IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 10, OCTOBER 2001 1509

Comparison of GLR and Invariant Detectors
Under Structured Clutter Covariance

Hyung Soo Kim and Alfred O. Hero, llIFellow, IEEE

~ Abstract—This paper addresses a target detection problem (UMP) invariant test [5], [6]. Despite the difficulty in finding
in radar imaging for which the covariance matrix of unknown  maximal invariants and their statistical distributions, the payoff
Gaussian clutter has block diagonal structure. This block diagonal for the extra effort in signal processing applications can be high

structure is the consequence of a target lying along a boundary . .
between two statistically independent clutter regions. Here, we [51-{7]. We will demonstrate such a payoff for a radar detection

design adaptive detection algorithms using both the generalized Problem.
likelihood ratio (GLR) and the invariance principles. There has A common assumption in homogeneous but uncertain clutter

Ee?_n consideralkt)le refemtimt‘fqresé Ii_nRa{)plilir}gh_inv_a:iant ?);]pOthbeSiS scenarios is that the target is of known form but unknown am-
rﬁf)tli\r;gtgg a;)r;/ as:\r/re]?e:lveattc;act?ve prossriies Isofmiﬁ\rlgfian?ste;(;n plitude in Gaussian noise whose covarlance matrix is totally un-
including: exact robustness to variation of nuisance parameters know.n orunstru.cturedTh|s assumpjuon.mduces p;-aramete.r un-
and possib|e ﬁnite-samp|e min-max 0pt|ma||ty However’ in our Certa|nty fOI‘ Wh|Ch the general mu|t|Var|ate analySIS Of variance
deep-hide target detection problem, there are regimes for which (GMANOVA) model applies and optimal and suboptimal detec-
neither the GLR nor the invariant tests uniformly outperforms  tion algorithms can be easily derived using the GLR principle
the other. We will discuss the relative advantages of GLR and g} 111, Dpifferent adaptive detectors were derived in [12] and
invariance procedures in the context of this radar imaging and .
target detection application. [13] for the case (_)f optical images. Howe_ve_r, yvhen some struc-
ture on the covariance matrix is knowrpriori, improvements
over this GLR test are possible, e.g., [14]. Bose and Steinhardt
[7] proposed an invariant detector which outperforms the GLR
[9] for unstructured covariance when the noise covariance ma-
I. INTRODUCTION trix is assumed to hava priori known block diagonal struc-
uyge. In [15], the difficult deep-hide scenario was considered
for imaging radar targets istructuredclutter by exploiting Where the target parks along a known boundary separating two
rgdjacent clutter regions, e.g., an agricultural field and a forest

both the generalized likelihood ratio (GLR) principle and the i X
variance principle. In automatic target recognition, it is impoG2nOPY. Itwas shown there that under the reasonable assumption

tant to be able to reliably detect or classify a target in a manrigft the two clutter types are statistically independent, the in-
which is robust to target and clutter variability yet maintains tHa-/ced block diagonal covariance structure can be used to derive
highest possible discrimination capability. The GLR and invarf" 'nvariant test with performance advantage similar to Bose
ance principles are worthwhile approaches since they often yi@i'ad Stglnhardt S test. )

good constant false alarm rate (CFAR) tests. The GLR principle!n this paper, we derive the form of the GLR for block struc-
implements the intuitive estimate-and-plug principle: replacifgéd covariance. Then, the invariant approach considered in

all unknowns in the likelihood ratio (LR) test by their maximund/] @nd [15] is developed in the context of imaging radar for
likelihood estimates (MLES). In contrast, application of the ifd€€P-hide targets and compared to the GLR. In this context the
variance principle seeks to project away the clutter paramet§R&tial component has clutter covariance maltiwhich de-

by compressing the observations down to a lower-dimensioffMPOSes into a block diagonal matrix under an independence
statistic while retaining the maximal amount of information foSSUMPtion between the two clutter regions. Several cases, de-
discrimination of the target [1][4]. This statistic is called th&©t€d in decreasing order of uncertainty as Cases 1-3, of block
maximal invariant and, if one is lucky, the form of the most powdiagonal covariance matrices are examined

erful LR test based on the maximal invariant does not depend on

the nuisance parameters, resulting in a uniformly most powerful R= [

Index Terms—ATR, hypothesis testing, invariant detection,
radar imaging, target detection.

N this paper, adaptive detection algorithms are develop
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clutter covariance matrix iRz, represented by the matrIx with additive Gaussian distributed clutter. Examples where a
can be taken as the identity matrix without loss of generalitgaussian model is justified for terrain clutter can be found in
Case 3 corresponds B known exactly. Cases 2 and 3 arise[17]. Even in cases when such a model is not applicable to the
for example, in application where one of the clutter regions iaw data, a whitening and local averaging technique can be im-
well characterized. The maximal invariant statistics for Casptemented to obtain a Gaussian approximation [13].

