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Comparison of GLR and Invariant Detectors
Under Structured Clutter Covariance
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Abstract—This paper addresses a target detection problem
in radar imaging for which the covariance matrix of unknown
Gaussian clutter has block diagonal structure. This block diagonal
structure is the consequence of a target lying along a boundary
between two statistically independent clutter regions. Here, we
design adaptive detection algorithms using both the generalized
likelihood ratio (GLR) and the invariance principles. There has
been considerable recent interest in applying invariant hypothesis
testing as an alternative to the GLR test. This interest has been
motivated by several attractive properties of invariant tests
including: exact robustness to variation of nuisance parameters
and possible finite-sample min-max optimality. However, in our
deep-hide target detection problem, there are regimes for which
neither the GLR nor the invariant tests uniformly outperforms
the other. We will discuss the relative advantages of GLR and
invariance procedures in the context of this radar imaging and
target detection application.

Index Terms—ATR, hypothesis testing, invariant detection,
radar imaging, target detection.

I. INTRODUCTION

I N this paper, adaptive detection algorithms are developed
for imaging radar targets instructuredclutter by exploiting

both the generalized likelihood ratio (GLR) principle and the in-
variance principle. In automatic target recognition, it is impor-
tant to be able to reliably detect or classify a target in a manner
which is robust to target and clutter variability yet maintains the
highest possible discrimination capability. The GLR and invari-
ance principles are worthwhile approaches since they often yield
good constant false alarm rate (CFAR) tests. The GLR principle
implements the intuitive estimate-and-plug principle: replacing
all unknowns in the likelihood ratio (LR) test by their maximum
likelihood estimates (MLEs). In contrast, application of the in-
variance principle seeks to project away the clutter parameters
by compressing the observations down to a lower-dimensional
statistic while retaining the maximal amount of information for
discrimination of the target [1]–[4]. This statistic is called the
maximal invariant and, if one is lucky, the form of the most pow-
erful LR test based on the maximal invariant does not depend on
the nuisance parameters, resulting in a uniformly most powerful
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(UMP) invariant test [5], [6]. Despite the difficulty in finding
maximal invariants and their statistical distributions, the payoff
for the extra effort in signal processing applications can be high
[5]–[7]. We will demonstrate such a payoff for a radar detection
problem.

A common assumption in homogeneous but uncertain clutter
scenarios is that the target is of known form but unknown am-
plitude in Gaussian noise whose covariance matrix is totally un-
known orunstructured. This assumption induces parameter un-
certainty for which the general multivariate analysis of variance
(GMANOVA) model applies and optimal and suboptimal detec-
tion algorithms can be easily derived using the GLR principle
[8]–[11]. Different adaptive detectors were derived in [12] and
[13] for the case of optical images. However, when some struc-
ture on the covariance matrix is knowna priori, improvements
over this GLR test are possible, e.g., [14]. Bose and Steinhardt
[7] proposed an invariant detector which outperforms the GLR
[9] for unstructured covariance when the noise covariance ma-
trix is assumed to havea priori known block diagonal struc-
ture. In [15], the difficult deep-hide scenario was considered
where the target parks along a known boundary separating two
adjacent clutter regions, e.g., an agricultural field and a forest
canopy. It was shown there that under the reasonable assumption
that the two clutter types are statistically independent, the in-
duced block diagonal covariance structure can be used to derive
an invariant test with performance advantage similar to Bose
and Steinhardt’s test.

In this paper, we derive the form of the GLR for block struc-
tured covariance. Then, the invariant approach considered in
[7] and [15] is developed in the context of imaging radar for
deep-hide targets and compared to the GLR. In this context the
spatial component has clutter covariance matrixwhich de-
composes into a block diagonal matrix under an independence
assumption between the two clutter regions. Several cases, de-
noted in decreasing order of uncertainty as Cases 1–3, of block
diagonal covariance matrices are examined

(1)

