ApJ, 689, 1433–1442,
doi:10.1086/591045.

[57] Fano, R. M. (1968), Transmission of Information: A Statistical Theory of Com-
munications, Massachusetts Institute of technology.

[58] Fisher, R. (1936), The use of multiple measurements in taxonomical problems,
Annals of Eugenics, 7 (2), 179–188.

[59] Fisher, R. A. (1936), The use of multiple measurements in taxonomic problems,
Annals of eugenics, 7 (2), 179–188.

[60] Friedman, J. H., and L. C. Rafsky (1979), Multivariate generalizations of the
Wald-Wolfowitz and Smirnov two-sample tests, The Annals of Statistics, pp.
697–717.

[61] Frigyik, B., M. R. Gupta, et al. (2012), Bounds on the bayes error given mo-
ments, Information Theory, IEEE Transactions on, 58 (6), 3606–3612.

[62] Fukunaga, K., and L. D. Hostetler (1973), Optimization of k nearest neighbor
density estimates, Information Theory, IEEE Transactions on, 19 (3), 320–326.

[63] Fukunaga, K., and D. M. Hummels (1987), Bayes error estimation using parzen
and k-nn procedures, Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, (5), 634–643.

239



[64] Fukunaga, K., and D. M. Hummels (1987), Bias of nearest neighbor error esti-
mates, Pattern Analysis and Machine Intelligence, IEEE Transactions on, (1),
103–112.

[65] Fukunaga, K., and D. M. Hummels (1989), Leave-one-out procedures for non-
parametric error estimates, Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 11 (4), 421–423.

[66] Gallagher, P. T., Y.-J. Moon, and H. Wang (2002), Active-Region Monitoring
and Flare Forecasting I. Data Processing and First Results, Sol. Phys., 209,
171–183, doi:10.1023/A:1020950221179.

[67] Galluccio, L., O. Michel, P. Comon, M. Kliger, and A. O. Hero III (2013), Clus-
tering with a new distance measure based on a dual-rooted tree, Information
Sciences, 251, 96–113.

[68] Gao, S., G. Ver Steeg, and A. Galstyan (2015), Efficient estimation of mutual
information for strongly dependent variables, in Proceedings of the Eighteenth
International Conference on Artificial Intelligence and Statistics, pp. 277–286.

[69] Gao, W., S. Oh, and P. Viswanath (2016), Demystifying fixed k-nearest neigh-
bor information estimators, arXiv preprint arXiv:1604.03006.

[70] Georgoulis, M. K. (2005), Turbulence In The Solar Atmosphere: Manifestations
And Diagnostics Via Solar Image Processing, Sol. Phys., 228, 5–27, doi:10.1007/
s11207-005-2513-4.

[71] Georgoulis, M. K., and D. M. Rust (2007), Quantitative Forecasting of Major
Solar Flares, ApJ, 661, L109–L112, doi:10.1086/518718.

[72] Gilbarg, D., and N. S. Trudinger (2001), Elliptic partial differential equations
of second order, Springer.
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[181] Singh, S., and B. Póczos (2014), Generalized exponential concentration inequal-
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