1 and 2 were previously derived by Bose and Steinhardt in [7] The detection problem is to seek the presence of target(s) for
and invariant tests were also proposed based on these statisBandb known,a unknown, and the independent column$Nof

We treat Cases 1-3 in a unified framework and propose alterhaving the unknown covariance mati By applying coordi-

tive maximal invariant (MI) tests which are better adapted to thete rotations to both of the column space and the row space of
deep-hide target application. We show via simulation that thekewe can put the image model into a convenient canonical form
are regimes of operation which separate the performance of #wein [18]. LetS andj have the QR decompositions

GLR and Ml tests. When there are a large number of indepen-

dent snapshots of the clutter, the MLEs of the target amplitude S=Qs {TS} , b=Q, [tb}
and the block diagonal clutter covariance are reliable and accu- O 0

rate, and the GLR test performs better than the Ml test. CafjnereQg (m x m), Qs (n x n) are unitary matricesT's is a
versely, when a limited number of snapshots are available and ,, ypper-triangular matrix; ant is a scalar. Multiplyingk

SNR is low, the MLEs are unreliable and the MI test outpegy the left and right byR andQ,, respectively, we have the
forms the GLR test. This property is also confirmed by the reghonical representation

data example, i.e., the Ml test can detect weaker targets than the
other tests when the number of snapshots is few. X = {Ts} H nH N

) : . - = altyy 0"]+N

In Section Il, the image model for the detection problem is in- o
troduced and a canonical form is obtained by coordinate trans- - _ ) )
formation. We then review the principles of GLR and invariancéheré IN_is still n-variate normal with zero mean and
in Section Ill. Kelly's GLR test [9] for an unstructured covari-coV[vec(N)] - = gRQS @ I,, and the target detection
ance matrix is derived as an illustration of these two principlggroblem is not altered sincR is unknown. Now the trans-
Section IV then reviews the application of these principles {§rmed data has the partition
detect a target across a clutter boundary. We also extend the de- N = X1,
tection problem from a single target to one of multiple targets X = [;11 X } 3)
in Section V. Finally, the relational performances between the =2 2
GLR and Ml tests are explored by analysis and by simulatiowherez,, is ap x 1 vector;z,, is a(m — p) x 1 vector; Xy
Due to space limitations most of the mathematical derivatioisp x (n — 1); andXas is (m — p) x (n — 1). Note thatQZ
have been omitted from this paper. These can be found in [18hd Q, have put all the target energy into the figspixels of
the first subimagez,;. In the sequel, unless stated otherwise,
II. IMAGE MODEL we will assume that the model has been put into this canonical

" - . form.
Let {z;}_, ben statistically independent, x 1 complex "c oo special case gf = 1 (single target), this model re-
Gaussian vectors constructed by raster scanning a setd- .
duces to the one studied by Kelly [9]

dimensional (2-D) images (shapshots). We call each of these
vectors subimages or chips and assume that they each have iden- X =ag,el + N (4)
tical m x m covariance matriceB but with possibly different
mean vectors (targets). Then the measurement image matvherea is an unknown complex amplitude, = [1,0, ..., 0]
(m xn)X = [z,...,2,] can be modeled as follows: is then x 1 unit vector, and the known target signature is trans-
formed into arnm x 1 unit vectorg; . In this case, the first column
X =Sab” + N (2)  of X will be called primary data while the rest will be called sec-

, . . _ondary data. With the model (4), we can denote the unknowns by
whereS = [s;,...,s,] is anm x p matrix consisting of sig- e ynknown parameter vectér= {a, R} € © where® is the
nature vectors of possible targetsg = [ay, ..., ap]" IS @ prior parameter range of uncertainty. L®4 and© partition
p x 1 unknown target amplitude vector fprtargets, and™ =  the parameter space into target ab<diit) and target present
[b1,...,b,]isal xn target location vector wh|ch accounts for(Hl) scenarios®y = {a, R:a = 0, R € Hermitiar(m x m)},
the presence of targets in each subimage. While this model gl- — {a.R:a # 0, R € Hermitian(m xm)}. Then the general

lows multiple target signatures to exist simultaneously in a chigym for the detection problem is expressed via the two mutu-
we concentrate here on the case thiahs only one nonzero ele-a"y exclusive hypotheses

ment, i.e., at most one of a possiblsignatures can be present.

This model (2) implies that the target components in different Hy: X~ f(X;6p), 6o={0,R} €O

subimages differ only by a scale factor. AlBdis a complex Hy:X ~ f(X;6)), 6,={a,R}e0O,.

multivariate Gaussian matrix with i.i.d. columnsec(IN) ~

CN(0,R®L,) where0 is anmn x 1 zero vectorL,, isann x n Now, following [7], we extend (4) to the structured covariance

identity matrix, and® is the Kronecker product. It is commoncase. Consider Case 1 in Section I. Then the target signature
to model a complex valued radar image as linear in the targefpartitioned ag = [gf{ g,’;’ H wheres, andsy arem 4 x 1
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andmp x 1 column vectors, respectivelfim 4 + mp = m). measurement spadéand induced group actions on the param-
The unitary matricef)s, andQgs, can be obtained from the eter spac®. Let G be a group of transformations: x — x
QR decompositions of , ands 5, respectively. Then, using  acting onX. Assume that for eachh € © there exists a unique
6 = g(#) such thatfs(g(X)) = f3(X). g € G is called the
Qs = {QSA O } induced group action 0. The above relation implies that the
Qs natural invariance which exists in the parameter spaceiof

in the canonical transformation, the model is composed of ti@§es a natural invariance in the space of measureXetitwe

and the decision problem are said to be invariant to the gfoup
X — |:XA:| . [%A} Fan |:NA:| (5) The orbits ofX under actions of are defined by
XB 5B Np