• Case 1: ;
• Case 2: where ;
• Case 3: ;

where the subscripts denote the two different regions A and
B. Case 1 corresponds to two completely unknown clutter co-
variance matrices and , and Case 2 corresponds to one
clutter covariance completely unknown and the other
known up to a scale parameter. As shown in [7] the known
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clutter covariance matrix in , represented by the matrix,
can be taken as the identity matrix without loss of generality.
Case 3 corresponds to known exactly. Cases 2 and 3 arise,
for example, in application where one of the clutter regions is
well characterized. The maximal invariant statistics for Cases
1 and 2 were previously derived by Bose and Steinhardt in [7]
and invariant tests were also proposed based on these statistics.
We treat Cases 1–3 in a unified framework and propose alterna-
tive maximal invariant (MI) tests which are better adapted to the
deep-hide target application. We show via simulation that there
are regimes of operation which separate the performance of the
GLR and MI tests. When there are a large number of indepen-
dent snapshots of the clutter, the MLEs of the target amplitude
and the block diagonal clutter covariance are reliable and accu-
rate, and the GLR test performs better than the MI test. Con-
versely, when a limited number of snapshots are available and
SNR is low, the MLEs are unreliable and the MI test outper-
forms the GLR test. This property is also confirmed by the real
data example, i.e., the MI test can detect weaker targets than the
other tests when the number of snapshots is few.

In Section II, the image model for the detection problem is in-
troduced and a canonical form is obtained by coordinate trans-
formation. We then review the principles of GLR and invariance
in Section III. Kelly’s GLR test [9] for an unstructured covari-
ance matrix is derived as an illustration of these two principles.
Section IV then reviews the application of these principles to
detect a target across a clutter boundary. We also extend the de-
tection problem from a single target to one of multiple targets
in Section V. Finally, the relational performances between the
GLR and MI tests are explored by analysis and by simulation.
Due to space limitations most of the mathematical derivations
have been omitted from this paper. These can be found in [16].

II. I MAGE MODEL

Let be statistically independent complex
Gaussian vectors constructed by raster scanning a set oftwo-
dimensional (2-D) images (snapshots). We call each of these
vectors subimages or chips and assume that they each have iden-
tical covariance matrices but with possibly different
mean vectors (targets). Then the measurement image matrix

can be modeled as follows:

(2)

where is an matrix consisting of sig-
nature vectors of possible targets, is a

unknown target amplitude vector fortargets, and
is a target location vector which accounts for

the presence of targets in each subimage. While this model al-
lows multiple target signatures to exist simultaneously in a chip,
we concentrate here on the case thathas only one nonzero ele-
ment, i.e., at most one of a possiblesignatures can be present.
This model (2) implies that the target components in different
subimages differ only by a scale factor. Also is a complex
multivariate Gaussian matrix with i.i.d. columns:

where is an zero vector, is an
identity matrix, and is the Kronecker product. It is common
to model a complex valued radar image as linear in the target

with additive Gaussian distributed clutter. Examples where a
Gaussian model is justified for terrain clutter can be found in
[17]. Even in cases when such a model is not applicable to the
raw data, a whitening and local averaging technique can be im-
plemented to obtain a Gaussian approximation [13].

The detection problem is to seek the presence of target(s) for
and known, unknown, and the independent columns of

having the unknown covariance matrix. By applying coordi-
nate rotations to both of the column space and the row space of

we can put the image model into a convenient canonical form
as in [18]. Let and have the QR decompositions

where are unitary matrices; is a
upper-triangular matrix; and is a scalar. Multiplying

on the left and right by and , respectively, we have the
canonical representation

where is still -variate normal with zero mean and
, and the target detection

problem is not altered since is unknown. Now the trans-
formed data has the partition

(3)

where is a vector; is a vector;
is ; and is . Note that
and have put all the target energy into the firstpixels of
the first subimage, . In the sequel, unless stated otherwise,
we will assume that the model has been put into this canonical
form.

For the special case of (single target), this model re-
duces to the one studied by Kelly [9]

(4)

where is an unknown complex amplitude,
is the unit vector, and the known target signature is trans-
formed into an unit vector . In this case, the first column
of will be called primary data while the rest will be called sec-
ondary data. With the model (4), we can denote the unknowns by
the unknown parameter vector where is the
prior parameter range of uncertainty. Let and partition
the parameter space into target absent and target present

scenarios: Hermitian
Hermitian . Then the general

form for the detection problem is expressed via the two mutu-
ally exclusive hypotheses

Now, following [7], we extend (4) to the structured covariance
case. Consider Case 1 in Section I. Then the target signature
is partitioned as where and are
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and column vectors, respectively, .
The unitary matrices and can be obtained from the
QR decompositions of and , respectively. Then, using

in the canonical transformation, the model is composed of two
parts from regions A and B

(5)

where and .
and are independent Gaussian

matrices with unknown covariance matrices
and , respectively. The target detection problem
is now simply stated as testing versus in (5).

