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We deal with recursive direction-of-arrival (DOA) estimation of multiple moving sources. Based on the recursive EM algorithm,
we develop two recursive procedures to estimate the time-varying DOA parameter for narrowband signals. The first procedure
requires no prior knowledge about the source movement. The second procedure assumes that the motion of moving sources is
described by a linear polynomial model. The proposed recursion updates the polynomial coefficients when a new data arrives.
The suggested approaches have two major advantages: simple implementation and easy extension to wideband signals. Numerical
experiments show that both procedures provide excellent results in a slowly changing environment. When the DOA parameter
changes fast or two source directions cross with each other, the procedure designed for a linear polynomial model has a better

performance than the general procedure. Compared to the beamforming technique based on the same parameterization, our

approach is computationally favorable and has a wider range of applications.
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1. INTRODUCTION

The problem of estimating the direction of arrival (DOA) of1

2

3

plane waves impinging on a sensor array is of fundamental

4

importance in many applications such as radar, sonar, geo-
physics, and wireless communication. The maximum like-
lihood (ML) method is known to have excellent statistical
performance and is robust against coherent signals and small
sample numbers [1]. However, the high computational cost
associated with ML method makes it less attractive in prac-
tice.

To improve the computational efficiency of the ML ap-
proach, numerical methods such as the expectation and
maximization (EM) algorithm [2] were suggested in [3, 4, 5].
Recursive procedures based on the recursive EM (REM) al-
gorithm for estimating constant DOA parameters were dis-
cussed in [6, 7]. Similar procedures for tracking multiple
moving sources were studied in [8, 9]. In [9], the authors
focused on narrowband sources and assumed known signal

waveforms.
The REM algorithm is a stochastic approximation pro-

cedure for finding ML estimates (MLEs). It was first sug-
gested by Titterington [10] and extended to the multidimen-
sional case in [6]. As it was pointed out by Titterington,
REM can be seen as a sequential approximation of the EM
algorithm. The gain matrix of REM is the inversion of the
augmented data information matrix. Through proper design
of the augmentation scheme, the augmented data and the
corresponding information matrixes usually have a simple
structure [2]. In this case, the REM algorithm is very easy to 5
implement. For constant parameters , estimates generated

by REM are strongly consistent and asymptotically normally
distributed. For time-varying parameters , the tracking abil-

ity of a stochastic approximation procedure depends mainly
on the dynamics of the true parameter, gain matrix, and step
size [11].

Based on REM, we will derive two recursive procedures
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for estimating time-varying DOA. The first procedure does
not require any prior knowledge on the motion model. The
only assumption is that the unknown parameter changes
slowly with time. The second procedure assumes that the
time-varying DOA parameter θ(t) is described by a linear
polynomial of time. This model is important since a smooth
function θ(t) can be approximated by a local linear polyno-
mial in a short-time interval [12]. The procedure reported in
[8] employs a decreasing step size to estimate the polynomial
coefficients. However, since the DOA parameter θ(t) and the
log-likelihood function change with time, a decreasing step
size may not capture the nonstationary feature of the under-
lying system over a long period. To overcome this problem,
we suggest a constant step size to be used in the algorithm.
It is noteworthy that both procedures are aimed at maximiz-
ing the expected concentrated likelihood function [13]. In-
troducing a linear polynomial model implies increasing the
dimension of the parameter space. With the additional de-
gree of freedom, the procedure designed for a linear polyno-
mial model should perform better than the general one.

In contrast to methods based on subspace tracking [14]
or two-dimensional beamforming [12], our approach can be
easily generalized to wideband cases including underwater
acoustic signals. Unlike the Kalman-type algorithms [15], the
recursive procedures considered here have a much simpler
implementation.

This paper is outlined as follows. We describe the sig-
nal model and the REM algorithm briefly in Sections 2
and 3. Section 4 presents two recursive procedures for lo-
calizing moving sources. Simulation results are discussed in
Section 5. We give concluding remarks in Section 6.