X =Y ifdgegsuchthaly = ¢(X).
where3, = [s4,0,...,0]" and3z = [s5,0,...,0]%. B
N4 (ma x n) andNpg (mp x n) are independent GaussianThe orbits of¢ under actions of; are similarly defined. Note
matrices with unknown covariance matricBs; (m4 x m4) that to capture natural invariance of the model, the gratips
andR g (mp x mp), respectively. The target detection problerandG must have group actions with the largest possible degrees

is now simply stated as testing= 0 versusz # 0 in (5). of freedom among all groups leaving the decision problem in-
variant.
[ll. DETECTION THEORY The principle of invariance stipulates that any optimal deci-
fon rule should only depend aX through the maximal in-

The aforementioned target detection problem is an examse
9 P Vsriantz = Z(X) which indexes the invariance orbits in the

o eong composte hpabeses ic, et it WKIOHe e ) (marant proversatX)) - 2004 9
b 9 and 2) (maximal property?(X) = Z(Y) = Y = ¢g(X),g €

plitude) under both the null (target-absent) and alternati : : S i i
(target-present) hypotheses. This implies that the false alat?.nCIearly, the maximal invariant is not unique. Any other func

(FA) and detection probabilities of any detector will generally°"> ofX related toZ(X) in a one-to-one manner can be max-

vary as a function of these unknowns. More importantlillmal invariant. It can also be shown that the probability density

. : (Z; 6) of Z only depends ofl through a reduced set of param-
only rarely is there a detector that is most powerful (MPé ersé = 6(6), which is the induced maximal invariant under

irrespective of these parameters, i.e., there exists no unifor YThus use of the reduced dafagives us better chances of
most powerful (UMP) test of any FA level. . o
o . . finding a CFAR test whose false alarm rate is independeét of
Finite sample UMP tests do not exist for the detectio . ; L
. . _In particular, wherb(6,) is constant oveé, € ©g, the distri-
problem treated here. A popular alternative, but sub—opum%l, X Sl
: . - . . bution of Z underHj is fixed and therefore any test based&n
strategy is to use the generalized likelihood ratio (GLR) PN\ automatically be CEAR
ciple. The GLR test is asymptotically UMP since, under broad y '
conditions [_19], MLEs are <_:o_nsistent estimat(_)rs as the nun_1t§_r Example: Unstructured Clutter Covariance
of observations goes to infinity. Furthermore in many physical o ) )
problems of interest, a GLR test will give satisfactory results W& Will first consider the case where the clutter is totally un-
[20]. In some instances, however, the optimization or maxnown. We use the image model in (4) and its partitioned form
mization involved in deriving a GLR test may be intractable 1z
to obtain in closed form. Moreover, similarly to small sample X=[z; Xof= [w )_(1222} (6)
MLEs, the performance of a GLR test can be poor (hot even =2
unbiased) in the finite sample regime [21]. In this section, weherez, is the first subimage which may contain the target and
review the principle of invariance as an alternative strategy aatl the target energy has been put into the first pixgl of this

apply to the case of unstructured clutter as an illustration. Fosabimage. This is the case studied by Kelly [9], and the results

more detailed discussion with examples, refer to [22]. are briefly reviewed here to help illustrate the application of the
_ o GLR and invariance principles discussed previously. This will
A. Invariance Principle help the reader understand more complicated structured models

The main idea behind the invariance principle is to find @&f interest, covered later in this paper.
statistic called the maximal invariant, which maximally con- 1) GLR Approach:The problem is to decide whetheiis 0
denses the data while retaining the model discrimination cag¥-not whenR is unknown, and the pdf aX is
bility of the original data set. As contrasted with the maximal
sufficient statistic [21], which maximally condenses the data f(X) =
while retaining the full parametric estimation capability of the
original data, the maximal invariant preserves only the informghereLs = (z;, — ag,)(z; — ag;)) + 3.1, ;1. We derive
tion necessary to detect the target as opposed to estimatingHts GLR by maximizing the likelihood ratio overandR, i.e.,
amplitude. More details on the relationship between sufficiengy replacing them with their MLEs
and maximal invariance are provided in [22]. Maximal invari- R
ants can be found when the probability model has functional _ maxeco, f(X;0) _ max, f(X;a,Ry)

invariance which can be characterized by group actions on the L maxgco, f(X;6) f(X;o0, f{o)

exp[—tr{RflL}] @)

mn | R|n
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whereR, andR; are the sample covariance matrices uridgr sincez;; = z; + 22 ([16], Proposition 1). The representation of
and H1, respectively. To ensure these matrices be nonsingulargives it an interpretation as the estimateprediction SNR,

with probability one, we must impose the condition that m. i.e., the ratio of the magnitude squared of the least-squares target
After some algebra, we obtain the following simple form of thestimation error to that of the least-squares clutter prediction