III. D ETECTION THEORY

The aforementioned target detection problem is an example
of testing composite hypotheses, i.e., there exist unknown
“nuisance parameters” (clutter covariance and target am-
plitude) under both the null (target-absent) and alternative
(target-present) hypotheses. This implies that the false alarm
(FA) and detection probabilities of any detector will generally
vary as a function of these unknowns. More importantly,
only rarely is there a detector that is most powerful (MP)
irrespective of these parameters, i.e., there exists no uniformly
most powerful (UMP) test of any FA level.

Finite sample UMP tests do not exist for the detection
problem treated here. A popular alternative, but sub-optimal,
strategy is to use the generalized likelihood ratio (GLR) prin-
ciple. The GLR test is asymptotically UMP since, under broad
conditions [19], MLEs are consistent estimators as the number
of observations goes to infinity. Furthermore in many physical
problems of interest, a GLR test will give satisfactory results
[20]. In some instances, however, the optimization or maxi-
mization involved in deriving a GLR test may be intractable
to obtain in closed form. Moreover, similarly to small sample
MLEs, the performance of a GLR test can be poor (not even
unbiased) in the finite sample regime [21]. In this section, we
review the principle of invariance as an alternative strategy and
apply to the case of unstructured clutter as an illustration. For a
more detailed discussion with examples, refer to [22].

A. Invariance Principle

The main idea behind the invariance principle is to find a
statistic called the maximal invariant, which maximally con-
denses the data while retaining the model discrimination capa-
bility of the original data set. As contrasted with the maximal
sufficient statistic [21], which maximally condenses the data
while retaining the full parametric estimation capability of the
original data, the maximal invariant preserves only the informa-
tion necessary to detect the target as opposed to estimating its
amplitude. More details on the relationship between sufficiency
and maximal invariance are provided in [22]. Maximal invari-
ants can be found when the probability model has functional
invariance which can be characterized by group actions on the

measurement spaceand induced group actions on the param-
eter space . Let be a group of transformations
acting on . Assume that for each there exists a unique

such that . is called the
induced group action on . The above relation implies that the
natural invariance which exists in the parameter space ofim-
plies a natural invariance in the space of measurement. If we
further assume that , then the model
and the decision problem are said to be invariant to the group.
The orbits of under actions of are defined by

if such that

The orbits of under actions of are similarly defined. Note
that to capture natural invariance of the model, the groups
and must have group actions with the largest possible degrees
of freedom among all groups leaving the decision problem in-
variant.

The principle of invariance stipulates that any optimal deci-
sion rule should only depend on through the maximal in-
variant which indexes the invariance orbits in the
sense that 1) (invariant property)
and 2) (maximal property)

. Clearly, the maximal invariant is not unique. Any other func-
tions of related to in a one-to-one manner can be max-
imal invariant. It can also be shown that the probability density

of only depends on through a reduced set of param-
eters , which is the induced maximal invariant under

. Thus use of the reduced datagives us better chances of
finding a CFAR test whose false alarm rate is independent of.
In particular, when is constant over , the distri-
bution of under is fixed and therefore any test based on
will automatically be CFAR.

B. Example: Unstructured Clutter Covariance

We will first consider the case where the clutter is totally un-
known. We use the image model in (4) and its partitioned form

(6)

where is the first subimage which may contain the target and
all the target energy has been put into the first pixel of this
subimage. This is the case studied by Kelly [9], and the results
are briefly reviewed here to help illustrate the application of the
GLR and invariance principles discussed previously. This will
help the reader understand more complicated structured models
of interest, covered later in this paper.

1) GLR Approach:The problem is to decide whetheris 0
or not when is unknown, and the pdf of is

(7)

where . We derive
the GLR by maximizing the likelihood ratio overand , i.e.,
by replacing them with their MLEs
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where and are the sample covariance matrices under
and , respectively. To ensure these matrices be nonsingular
with probability one, we must impose the condition that .
After some algebra, we obtain the following simple form of the
GLR for this example by taking theth root of

(8)

It remains to maximize this ratio over the unknown complex
amplitude . This can be done by completing the square in the
denominator of (8) and the GLR test is equivalent to ,
denoted

(9)

This test was obtained by Kelly [9] and will be called the un-
structured Kelly’s test.