2. PROBLEM FORMULATION

Consider an array of N sensors receiving M far-field
waves from unknown time-varying directions θ(t) =
[θ1(t) · · · θM(t)]. The array output x(t) ∈ CN×1 at time in-
stant t is expressed as

x(t) = H
(
θ(t)

)
s(t) + u(t), t = 1, 2, . . . , (1)

where the steering matrix

H
(
θ(t)

) = [d(θ1(t)
) · · ·d(θM(t)

)] ∈ CN×M (2)

consists of M steering vectors d(θm(t)) ∈ CN×1 (m =
1, . . . ,M). To avoid ambiguity, we assume that M < N . The
signal waveform s(t) = [s1(t) · · · sM(t)]T ∈ CM×1 is con-
sidered unknown and deterministic. (·)T denotes the trans-
pose of a vector. Furthermore, the noise process u(t) ∈ CN×1

is independent identically complex and normally distributed
with zero mean and covariance matrix νI , where ν represents
the unknown noise spectral parameter and I is the identity
matrix.

In the following, we assume that the number of sources
M is known. Standard procedures based on minimum de-6

7 scription length (MDL) criteria [16] or multiple hypoth-
esis testing [7] can be used to determine M. The problem of

interest is to estimate the time-varying DOA parameter θ(t)
recursively from the observation x(t). We assume that a good
initial estimate θ0 is available at the beginning of the recur-
sion.

3. RECURSIVE PARAMETER ESTIMATION USING
INCOMPLETE DATA

The REM algorithm suggested by Titterington is a stochastic
approximation procedure for finding MLEs. As pointed out
in [10], there is a strong relationship between this procedure
and the EM algorithm [2]. Using Taylor expansion, Tittering-
ton showed that, approximately, REM maximizes EM’s aug-
mented log likelihood sequentially. The unknown parame-
ter is considered as constant in [10]. In the fixed parameter
case, a properly chosen decreasing step size is necessary to
ensure strong consistency and asymptotic normality of the
algorithm [10, 17].

Suppose x(1), x(2), . . . are independent observations,
each with underlying probability density function (pdf)
f (x;ϑ), where ϑ denotes an unknown constant parameter.
The augmented data associated with the EM y(1), y(2), . . . 8
is characterized by the pdf f (y;ϑ). According to [2], the

augmented data y(t) is so specified that M(y(t)) = x(t) is a
many-to-one mapping. Let ϑt denote the estimate after t ob-
servations. The following procedure is aimed at finding the
true parameter ϑ which may coincide with the MLE in the
asymptotic sense [18]:

ϑt+1 = ϑt + εtIEM
(
ϑt
)−1

γ
(
x(t),ϑt

)
, (3)

where εt is a decreasing step size and 9

IEM
(
ϑt
) = E −∇ϑ∇T

ϑ log f (y;ϑ)|x(t),ϑ|ϑ=ϑt , (4)

γ
(
x(t),ϑt

) =∇ϑ log f
(
x(t);ϑ

)|ϑ=ϑt (5)

represent the augmented information matrix and gradient
vector, respectively. ∇ϑ is a column gradient operator with
respect to ϑ. We assume that both (4) and (5) exist. Under
mild conditions, the estimates generated by (3) are strongly

consistent, asymptotic, and normally distributed. In view 10
of the well-known singularities and multiple maxima that are
on likelihood surfaces, one could not of course expect con-
sistency irrespective of the starting point [10].

The augmented data y usually has a simpler structure
than the observed data x. Therefore, the augmented data
information matrix IEM(ϑt) is easier to compute and in-
vert than the observed data information matrix I(ϑt) =
E −∇ϑ∇T

ϑ log f (x;ϑ)|x(t),ϑ|ϑ=ϑt . Although REM does not
have the optimal convergence rate in the Cramér-Rao sense
as the following procedure [10]:

ϑt+1 = ϑt + εtI
(
ϑt
)−1

γ
(
x(t),ϑt

)
, (6)

it is much easier to implement than (6). Using IEM(ϑt)−1 as
the gain matrix is a trade-off between the convergence rate
and computational cost.
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When the parameter of interest varies with time, a de-
creasing step size such as εt = t−α, 1/2 < α ≤ 1, cannot
capture the nonstationary feature of the underlying system.
A classical way to overcome this difficulty is to replace εt with
a constant step size ε. In general, a large step size reduces the
bias and increases the variance of the estimates [11]. A small
step size has opposite effects. Since the time-varying param-
eter ϑ(t) may follow a complicated dynamics, an exact inves-
tigation of the convergence behavior of the algorithm

ϑt+1 = ϑt + εIEM
(
ϑt
)−1

γ
(
x(t),ϑt

)
(7)

is only possible when certain assumptions are made on the
parameter model. More discussion about convergence prop-
erties of a stochastic approximation procedure in a nonsta-
tionary environment can be found in [11].