GLR for this example by taking theth root of/; error, wherer , X4, (X2, X4) "1z, is the least-squares esti-
. mate ofzq, givenz,; andX,. z; will be large when the clutter
i T+ zf (XoXE) g component can be accurately predicted and subtracted from the
1 = max — . . .
pe 1+ (z, — agl)H (X2X§) L (£, — ag,) target cell, thereby enhancing the presence of the targistthe

normalized sample correlation between primary and secondary
data whose distribution is the same undkrand H;. Thus, it

(8)
It remains to maximize this ratio over the unknown comple')% an aﬂc'”a_fy statistic _[23]' . -
Any invariant test will be functions of; andz., and it is

amplitudea. This can be done by completing the square in th% _ s .
denominator of (8) and the GLR test is equivalent to1/ /7y, shown in [9] that the Kelly's test (9) is one of them
denotedlk,,

21 . Zl/(l + 22)
1421420 14+2/(1+2)

Tru = (12)

ef (X2X§{)_1£1‘2
. 9
el (X2X§)71 e - {1 + 2t (X2X§)71 £1} ©) T, iIs Monotone increasing in/(}Jrz.g) and thusz, plays the
role of a data-dependent normalization of the estimatpde-

This test was obtained by Kelly [9] and will be called the undiction SNR,z;. This normalization has a distribution which is
structured Kelly’s test. independent of the parameters and converges in distribution to

2) Invariance Approach:We define the following group of @ Chi-square random variable with. — 1) degrees of freedom.
transformations acting oK as:

Try =

IV. APPLICATION TO A TARGET STRADDLING

g(X) =FXH = A ﬁf X 10" (10) CLUTTER BOUNDARY
0 M 0 U i .
Now we consider the problem of detecting a known target

wheres; # 0, 3,(1 x (m—1)) andM((m —1) x (m—1)) are straddling the boundary of two independent clutter regions.
arbitrary, andU((n — 1) x (n — 1)) is a unitary matrix. Then From the model (5), the measurement maXixcan be parti-
with the modelX in (4), we havey(X) = de, ¢ + N where tioned as

& = fra andN is still zero-mean Gaussian withv[vec(N)] =

FRFY ©I,. Thus, the problem remains unchanged under this TAall ZLaio
group since only the unknowa and R are replaced by a X — [&u XA2:| _ | Zan Xax (13)
andFRF#, respectively. This group is also the group whose Zp1 Xnp2 TB11  Zpi2

actions have the largest possible number of free parameters yet Zpoy Xp22
still ensuring that the decision problem and the model remain

unchanged. Indeed, if the full linear group of row actions wetdneré ,; andz, are the primary vectors which may con-
used, i.e., the first column d in (10) were to be arbitrary, the (&N the separated canonical parts of a known takgeands g,
signal spatial structurg would not be preserved. Likewise, if a'espectively, _W'th the ‘ﬂ“k”OW[‘ common qmplltuﬂéﬂerg we
larger group of right-multiplying matrices tha in (10) were remove the tildes frorglA andsy for notau_onal convenience.
applied to the columns &K, the independence of the columng’nder Ho, any of the i.i.d. columns oK will be multivariate
of X or the temporal (chip) structurg of the signal would not Gaussian with zero mean and a covariance matrikaving a
be preserved. block diagonal structure as defined in (1).

Once the invariant group of transformations is obtained, we
can define a set of statistics, i.e., maximal invariants, which ifv GLR Tests
dexes the orbits aX under this group. With the model (6) and et {z4; )", and{zp;}7"_, represent the i.i.d. columns of
the group of transformations (10), it was shown in [7] that thghe two uncorrelated matricé§ 4 and X 5, respectively, then

maximal invariant is 2-D the pdf of X factors asf(X) = f(X.4)f(Xp) where f(X.,4)
o -1 and f(X ) are defined similarly as (7) for each region. As in
1 =2 (X2X2 ) Ly, the unstructured case, the GLR maximization can be performed
20 =2} (X22X2F§)71 Ty (11) forthe L_Jnknoyvn covariance matricBs; andR g by replacing
them with their MLEs
It is easily shown that thafz;/, 22} is equivalent to{z;, z2 } . .
where A = max d Xa3 @ Ran) f(Xp;a, Ry )

- gl |2 @ f(X.4;0,R0)f(X5;0,Rpo)
‘3511 - £12X22 (X22X22) £21‘

7 = p g p Here, the required condition for nonsingularity of the estimated
Ty [I — X35 (X2 X5) X22} T1H covariance matrice§» > m) is relaxed since we need only
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n > max{m.,mp}. GLR test statistics are listed in Table | forwhere the subscripts denote whether the quantities are computed
three structured cases where over the region A, B, or both A and B, and

p(a,5,.4,Xa) = (249 —asy)” (Xae X)) (24, —asy)

q(a,sp, Xp) =tr { (X5 —aspel) " (Xp - aﬁBng)}

1 —1

L 4215
_ H H L H
Da =210 [I — X2 (XA22XA22) XA22} La12-

and complete derivations can be found in [16]. Note that thoa(]a3 and Dy can be defined similarly oveX 5. It can be shown
GLRs still involve a maximization over the unknown ampli-[hatZAB can be replaced by

tudea in a complex quartic equation and cannot be represented
in closed form. However, for real-valued data the roots of the