2) Invariance Approach:We define the following group of
transformations acting on as:

(10)

where and are
arbitrary, and is a unitary matrix. Then
with the model in (4), we have where

and is still zero-mean Gaussian with
. Thus, the problem remains unchanged under this

group since only the unknown and are replaced by
and , respectively. This group is also the group whose
actions have the largest possible number of free parameters yet
still ensuring that the decision problem and the model remain
unchanged. Indeed, if the full linear group of row actions were
used, i.e., the first column of in (10) were to be arbitrary, the
signal spatial structure would not be preserved. Likewise, if a
larger group of right-multiplying matrices than in (10) were
applied to the columns of , the independence of the columns
of or the temporal (chip) structure of the signal would not
be preserved.

Once the invariant group of transformations is obtained, we
can define a set of statistics, i.e., maximal invariants, which in-
dexes the orbits of under this group. With the model (6) and
the group of transformations (10), it was shown in [7] that the
maximal invariant is 2-D

(11)

It is easily shown that that is equivalent to
where

since ([16], Proposition 1). The representation of
gives it an interpretation as the estimated-prediction SNR,

i.e., the ratio of the magnitude squared of the least-squares target
estimation error to that of the least-squares clutter prediction
error, where is the least-squares esti-
mate of given and . will be large when the clutter
component can be accurately predicted and subtracted from the
target cell, thereby enhancing the presence of the target.is the
normalized sample correlation between primary and secondary
data whose distribution is the same underand . Thus, it
is an ancillary statistic [23].

Any invariant test will be functions of and , and it is
shown in [9] that the Kelly’s test (9) is one of them

(12)

is monotone increasing in and thus plays the
role of a data-dependent normalization of the estimated-pre-
diction SNR, . This normalization has a distribution which is
independent of the parameters and converges in distribution to
a Chi-square random variable with degrees of freedom.

IV. A PPLICATION TO A TARGET STRADDLING

CLUTTER BOUNDARY

Now we consider the problem of detecting a known target
straddling the boundary of two independent clutter regions.
From the model (5), the measurement matrixcan be parti-
tioned as

(13)

where and are the primary vectors which may con-
tain the separated canonical parts of a known target,and ,
respectively, with the unknown common amplitude. Here we
remove the tildes from and for notational convenience.
Under , any of the i.i.d. columns of will be multivariate
Gaussian with zero mean and a covariance matrixhaving a
block diagonal structure as defined in (1).

A. GLR Tests

Let and represent the i.i.d. columns of
the two uncorrelated matrices and , respectively, then
the pdf of factors as where
and are defined similarly as (7) for each region. As in
the unstructured case, the GLR maximization can be performed
for the unknown covariance matrices and by replacing
them with their MLEs

Here, the required condition for nonsingularity of the estimated
covariance matrices is relaxed since we need only
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. GLR test statistics are listed in Table I for
three structured cases where

and complete derivations can be found in [16]. Note that those
GLRs still involve a maximization over the unknown ampli-
tude in a complex quartic equation and cannot be represented
in closed form. However, for real-valued data the roots of the
quartic equation are explicit. For complex data we implement
the GLR tests, derived under the structured cases, using numer-
ical root finding and compare their performance in Section VI.

GLR 2 can be reduced to either ofin (8) for alone or
the GLR for alone which can be simplified to

We named it after the previous unstructured GLR test statistic
in (8). As in , the maximization in unstructured can be

completed and we have the equivalent form of this GLR

(14)

Similarly, we can also show that GLR 3 can be reduced to either
of in (8) for alone or the GLR for alone which is
equivalent to

(15)

B. MI Tests

In this section, we apply the invariance principle to the struc-
tured covariance cases studied above. For each case, MI test is
proposed based on the maximal invariants and compared to the
previous results of Kelly [9] and Bose and Steinhardt [7].