4. LOCALIZATION OF MOVING SOURCES

The REM algorithm with constant step size (7) is applied
to estimate the time-varying DOA parameter θ(t). We start
with a general case in which θ(t) changes slowly with time
and then consider a linear polynomial model.

4.1. General case

From the signal model in Section 2, we know that the array
observation x(t) is complex and normally distributed with
the log likelihood function

log f
(
x(t);ϑ

)
= −

[
N logπ + N log ν

+
1
ν

(
x(t)−H

(
θ(t)

)
s(t)

)H(
x(t)−H

(
θ(t)

)
s(t)

)]
,

(8)

where ϑ = [θ(t)Ts(t)Tν]T and (·)H denotes the Hermitian
transpose.

According to (7), all elements in ϑ should be updated
simultaneously. Since we are mainly interested in the DOA
parameter θ(t) and since including {s(t), ν} in the recursion
will complicate the gain matrix IEM(ϑt)−1, then the proce-
dure (7) is only applied to θ(t). The estimate for signal wave-
form and noise level, denoted by st = [st1 st2 · · · stM]T and
νt, respectively, is updated by computing their MLEs once the
current DOA estimate is available. For simplicity, we use θ
instead of θ(t) in the following discussion.

Taking the first derivative on the right-hand side of (8)
with respect to θm, we obtain the mth element of the gradient
vector γ(x(t),ϑt) [17]:

[
γ
(
x(t),ϑt

)]
m =

2
νt

Re
[(
x(t)−H

(
θt
)
st
)H(

d′
(
θtm
)
stm
)]

, (9)

where d′(θm) = ∂d(θm)/∂θm.
The augmented data y(t) is obtained by decomposing the

array output into its signal and noise parts. Formally it is ex-
pressed as

y(t) = [y1(t)T · · · ym(t)T · · · yM(t)T
]T
. (10)

The augmented data associated with the mth signal

ym(t) = d
(
θm
)
sm(t) + um(t) (11)

is complex and normally distributed with mean d(θm)sm(t)
and covariance matrix νmI with the constraint

∑M
m=1 νm =

ν. A convenient choice is νm = ν/M. The corresponding log
likelihood is given by

log f
(
y(t);ϑ

)
= −

M∑
m=1

[
N logπ + N log

(
ν

M

)

+
M

ν

(
ym(t)− d

(
θm
)
sm(t)

)H
× (ym(t)− d

(
θm
)
sm(t)

)]
.

(12)

Since the signals are decoupled through the augmentation
scheme (10), IEM(ϑt) is an M ×M diagonal matrix when we
only consider the DOA parameter θ. By definition (4), the
mth diagonal element of IEM(ϑt) is the conditional expecta-
tion of the second derivative of the augmented log likelihood

[
IEM

(
ϑt
)]

mm = E − ∂2

∂θ2
m

log f
(
y(t);ϑ

)∣∣x(t),ϑt , (13)

which is given by

[
IEM(ϑt)

]
mm =

2
νt

Re
[
− (d′′(θtm)stm)H(x(t)−H

(
θt
)
st
)

+ M
∥∥d′(θtm)stm∥∥2

]
,

(14)

where d′′(θm) = ∂2d(θm)/∂θ2
m.

Once the estimate θt+1 is available, the signal and noise
parameters are obtained by computing their MLEs at current
θt+1 and x(t) as follows:

st+1 = H
(
θt+1)#

x(t),

νt+1 = 1
N

tr
[
P
(
θt+1)⊥Ĉx(t)

]
,

(15)

where H(θt+1)# is the generalized left inverse of the matrix
H(θt+1), P(θt+1)⊥ = I − P(θt+1) is the orthogonal comple-
ment of the projection matrix P(θt+1) = H(θt+1)H(θt+1)#,
and Ĉx(t) = x(t)x(t)H .

Given a constant step size ε, the number of sources M,
and the current estimate θt, the (t + 1)st recursion of the al-
gorithm proceeds as shown in Algorithm 1.

4.2. Linear polynomial model

We consider moving sources described by the linear polyno-
mial model

θ = θ0 + tθ1, (16)



4 EURASIP Journal on Applied Signal Processing

(1) Calculate the gradient vector γ(x(t), θt) by (9) and
the matrix IEM(θt) by (14).