H H
Ua = Ta11 — La12X 420 (XA22XA22)

lua/sa —up/spl’

quartic equation are explicit. For complex data we implement FAB = Do /lsal + Dp/lssP
the GLR tests, derived under the structured cases, using nunosr-
ical root finding and compare their performance in Section VI. o lua/sa —up/spl|? 8)

GLR 2 can be reduced to either kfin (8) for X 4 alone or
the GLR forX g alone which can be simplified to

0 X man
lgzmax{id 5B B)} .
a Q(a7§B7XB)

qaD.4/|s4l? + q8DB/|sB|?

Wherqu =14 2za1+ 242 anqu =1421+2B2 [16, Prop.

2]. 41 andzpg; correspond to the estimateeprediction SNRs

in region A and B, respectively,s» andzg. are the normalized
sample correlation between primary and secondary data pixels

We named if; after the previous unstructured GLR test statlstlﬁz1 regions A and B, respectively. We can see that and z»

1 in (8). As inl{, the maximization in unstructurdd can be
completed and we have the equivalent form of this GLR

1 epul? (

1-— = .
VIR Z?:l |z ;|2

correspond taz; and 2z in the unstructured case (11) applied
to region A, andxzg; andzg2 correspond to those applied to
region B. The coupling termx a5, 245/, Of zap7, NOt present
in the unstructured test, captures the common amplitufibe
both regions.

Similarly, we can also show that GLR 3 can be reduced to eitherA natural modification of Kelly’s test (9) which reflects the

of I, in (8) for X 4 alone or the GLR; for X g alone which is
equivalent to

hllg = |$B11|2~ (15)

B. MI Tests

block covariance structure was proposed by Kelly in [24] and
later by Bose and Steinhardt [7]

|s"K g, |

Tis =
o™ GHK 1. {1+2{K 1z}

(19)

In this section, we apply the invariance principle to the strug\—lher
tured covariance cases studied above. For each case, Ml test is
proposed based on the maximal invariants and compared to the
previous results of Kelly [9] and Bose and Steinhardt [7].  and

1) Case1lR 4 > 0,Rp > 0: Inthis case, we can construct

zy =2l zh,]", s =[] sH]”

H
a structured group of transformations BEnwhich is extended K= XAQOXAQ X OXH .
from (10) B2 B2
g p 1 of The structured Kelly’s test (19) can be equivalently expressed
[ Vi } Xa [ [ [16] in terms of the maximal invariants (17) as
0 My 0 Uy
[/ /_B } Xp [ = } T — ZAl +ZB1 — Zap’ (20)
0 Mg 0 Up K =1+ Za1 + 242+ 2B1 + 2B2
where 3 # 0,8, (1 x (ma — 1)),8, (1 x (mp — Note that the denominator @, essentially modulates the sum

1)), M4 ((ma—1)x(ma—1))andMp ((mp—1)x(mp—1)) z4,+2zp of s-prediction SNRs by the sum of the associated an-
are arbitrary, andJ 4 andUp are((n — 1) X (n — 1)) unitary  cillary statisticsz.42 + zz2. This has the effect of attenuating the

matrices. Showing the invariant property of this group igdividual s-prediction SNRs in each region when both SNRs
analogous to the unstructured example. With the model in (e strong.

and the partition in (13), it was shown in [7] that the maximal Alternatively, by the maximal invariant representation of

invariant under (16) is five-dimensional (5-D) T -, We can obtain another invariant test

2
241 = | D, -1
Al |;| /D oot [SHSH] QAXAQXEQ O L a1
za2 = 2l (Xa2oXlp)  Zan SASE o 15X p2 X5, LB1
2 I =
ZB1 = |u D L -t
B1 |bl[3| /Ds - [s51] qaX 42X5, o 24
zB2 = Ty (XB2aXBo2)  Zpay —ATh O ¢8X g2 X, 2B

ZABIU,A/U,B (17)
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Note thaty4 andgp are placed in the estimated covariance mdistics they proposed an invariant test which was shown to be
trix to separate the A and B coupled denominator in (20). Thégoproximately CFAR and took the form

is equivalent to

ZB1
14 21+ 22

ZAL
14+ 241 +242

= —zapr (22

where a different coupling term, g- given in (18) is used in-

stead ofz 4 g [16]. Unlike (20) thes-prediction SNRs are nor-

2

-1
[SH SH] PXA2X£IQ O L a1
e o 0l Zp1

Ips = o — (30)
[ sH SH] pXa2Xy, O S4
=4 =B O v 1 sp

m_alized in an independent uncoupled manner. The MI tes_t @%erep andv, are as in (27). An equivalent form [16] for (30)
will be shown to outperform (20) for some important situationgg