1) Case 1: : In this case, we can construct
a structured group of transformations onwhich is extended
from (10)

(16)

where
and

are arbitrary, and and are unitary
matrices. Showing the invariant property of this group is
analogous to the unstructured example. With the model in (5)
and the partition in (13), it was shown in [7] that the maximal
invariant under (16) is five-dimensional (5-D)

(17)

where the subscripts denote whether the quantities are computed
over the region A, B, or both A and B, and

and can be defined similarly over . It can be shown
that can be replaced by

or

(18)

where and [16, Prop.
2]. and correspond to the estimated-prediction SNRs
in region A and B, respectively. and are the normalized
sample correlation between primary and secondary data pixels
in regions A and B, respectively. We can see that and
correspond to and in the unstructured case (11) applied
to region A, and and correspond to those applied to
region B. The coupling term, , or , not present
in the unstructured test, captures the common amplitudefor
both regions.

A natural modification of Kelly’s test (9) which reflects the
block covariance structure was proposed by Kelly in [24] and
later by Bose and Steinhardt [7]

(19)

where

and

The structured Kelly’s test (19) can be equivalently expressed
[16] in terms of the maximal invariants (17) as

(20)

Note that the denominator of essentially modulates the sum
of -prediction SNRs by the sum of the associated an-

cillary statistics . This has the effect of attenuating the
individual -prediction SNRs in each region when both SNRs
are strong.

Alternatively, by the maximal invariant representation of
, we can obtain another invariant test

(21)
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Note that and are placed in the estimated covariance ma-
trix to separate the A and B coupled denominator in (20). This
is equivalent to

(22)

where a different coupling term given in (18) is used in-
stead of [16]. Unlike (20) the -prediction SNRs are nor-
malized in an independent uncoupled manner. The MI test (22)
will be shown to outperform (20) for some important situations.

2) Case 2: : Now, suppose
with unknown , then the appropriate invariant group of

transformations in this case is

(23)

since still remains Gaussian under this group except that
and are replaced by and [7]. Similarly to
(16), the same scaling factorcaptures the common amplitude
in both regions. With the partition in (13), the maximal invariant
[7] under the group of transformations in (23) is composed of

and in (17), and

(24)

We have equivalent forms ([16], Proposition 3) for and
can be replaced by

(25)

and can be replaced by either of

(26)

where

(27)

or

(28)

where

(29)

In (24) and (25), and are the maximal invariants for the
case that only region B is considered, and the coupling terms

are present due to the common scaling factorin
regions A and B which preserves overall target amplitude.

Bose and Steinhardt derived similar maximal invariants in the
context of array detection problems in [7]. Based on these sta-

tistics they proposed an invariant test which was shown to be
approximately CFAR and took the form

(30)

where and are as in (27). An equivalent form [16] for (30)
is

(31)

By considering the structures of both the GLR 2 and the MI
test 1 (21), we can construct another invariant test statistic
which is same as (30) except that, as in (21),and in (30)
are replaced by and defined in (29). The resultant test
takes the form [16]

(32)

Thus, the weighting between the terms from regions A and B
is maintained as in GLR 2, and this test reduces exactly to the
unstructured tests: (12) for alone or (14) for alone. This
reduction does not hold for Bose and Steinhardt’s test (31).

3) Case 3: : For this case, the invariant
group of transformations is defined as

where, unlike the previous two cases, there is no scaling term
on the left of since the variance is exactly known in
and must not be altered by the group actions. Thus, the set of
maximal invariants will not include any coupling term from
regions A and B.

An MI test can be constructed in much the same way as
was constructed

(33)

This test is equivalent to when is replaced by . Note
that can be interpreted as the maximal invariant when
only region B is considered. This test also reduces to either of
the unstructured cases: (12) for alone or (15) for alone.

In Table II, MI tests are reproduced as functions of the max-
imal invariants under each case.

V. EXTENSION TOONE OF KNOWN TARGETS

Previously, the target signature in the primary vector was
assumed to be exactly known and the problem was to decide
whether the one and only signal vectoris present or not. In
real radar applications, however, a more realistic model must be
considered. Suppose that we know the form of the target of in-
terest, but do not know its position or orientation in the subimage
chip. We assume that the target is totally contained in a chip, i.e.,
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“coarse detection” has somehow been performed. An extension
to the case where a target overlaps more than one chip can be
handled in a similar manner to the within-chip positional un-
certainty considered here, but is beyond the scope of this paper.
Then different target signature vectors can be constructed ac-
cordingly. To accommodate this scenario, let the image model
have an matrix for target signatures

(34)

where is a unit vector and “1”
is in position . Here for unstructured clutter or

for structured clutter. The model (34) implies
that only one of the signatures, , may be present at a time
in the primary vector, and in the structured case this signature
vector is written as .