(2) Update DOA parameters by
θt+1 = θt + ε[IEM(θt)]−1γ(x(t), θt).

(3) Update the signal and noise parameters st , νt by

(15).

Algorithm 1: Recursive EM algorithm I (REM I) (arbitrary mo-
tion).

where θ0 = [θ01, . . . , θ0M]T and θ1 = [θ11, . . . , θ1M]T . The
linear polynomial (16) can be seen as a truncated Taylor ex-
pansion which gives a good description for the source mo-
tion in a small observation interval [12].

The REM algorithm is applied to estimate θ0 and θ1. For
notational simplicity, we define the extended DOA parame-
ter as Θ = [ΘT

1 · · ·ΘT
m · · ·ΘT

M]T where Θm = [θ0m, θ1m]T .
Similarly to the procedure presented in Section 4.1, REM is11
only applied to update the DOA parameter Θ rather than
ϑ = [ΘTs(t)Tν]T .

Based on this approach, the 2mth and (2m+ 1)st element
of the gradient vector γ(x(t),ϑt) are given by

∂

∂θ0m
log f

(
x(t);ϑ

)|ϑ=ϑt
= 2

νt
Re
[(
x(t)−H

(
Θt)st)H(d′(Θt

m

)
stm
)]

,

∂

∂θ1m
log f

(
x(t);ϑ

)|ϑ=ϑt
= 2t

νt
Re
[(
x(t)−H

(
Θt)st)H(d′(Θt

m

)
stm
)]

,

(17)

respectively, where d′(Θt
m) = ∂d(θm)/∂θm|θm=Θt

m0+tΘt
m1

. Note
that θ is calculated at the current estimate Θt according to
the linear model (16).

Because each source is described by two unknown pa-
rameters, the augmented data information matrix becomes
block diagonal. Unfortunately, this matrix is singular under
current parameterization. To avoid singularity and simplify
the recursion, rather than using this block diagonal matrix
in the recursion directly, we consider an alternative matrix
ĨEM(ϑt) which is the diagonal part of IEM(ϑt).

Let d′′( Θ
t
) = ∂2d(θm)/∂θ2

m|
θm= Θ

t

m0
+t Θ

t

m1

. According

to the augmentation scheme specified above, the 2mth and12
(2m + 1)st diagonal components of ĨEM(Θt) are given by

2
νt

Re
[(− d′′

(
Θt

m

)
stm
)H(

x(t)−H
(
Θt)stm)

+ M
∥∥d′(Θt

m

)
stm
∥∥2]

,

2t2

νt
Re
[(− d′′

(
Θt

m

)
stm
)H(

x(t)−H
(
Θt)stm)

+ M
∥∥d′(Θt

m

)
stm
∥∥2]

,

(18)

respectively.
Similarly to the general case, the signal and noise

parameters are updated by (15) once the estimate Θt+1 is

available. The parameter θt+1 in (15) is replaced by Θt+1.

(1) Calculate the gradient vector γ(x(t),Θt) by (17)
and the matrix ĨEM(Θt) by (18).

(2) Update DOA parameters by
Θt+1 = Θt + ε[ĨEM(Θt)]−1γ(x(t),Θt).

(3) Update the signal and noise parameters st , νt by

(15)
with θt replaced by Θt .

Algorithm 2: Recursive EM algorithm II (REM II) (linear polyno-
mial model).

Given the step size ε, the number of sources M, and the
current estimate Θt , the (t + 1)st recursion of the algorithm
proceeds as shown in Algorithm 2.

For simplicity, the REM for the general case and the REM
for the linear polynomial model are referred to as “REM I”
and “REM II,” respectively.

From (9), (14), and (15), the computational complexity
of REM I lies approximately between O(MN + MN2) and
O(MN + N3). The dominant term MN2 (or N3) is associ-
ated with st+1 given by (15) which is a solution to a least
square (LS) problem. Different LS algorithms yield differ-
ent computational loads [19]. Due to the increased num-
ber of unknowns, REM II requires twice as many compu-
tations as REM I in computing the gradient vector and aug-
mented information matrix. Clearly, REM II is computation-
ally more efficient than the local-polynomial-approximation
(LPA) based beamforming technique [12] whose computa- 13
tional complexity is given by O(NTLP) where T represents
the number of snapshots, L denotes the number of points in
the angular search domain, and P denotes the number of an-
gular velocity search domain.