2) Case 22R4 > 0,Rp = o’L: Now, supposéRp =

oI with unknowna?, then the appropriate invariant group of Tgss = (n — m4)za1(1 4+ 242) + (mpn — 1)z — 245/

transformations in this case is

R

M U

gx) = | A Lo @
¢ P

(1)

By considering the structures of both the GLR 2 and the Ml
test 1 (21), we can construct another invariant test stafistic
which is same as (30) except that, as in (2landw; in (30)
are replaced by 4 andwvs defined in (29). The resultant test

sinceX p still remains Gaussian under this group except thattakes the form [16]

ando? are replaced b§ = Ba ands? = (30)? [7]. Similarly to

(16), the same scaling fact@rcaptures the common amplitude

in both regions. With the partition in (13), the maximal invaria
[7] under the group of transformations in (23) is composed
za1 andz4s in (17), and

|3UB11|2
Soim [zl

ZAB = UA/$B11-

B =
(24)

We have equivalent forms ([16], Proposition 3) feg and
zap:zp can be replaced by

|3??Bn|2
zZpr = (25)
|Zp12]? + 221 | + |XB22|%“
andz4 g can be replaced by either of
_ 2
o = |ua/sa — xp11/5B] (26)

pDa/|sal? +v1/lspl?

where

p={(n—ma)(l+za2)} ",

v1 = {|£Bl2|2 +lzpn |” + |XB22|%“}/ (mpn —1) (27)
or
lua/sa — zp11/sB|?
4 = 28
AB" = L Daflsal + valsnl? (28)
where
ga =1+ za1 + 240
V2 = Z |z /ms. (29)
=1

ZAl

Ty=— "2
14+ 241 +2a2

+mp-2B — 2aB”. (32)

us, the weighting between the terms from regions A and B
IS maintained as in GLR 2, and this test reduces exactly to the
unstructured tests: (12) foX 4 alone or (14) foiX 5 alone. This
reduction does not hold for Bose and Steinhardt’s test (31).

3) Case 3R, > 0,Rp = I. For this case, the invariant

group of transformations is defined as

B B 1 of

[Q MA4:| Xa {Q U‘J

Q(X): 1 of
%u o v,)

where, unlike the previous two cases, there is no scaling term
on the left of X g since the variance is exactly known Xz
and must not be altered by the group actions. Thus, the set of
maximal invariants will not include any coupling teemp from
regions A and B.

An Ml test can be constructed in much the same wa¥=as
was constructed

Za1 lua/sa —zp11/s8]*
qa qaDa/lsal* +n/|sB|?

Thistestis equivalent td, whenvs is replaced bys = n. Note
that|z11|* can be interpreted as the maximal invariant when
only region B is considered. This test also reduces to either of
the unstructured cases: (12) ¥8r4 alone or (15) foiX 5 alone.

In Table II, Ml tests are reproduced as functions of the max-
imal invariants under each case.

Ty (33)

1
+ —|3U]311|2 -
n

V. EXTENSION TO ONE OF p KNOWN TARGETS
Previously, the target signature in the primary vector was

In (24) and (25)z5 andz g, are the maximal invariants for theassumed to be exactly known and the problem was to decide
case that only region B is considered, and the coupling termvbether the one and only signal vectors present or not. In

zam,zapr are present due to the common scaling fagton
regions A and B which preserves overall target amplitude

real radar applications, however, a more realistic model must be
considered. Suppose that we know the form of the target of in-

Bose and Steinhardt derived similar maximal invariants in therest, but do not know its position or orientation in the subimage
context of array detection problems in [7]. Based on these stdnp. We assume that the target is totally contained in a chip, i.e.,
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“coarse detection” has somehow been performed. An extensiovariant of the model (35) under the group of transformations
to the case where a target overlaps more than one chip carirb€6) is derived in ([16], Proposition 4) and consistgof 2
handled in a similar manner to the within-chip positional urfunctions of the measurement

certainty considered here, but is beyond the scope of this paper.

k . _ Hn—1
Then different target signature vectors can be constructed ac- 71 =u" Dy,
cordingly. To accommodate this scenario, let the image model H Hy—1
: ' . 2o = X22X
have ann x p matrix S = [s,, ..., s,] for p target signatures 22 =51 (X2 Xp)  an
Hpy—1 THy—1. Y\~ -1
za =uw D e, (6. D gy, gD u
aSeel + N (34) w=u"D7a (@D 7a) Ta b
) ) wherek = 1,...,p and
whereg,, is ap x 1 unit vector[0,...,0,1,0,...,0]* and “1”
is in positionk. Herep < m for unstructured clutter op < w=xz;, — XX (X22X512)_1£21
min{m, mp} for structured clutter. The model (34) implies =
that only one of the signatures,, may be present at a time D =Xj» [I — X% (X22X%) XQQ} XE. (37
in the primary vector, and in the structured case this signature
vector is written asg,, = [sf, sf,]%. The unstructured Kelly’s test (9) can be modified by maxi-