For the GLR tests in Table I, it is easy to extend the results of
the single target case to this multiple target case. We only need
to replace and in the GLR tests with and , and
maximize over , i.e.,

Similarly, for the MI tests we also propose to maximize the test
statistic over the target signatures. In the following, the invari-
ance procedure is applied to (34) for both cases of unstructured
and structured clutter. Due to length constraints, only the struc-
tured case of (Case 1) is treated in this paper.

A. Unstructured Case

Since the set of possible signaturesis known, we can define
the canonical model by left-multiplying (34) with the
matrix

where the matrix is an orthogonal matrix to
. Then, we have the equivalent model

(35)

with also zero-mean Gaussian with i.i.d. columns. This model
(35) can be partitioned as in (3) where the vector
may contain any one of the target signatures which have been
transformed to unit vectors . With this model, a group of
transformations which preserves the decision problem is defined
as

(36)

where is a diagonal matrix; and
are arbitrary; and is an unitary

matrix. Note that by putting the model (34) into the canonical
form (35), we must restrict to a diagonal matrix in (36) instead
of an arbitrary matrix in order to preserve the model (35). This
group of transformations with larger degrees of freedom will
thus lead to a larger set of maximal invariants. The maximal

invariant of the model (35) under the group of transformations
in (36) is derived in ([16], Proposition 4) and consists of
functions of the measurement

where and

(37)

The unstructured Kelly’s test (9) can be modified by maxi-
mizing the likelihood ratio over which reduces it to

B. Structured Clutter Covariance

Next consider Case 1 for the structured
clutter covariance model. Then, similarly to the above unstruc-
tured model (35), the canonical image model can be defined as

(38)

where and are and zero vectors,
respectively. Thus, this canonical form can be partitioned as (3)
for each of and , and the appropriate invariant group of
transformations on is

(39)

where we have the same diagonal matrix for and
to preserve the signal vector and the same amplitude in both
regions. With the model (38) and the group of transformations
in (39), the maximal invariant is obtained in [16, Prop. 5] as

(40)

where , and and can be defined
as and in (37) over alone or alone. And can
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Fig. 1. ROC curves for Case 1 with different ratios ofm =m (SNR = 19 dB; n = 61).

be replaced by

(41)

or which is equivalent to except that and
are substituted for and , respectively, where again

and . Note that
and are again equivalent to those in (17) ex-

cept for the increased dimension (versus 1) of these matrices.
We now generalize the structured Kelly’s test, (19), and

the MI test, (21), to . First, consider modified to fit
the multiple signature model as a function of maximal invariants
(40) and (41)

The MI test can also be modified similarly

VI. NUMERICAL RESULTS

To analyze the performance of the GLR and MI tests derived
under the three structured clutter covariance assumptions (Case
1: , Case 2: , and
Case 3: ), receiver operating characteristic
(ROC) curves are generated and compared in this section. More
examples are presented in [22]. In each simulation, we gener-
ated 10 10 subimages containing two independent clutter
regions of area and pixels, respectively, and a 55
synthetic canonical target is inserted into the first subimage in
such a manner to straddle the boundary of the two different re-
gions. Each of the subimages is then concatenated into a column
vector of size 100 to obtain a measurement matrix. Each
of the ROC curves [probability of detection versus proba-
bility of false alarm ] shown in the following was obtained

TABLE I
GLR TESTS FORCASES 1, 2, AND 3 DERIVED IN THIS PAPER. (THE

NOTATION “?” DENOTESTHAT THE MATRIX R ORR IS COMPLETELY

UNKNOWN BUT POSITIVE DEFINITE SYMMETRIC)

after 500 simulations. We show results of experiments on a real
synthetic-aperture radar (SAR) image where both of our GLR
and MI tests were applied to a SAR clutter image with an in-
serted real target at various pose angles.