It was pointed out in [13] that REM for constant DOA es-
timation is indeed a recursive procedure for finding the max-
imum of the expected concentrated likelihood function

L(θ) = −tr log
[
P(θ)Cx(t)

]
, (19)

where Cx(t) = E x(t)x(t)H . The constant step size consid-
ered in REM I captures the time-varying character of the
likelihood function. Similarly, REM II is aimed at finding the
maximum of L(θ). Using a different parameterization, such
as a linear polynomial model implies increasing the dimen-
sion of the parameter space. With the additional degree of
freedom, REM II is expected to have a better tracking abil-
ity. Later in Section 5 we will show that in critical situations
where two source directions cross with each other, REM II
provides more accurate estimates than REM I.

Choosing a proper step size plays an important role in the
algorithms’ tracking ability. The optimal step size depends
on the dynamics of the true parameters, for instance, rate of
change. Interested readers can find general guidelines in [11]
and an adaptive procedure designed for REM with a decreas-
ing step size in [20].

4.3. Extension to broadband signals

The algorithms presented previously are derived under the
narrowband signal assumption. Extension to the broad-
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Figure 1: True trajectory and estimated trajectory by REM I for the
narrowband case. θ0 = [10◦, 60◦, 66◦], θ1 = [0.6◦,−1.0◦, 0.4◦]. SNR
= 20 dB.

band case is straightforward. From the asymptotic theory of
Fourier transform [21], we know that each frequency bin is
asymptotically independent of the other [22]. The log likeli-
hood function associated with the broadband signal is a sum
of the log likelihoods of individual frequency bins. Corre-
spondingly, the gradient vector and augmented information
matrix can be easily obtained by adding up the gradient vec-
tors and augmented data information matrices of relevant
frequency bins. Similarly to the narrowband case, the signal
and noise parameters at each frequency are updated by calcu-
lating their MLEs once the current DOA estimate is available.

5. SIMULATION

The proposed algorithms are tested by numerical experi-
ments. In the first part, we consider REM algorithms’ appli-
cation in narrowband and broadband cases. In the second
part, we compare REM II with the LPA-based beamforming
technique [12].

5.1. Recursive EM algorithms I and II

The narrowband signals generated by three sources of equal
power are received by a uniformly linear array of 15 sen-
sors with interelement spacings of half a wavelength. The
signal-to-noise ratio (SNR), defined as 10 log(sm(t)2/ν), m =
1, 2, 3, is kept at 10, 20 dB. The motion of the moving14
sources is described by the linear polynomial model (16).

15
Three-different-parameter sets {θ0, θ1} are assumed in the

16 experiments. Each experiment performs 200 trials.

17 In the first experiment, we consider relatively fast mov-
ing sources. The true parameters are given by θ0 =
[10◦, 60◦, 66◦], θ1 = [0.6◦,−1.0◦, 0.4◦] where θ1 is measured
by degrees per time unit. In order to get a good insight into
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Figure 2: True trajectory and estimated trajectory by REM II for
the narrowband case. SNR = 20 dB.

the tracking behavior, the same initial values are used in
all trials. We applied LPA-based beamforming to 20 snap-
shots to obtain the initial estimates θ0

0 = [10.5◦, 59.5◦, 68.5◦],
θ0

1 = [0.58◦,−0.99◦, 0.38◦]. The initial estimate for REM I is
given by θ0

0. Both algorithms use a constant step size ε = 0.6.
Figures 1 and 2 present the true values of θ and an example of
estimated trajectories. As shown in both figures, two source
directions cross with each other at t = 32. Obviously, the re-
cursive procedure designed for the most general case cannot
follow fast moving sources at all. In contrast, the estimated
trajectory obtained by REM II is very close to the true one.
Figures 3 and 4 show the root mean square errors (RMSEs) of

the DOA estimates, defined as
√
‖θt − θ‖2 , averaged over 200

trials. Since REM I fails to track the moving sources, the cor-
responding RMSE grows with increasing time. On the other
hand, the RMSE associated with REM II decreases slightly
at the beginning of the recursion and then remains almost
constant. Comparing Figures 3 and 4, one can observe that
SNR = 20 dB has a slightly lower RMSE than SNR = 10 dB.