For the GLR tests in Table |, it is easy to extend the results Bfizing the likelihood ratio ovefe, };_, which reduces it to
the single target case to this multiple target case. We only need 23
to re'plqce§A andsy in the QLR tests withs ,,, ands g, and Tru = kil}f%?ip T+2+2
maximize overk = 1,...,p, i.e.,

max 1 0 A(S 41 S5 B. Structured Clutter Covariance
ax - Sak 3BK/)-
k=lyep T Next consider Case (R4 > 0,Rp > 0) for the structured
Similarly, for the MI tests we also propose to maximize the te§tutter covariance model. Then, similarly to the above unstruc-
statistic over the target signatures. In the following, the invaritured model (35), the canonical image model can be defined as
ance procedure is applied to (34) for both cases of unstructured

€1

and structured clutter. Due to length constraints, only the struc- 6’“ .

tured case oR 4 > 0, Rp > 0 (Case 1) is treated in this paper. X=a C‘: ¢ +N (38)
Op

A. Unstructured Case

Since the set of possible signatufis known, we can define Where0 4 and0 are(m.4—p)x1and(mp—p) x 1 zero vectors,
the canonical model by left-multiplying (34) with the x m respectively. Thus, this canonical form can be partitioned as (3)
matrix for each ofX 4 andX g, and the appropriate invariant group of

transformations oiX is
|: (SHs)—lsH :|

A B 1 0oF
P A , -
: o i) x [o o)

. . . X) =
where the{m — p) x m matrix Ps is an orthogonal matrix to 9(X) A Bpg X 1 oF
(SS)~1SH. Then, we have the equivalent model O Mjp B Ug

o

(39)

[[en)

where we have the same p diagonal matrixA for X 4 andX g

to preserve the signal vectgr and the same amplitude in both
regions. With the model (38) and the group of transformations
with N also zero-mean Gaussian with i.i.d. columns. This modiel (39), the maximal invariant is obtained in [16, Prop. 5] as
(35) can be partitioned as in (3) where the< 1 vectorz,

X:a{%}gf—i—lﬁ (35)

. . . _ Hy—1
may contain any one of the target signatures which have been zar = ug Dty
. . . —1
transformed to unit vectoig,, }; _, . With this model, a group of zaz = 2lly) (Xa22XH50)  zam
transformations which preserves the decision problem is defined 1
as zase =ui D¢ (D) D 'uy
Hmny-—1
A B 1 0oF zp1 =upDp up
=5 m|%X[s 5] (36) " iyt
= ZB2 = Xpa (XB?QXBQQ) L B21
whereAisapxp diagonal matrix.B (px(m—p))andM ((_m— zpsk = ub D3l (E;—CD—Blgk)_1 DG ug
p) x (m—p)) are arbitrary; an®J is an(n— 1) x (n— 1) unitary .
matrix. Note that by putting the model (34) into the canonical (DL ') eiDLtuy

ZABk =

form (35), we must restrich to a diagonal matrix in (36) instead (40)

of an arbitrary matrix in order to preserve the model (35). This
group of transformations with larger degrees of freedom wiltherek = 1,....p, andu 4, up, D4 andDpg can be defined
thus lead to a larger set of maximal invariants. The maximasw andD in (37) overX 4 alone orX g alone. Andz 4 g5 can

(I Dp'e) I D3 up
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Fig. 1. ROC curves for Case 1 with different ratiosof, /mp (SNR = 19 dB, n = 61).
be replaced by TABLE |

GLR TESTS FORCASES 1, 2, AND 3 DERIVED IN THIS PAPER. (THE
NOTATION “?” DENOTES THAT THE MATRIX R 4 OR R 5 IS COMPLETELY

2 i
ABk L L 5 UNKNOWN BUT POSITIVE DEFINITE SYMMETRIC)
Ty—1 - Tyl TTy—1 - Tyl
(xDi'e) eiDiwy— (Dper) & Dpug I
= Case | R4 | Rp | Log GLR : —InA = max{-}
_ —1 _
(D3'e)  +(fDplg)? & >

1+p(0,54,X4) 1+p(0,35,Xp)
1 71 7 |1 1
(41) - " 1+p(a’a §A7XA) +in 1+ (a’7§B7xB)
o . 9 7 | o21 | 1o | LEPOsa XA mp - In 900,55, X5)
or za gx» Which is equivalent ta: 4 gx» except thay 4D 4 and 1+p(g,§A,§A) q(a,sp, XB)
qeDp are substituted fdD 4 andD g, respectively, whereagain 3 7| I | % + % [4(0,35,XB) — qla, s5,XB)]
194y A

ga = 1+ za1 + zaoandgg = 1 + 21 + zp-. Note that

za1,%42,2B1 andzpgs are again equivalent to those in (17) ex-

ceptfor the increased dimensignversus 1) of these matrices. after 500 simulations. We show results of experiments on a real
We now generalize the structured Kelly’s tebk;; (19), and synthetic-aperture radar (SAR) image where both of our GLR

the Ml test,7; (21), top > 1. First, considef’x, modifiedtofit and MI tests were applied to a SAR clutter image with an in-
the mu|t|p|e Signature model as a function of maximal inVariang%rted real target at various pose ang'es_