A. Comparison of ROC Curves

First, in Figs. 1 and 2, Cases 1 and 2 are considered separately
under different assumptions on clutter covariance. The results
for Case 3 are omitted since a large number of pixels
are available to generate a good MLE of the unknown variance
in region B and we were able to observe that the ROC curve
for GLR 2 approaches that of the matched GLR 3. In each case,
the three GLR tests in Table I and the three MI tests in Table II
matched to one of the three cases are compared. Also shown
are ROC curves for the following tests proposed by other au-
thors: Kelly’s structured test (20) matched to Case 1, and Bose
and Steinhardt’s invariant test (31) matched to Case 2. Those
ROC curves are compared for different ratios of by
up and down shifting the 10 10 windows used to collect the
subimages along the boundary. In Fig. 1 for Case 1, the struc-
tured Kelly’s test is as accurate as or better than the GLR and
MI tests only for the smaller size covariance of (a). Also Bose
and Steinhardt’s test is more sensitive to and than MI
test 2 and GLR 2, and its ROC falls below even those of the mis-
matched tests shown in Fig. 2(b). This confirms the results from
Section IV. For Case 1, we were able to achieve performance
improvement by separating the same coupled denominator for
both regions found in the matched Kelly’s test (20). For Case 2,
the ROC improvement over the matched Bose and Steinhardt’s
test is explained by the weighting between two different regions

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 6, 2009 at 14:26 from IEEE Xplore.  Restrictions apply.



KIM AND HERO, III: COMPARISON OF GLR AND INVARIANT DETECTORS 1517

Fig. 2. ROC curves for Case 2 with different ratios ofm =m (SNR = 10 dB; n = 61).

TABLE II
MAXIMAL INVARIANT TESTS. (THE NOTATION “?” DENOTES THAT THE MATRIX R OR R

IS COMPLETELY UNKNOWN BUT POSITIVE DEFINITE SYMMETRIC)

which is carefully managed in GLR 2 and MI test 2. Note that,
however, neither the GLR nor the MI test uniformly outperforms
the other. Of particular interest are the curve crossings in the low

regions between the GLR and the MI tests as in Fig. 1(b).
The relative advantages of MI versus GLR tests are more

closely investigated in the next two figures. In Figs. 3 and 4,
we consider Cases 1 and 2, respectively. In (a) of both figures,
we increased the number of chipswhile fixing SNR. Note that
the GLR and MI tests have ROCs which are virtually indistin-
guishable for large . In (b), however, we fixed and increased
SNR. The positions of the crossings of the ROCs for the
GLR and MI tests decreased with increasing SNR. In partic-
ular, if one fixes a level of false alarm, say , then
note from Fig. 3(b) that the GLR test dominates the MI test for

dB while the reverse is true for dB. This
behavior is best explained by the fact that at high SNR, the MLE
is an accurate estimate of target amplitude, while at low SNR the
MLE degrades significantly. Therefore, the GLR which depends
on the accuracy of the MLE for accurate detection breaks down
for low SNR.

Since both the structured GLR and MI tests can only be im-
plemented with the known boundary separating two different
regions, sensitivity of the tests to boundary estimation errors is
illustrated in Fig. 5. In both cases, ROC curves obtained with
the biased boundary are compared with those using the true
boundary. As can be seen, the overall performance of each test
is degraded with false information, but the relative advantages
of the GLR and MI tests still can be observed.

B. Application to a Real Image

Next, we consider an application to actual acquired com-
plex-valued SAR imagery. In Fig. 6 the magnitude-only SAR
image is shown. This corresponds to a rural scene near Redstone
Arsenal, Huntsville, AL, reproduced from the data collected
using the Sandia National Laboratories Twin Otter SAR sensor
payload operating at X band (center frequency GHz,
band width MHz). This clutter image consists of a forest
canopy on top and a field on bottom, separated by a coarse
boundary. The boundary was hand-extracted, and a sequence of
9 7 SLICY targets at different poses were also hand-extracted
from the image data in Fig. 7. The images in Fig. 7 correspond to
the same target but viewed at different pose angles of azimuth.
The elevation of 39was fixed for all poses. These images dis-
play the magnitudes of complex-valued SAR data which have
been converted into decibels. The data from which these images
are reproduced was downloaded from the MSTAR SAR data-
base at the Center for Imaging Science (http://www.cis.jhu.edu).

In a first experiment, the target signature at pose of azimuth
163 from Fig. 7(e) was tested at different positions along the
boundary. In Fig. 6, the target is inserted additively with the
center at column 305 so that it straddles the boundary. From
the realigned image in Fig. 8, we took subimages (chips) along
the boundary by centering a 2020 window at the boundary
and sliding it over the image from left to right. Each of these
subimages is then concatenated into a column vector of size

where and . Since we need
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Fig. 3. Comparison of GLR and MI tests for Case 1 by (a) increasingn with fixed SNR and (b) increasing SNR with fixedn (m = 60;m = 40).