The second experiment involves three slowly moving
sources. The true parameter values are given by θ0 =
[30◦, 50◦, 62◦], θ1 = [0.06◦,−0.1◦, 0.05◦]. Note that the an-
gular velocity θ1 is approximately 1/10 of that considered in
the previous experiment. We applied the ML method to ob-
tain the initial estimates θ0

0 = [30.1◦, 50.8◦, 60.9◦]. Because
the angular velocity is very small compared to that in the
previous experiment, we take θ0

1 = [0◦, 0◦, 0◦] as the initial
value for θ1. The initial estimate for REM I is given by θ0

0.
Both algorithms use a constant step size ε = 0.6. Figures 5
and 6 present the true and estimated trajectories obtained
by REM I and REM II. Similarly to the first experiment, two
source directions cross with each other at t = 126. The esti-
mated trajectory by REM I is close to the true one when no
crossing happens. Between t = 100 and t = 230, where two
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Figure 3: RMSE of θ versus time for the narrowband case. SNR
= 20 dB.
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Figure 4: RMSE of θ versus time for the narrowband case. SNR
= 10 dB.

source directions cross with each other, the estimated trajec-
tories associated with the first two sources do not get close to
each other. Instead, they just depart in the vicinity of t = 126.
For the same scenario, REM II provides a more accurate es-
timate. Figure 6 shows that the crossing point causes a larger
deviation from the true trajectory. Due to a higher sensitivity
to the variation of angular velocity at the crossing point, the
estimated trajectory in Figure 6 is slightly worse than that in
Figure 2. Comparison of Figures 7 and 8 with Figures 3 and
4 shows an overall lower RMSE in this scenario. Although
REM I provides more reliable estimates than in the first ex-
periment, REM II still outperforms REM I.
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Figure 5: True trajectory and estimated trajectory by REM I for the
narrowband case. θ0 = [30◦, 50◦, 62◦], θ1 = [0.06◦,−0.1◦, 0.05◦].
SNR = 20 dB.
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Figure 6: True trajectory and estimated trajectory by REM II for
the narrowband case. SNR = 20 dB.

In the third experiment, three sources move slowly
with different speeds but do not cross with each other.
The true parameters are given by θ0 = [10◦, 30◦, 62◦],
θ1 = [0.08◦, 0.1◦, 0.06◦]. The initial estimates are θ0

0 =
[10.04◦, 30.04◦, 62.05◦], θ0

1 = [0◦, 0◦, 0◦]. We use a constant
step size ε = 0.6. Both algorithms have good tracking abil-
ity. Figures 9 and 10 show that RMSE is the lowest among
all three scenarios. REM II has a better performance than
REM I. While REM II has a better performance at higher
SNR, REM I seems to be less sensitive to SNRs in all three
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Figure 7: RMSE of θ versus time for the narrowband case. SNR
= 20 dB.
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Figure 8: RMSE of θ versus time for the narrowband case. SNR
= 10 dB.

scenarios.
In addition to the narrowband signals, we also applied

REM I and REM II to broadband signals with 3 frequency
bins. The scenario similar to the second experiment leads to
the results presented in Figures 11 and 12. The estimates be-
have similarly to the narrowband case. Comparison of RM-
SEs shows that more frequency bins leads to higher accuracy.

5.2. Comparison with LPA beamforming

We compare REM II with the LPA-based beamforming ap-
proach suggested by Katkovnik and Gershman [12]. Both
algorithms assume the motion model (16). In the first ex-
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Figure 9: RMSE of θ versus time for the narrowband case. SNR
= 20 dB. θ0 = [10◦, 30◦, 62◦], θ1 = [0.08◦, 0.1◦, 0.06◦].
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Figure 10: RMSE of θ versus time for the narrowband case. SNR
= 10 dB.

periment, the narrowband signals are generated by the fol-
lowing parameter set θ0 = [10◦, 60◦], θ1 = [0.6◦,−1.0◦],
SNR= 0, 10 dB. In the second experiment, we consider mov-
ing sources with lower angular velocities θ0 = [30◦, 50◦],
θ1 = [0.06◦,−0.1◦]. A sliding window of 25 snapshots is used
in the LPA beamforming. The REM II is initialized by the
LPA beamforming in the first scenario and ML method in
the second one. To ensure the same data length in each time
interval, we use additional (W−1) samples in the LPA beam-
forming processing.

The estimated trajectories presented in Figures 13 and 14
are very close to the true ones. The RMSEs of θ0 and θ1 corre-
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Figure 11: RMSE of θ versus time for the broadband case. SNR
= 20 dB. θ0 = [30◦, 50◦, 62◦], θ1 = [0.06◦,−0.1◦, 0.05◦]. Number of
frequency bins = 3.
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Figure 12: RMSE of θ versus time for the broadband case. SNR
= 10 dB.

sponding to the first source are plotted in Figures 15 and 16.
Using the initial value provided by LPA beamforming, RMSE
associated with REM II changes slowly over time. While es-
timates of θ0 remain constant, the estimates of θ1 become
more accurate with increasing recursions. Also, we can ob-
serve that while LPA beamforming provides an overall better
θ0 estimates and better angular velocity estimates at begin-
ning of the recursion, REM II improves θ1 estimates with in-
creasing time and has less fluctuations.

Compared with the Cramér-Rao bounds (CRBs) [23],
one realizes that an REM II is certainly not an efficient es-
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Figure 13: True trajectory and estimated trajectory by LPA beam-
forming. SNR = 10 dB. θ0 = [10◦, 60◦], θ1 = [0.6◦,−1.0◦].
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Figure 14: True trajectory and estimated trajectory by REM II. SNR
= 10 dB.

timator. However, the ML approach suggested in [23], whose
estimation accuracy is close to CRB, is a batch processing and
requires a complicated multidimensional search procedure.

In the second experiment, REM II provides much more
accurate estimates than LPA beamforming. Figure 17 shows
that LPA beamforming even fails to follow the moving
sources. We can observe in Figure 19 that REM II has lower
RMSE in both θ0 and θ1 estimation. Consequently, as shown
in Figure 20 the resulting DOA estimates are much better
than LPA beamforming. In both experiments, the compu-
tational time needed for LPA beamforming is about 800
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Figure 15: (a) RMSE of θ0 corresponding to the first source versus
time. (b) RMSE of θ1 versus time. SNR = 10 dB.

times as high as that required by REM II due to the two-
dimensional search procedure.

We conclude that REM I is suitable for tracking slowly
time-varying DOA parameters, REM II performs well for
both slowly and fast moving sources. Both procedures gener-
ate accurate estimates when there is no crossing point. When
two source directions coincide with each other, the steering
matrix H(θ) becomes rank deficient. The signal waveform
s(t) cannot be determined properly. Consequently the DOA
parameter cannot be estimated accurately. In this case, regu-
larization is needed [23]. Since REM II incorporates a linear
polynomial model, it has a better tracking ability than REM I
when this critical situation occurs. Compared to LPA beam-
forming, our method has a clear computational advantage.
It provides comparable results with LPA beamforming in the
fast moving sources case and outperforms LPA beamforming
in the slow moving source case. In addition, REM is applica-
ble to both narrowband and broadband signals.

6. CONCLUSION

We addressed the problem of tracking multiple moving
sources. Two recursive procedures are proposed to estimate
the time-varying DOA parameter. We applied the recursive
EM algorithm to a general case in which the motion of the
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Figure 16: (a) RMSE of θ0 corresponding to the first source versus
time. (b) RMSE of θ1 versus time. SNR = 0 dB.
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Figure 17: True trajectory and estimated trajectory by LPA beam-
forming. θ0 = [30◦, 50◦], θ1 = [0.06◦,−0.1◦]. SNR = 10 dB.

sources is arbitrary and a specific case in which the motion
of sources is described by a linear polynomial model. Because
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Figure 18: True trajectory and estimated trajectory by REM II. SNR
= 10 dB.
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Figure 19: (a) RMSE of θ0 corresponding to the first source versus
time. (b) RMSE of θ1 versus time. SNR = 10 dB.

of the simple structure of the gain matrix, the suggested pro-
cedures are easy to implement. Furthermore, extension of
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Figure 20: RMSE of θ versus time. SNR = 10 dB.

our approaches to broadband signals is straightforward. Nu-
merical experiments showed that our approaches provide ex-
cellent results in a slowly changing environment. When the
DOA parameter changes fast or two source directions cross
with each other, the procedure derived for a linear polyno-
mial model has a better performance than the general pro- 18
cedure. Important issues such as step size design and conver-
gence analysis are still under investigation.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their
constructive comments that significantly improved the
manuscript and also thank Associate Editor J. C. Chen for
coordinating a speedy review.

REFERENCES
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