Fig. 4. Comparison of GLR and MI tests for Case 2 by (a) increasingn with fixed SNR and (b) increasing SNR with fixedn (m = 50;m = 50).

Fig. 5. Comparison of ROC curves using true boundaries and false boundaries (a) moved downward by one pixel and (b) moved upward by one pixel in each
snapshot. (True values: (a)m = 60;m = 40; n = 61 and (b)m = 50;m = 50; n = 51).

at least 200 secondary chips to implement the structured detec-
tors, clutter-alone pixels above and below those 2020 subim-
ages taken along the boundary were used to generate enough
secondary data for region A and B, respectively. Each of the
subimages along the boundary was tested as a primary chip,
and the test statistics derived under Case 1 were calculated and
maximized over each possible location in the subimage. After
normalizing the known target signature, we obtained the min-
imum magnitude of target amplitude required for each test to

detect the target at the correct location. The resulting amplitude
is the minimum detectable threshold for each of the detectors
and these thresholds are shown in Table III for different number
of secondary chips . As can be seen, with a large number
of chips , both the GLR and MI tests perform
as well as the structured Kelly’s test. On the other hand, with a
limited number of chips , MI test 1 successfully
detects the target down to a significantly lower threshold than
for GLR 1 and structured Kelly detectors.
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Fig. 6. Magnitude-only image of SAR clutter with target in Fig. 7(e) straddling
the boundary at column 305. Complex image was used in all simulations.

Fig. 7. Magnitude images of SLICY canonical targets at elevation 39and
different azimuth angles. Image in (e) is inserted in Fig. 6.

Next, we maximized the test statistics over the different target
poses in Fig. 7 as well as over all possible locations along the
boundary. Again the normalized signature from Fig. 7(e) was in-
serted with , and secondary chips were obtained
from the surrounding clutter. Test values for the three detectors
under Case 1 are obtained using nine different target signatures.
For each test the peak values for 9 target signatures are plotted
in Fig. 9. Note that all the tests successfully picked the signature
at the true pose and location for this target amplitude.

As a final experiment minimum detectable amplitudes for the
GLR and MI tests are obtained with a boundary extraction pro-
cedure utilizing Sobel’s edge detection method [25]. Note that
we only applied the estimation algorithm to the clutter-alone
chips so as to evaluate the effect of boundary estimates on clutter
covariance estimates. Table IV shows the results for 200 sec-
ondary chips using two different boundary extractions. As in the

Fig. 8. Magnitude-only SAR image (Fig. 6) realigned along the extracted
boundary. SLICY target is located at column 305 withjaj = 0:015. This target
is just above the minimal detectable threshold for the three tests investigated
in Fig. 9.

TABLE III
MINIMUM DETECTABLE AMPLITUDES FOR DETECTION OF THE

TARGET AT THE CORRECTLOCATION

Fig. 9. Peak values obtained for nine different target images in Fig. 7(jaj =
0:015; n � 1 = 250).

TABLE IV
MINIMUM DETECTABLE AMPLITUDES WITH (1) THE HAND-EXTRACTED

BOUNDARY AND (2) THE ESTIMATED BOUNDARY

ROC simulation (Fig. 5), both detectors require larger target am-
plitudes for correct detection, but we conclude that the MI test
remains more robust than the GLR test even in the presence of
segmentation errors. In this experiment, the boundary between
two regions was extracted using the simple Sobel operator. More
sophisticated model-based methods of an automatic image seg-
mentation, e.g., methods such as proposed in [26]–[28], would
potentially perform better than the Sobel operator.
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VII. CONCLUSION

The deep-hide scenario considered in this paper complicates
the design of optimal target detectors. Both GLR and MI tests
can be derived under block diagonal constraints imposed by the
clutter covariance structure. Numerical results indicate that nei-
ther GLR nor MI tests dominate the other in terms of ROC per-
formance. Both detectors have comparable performance when
high estimator accuracy is attainable, e.g., for a large number of
independent clutter samples, but otherwise the MI test is better
especially in low . This property is also shown to be robust
to segmentation errors. The results in this paper are generaliz-
able to other applications where structured covariance informa-
tion is available.
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