(40) and (41)

T . ZA3k + B3k — ZABW A. Comparison of ROC Curves
Ko T AT, T za1+2a2 +2p1 +2B2 First, in Figs. 1 and 2, Cases 1 and 2 are considered separately
The MI test can also be modified similarly under different assumptions on clutter covariance. The results
for Case 3 are omitted since a large number of pigelg x n)

171 = max {72“3’“ are available to generate a good MLE of the unknown variance
=L..p |1+ 241 +242 in region B and we were able to observe that the ROC curve

ZB3k for GLR 2 approaches that of the matched GLR 3. In each case,

1425 + 250 ZAB’“”} the three GLR tests in Table | and the three M tests in Table Il

matched to one of the three cases are compared. Also shown
are ROC curves for the following tests proposed by other au-
thors: Kelly’s structured test (20) matched to Case 1, and Bose
To analyze the performance of the GLR and Ml tests deriveshd Steinhardt’s invariant test (31) matched to Case 2. Those
under the three structured clutter covariance assumptions (CRE&EC curves are compared for different ratiosnef, /m g by
1: R4 > 0,Rp > 0, Case 2R, > 0,Rp = <%I, and up and down shifting the 18 10 windows used to collect the
Case 3R,4 > 0,Rp = I), receiver operating characteristicsubimages along the boundary. In Fig. 1 for Case 1, the struc-
(ROC) curves are generated and compared in this section. Maneed Kelly’s test is as accurate as or better than the GLR and
examples are presented in [22]. In each simulation, we genbkftttests only for the smaller size covariance of (a). Also Bose
atedn 10x 10 subimages containing two independent cluttemd Steinhardt’s test is more sensitiveritg andm g than Ml
regions of arean 4 andmpg pixels, respectively, and a5 test2and GLR 2, and its ROC falls below even those of the mis-
synthetic canonical target is inserted into the first subimage rimatched tests shown in Fig. 2(b). This confirms the results from
such a manner to straddle the boundary of the two different i®ection IV. For Case 1, we were able to achieve performance
gions. Each of the subimages is then concatenated into a columprovement by separating the same coupled denominator for
vector of size 100 to obtaini®0 x n measurement matrix. Eachboth regions found in the matched Kelly’s test (20). For Case 2,
of the ROC curves [probability of detectid#’;; ) versus proba- the ROC improvement over the matched Bose and Steinhardt’s
bility of false alarm{ P4 )] shown in the following was obtained test is explained by the weighting between two different regions

VI. NUMERICAL RESULTS
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Fig. 2. ROC curves for Case 2 with different ratiosmof, /m s (SNR = 10 dB, n = 61).

TABLE I
MAXIMAL INVARIANT TESTS (THE NOTATION “?” DENOTES THAT THE MATRIX R4 OR Rp
IS COMPLETELY UNKNOWN BUT POSITIVE DEFINITE SYMMETRIC)

Case | R4 | Rp MI test
ZA1 + 2B1 — 2AB
Tgs = ————2= (20 Kelly [24
e e -
? ? Zal | ZB1 us/s4 —up/sp
T, = %Al | 2Bl MI test 1
YT tJJ|3 tllfxDAi/lSA/l2 -l-q19D19//|$BIl2 (22)
241 | |TB11 uA/s4 —TB11/5B .
Tps = —+ - 31) | Bose-Steinhardt [7
o b "o " oDyJlsal + ufisgl Y g
2 ol _za lzBnl® _ [ua/sa —2$1311/SB| _(32) | MItest 2
q4 | ) : qTDf}/ISAI +v2//|81|9)
ZA1 TBi1 UA/SA —TB11/SB
3 ? I | T5=—"+ - MI test 3
=" v ubaflsaPtuflssl O

which is carefully managed in GLR 2 and Ml test 2. Note thaB. Application to a Real Image
however, neither the GLR nor the Ml test uniformly outperforms
the other. Of particular interest are the curve crossings in the lowNext, we consider an application to actual acquired com-
Pr regions between the GLR and the M tests as in Fig. 1(bplex-valued SAR imagery. In Fig. 6 the magnitude-only SAR
The relative advantages of Ml versus GLR tests are mofgage is shown. This corresponds to a rural scene near Redstone
closely investigated in the next two figures. In Figs. 3 and 4rsenal, Huntsville, AL, reproduced from the data collected
we consider Cases 1 and 2, respectively. In (a) of both figurésing the Sandia National Laboratories Twin Otter SAR sensor
we increased the number of chipsvhile fixing SNR. Note that payload operating at X band (center frequeney 9.6 GHz,
the GLR and MI tests have ROCs which are virtually indistinPand width= 590 MHz). This clutter image consists of a forest
guishable for large. In (b), however, we fixed and increased canopy on top and a field on bottom, separated by a coarse
SNR. ThePy, positions of the crossings of the ROCs for thé&oundary. The boundary was hand-extracted, and a sequence of
GLR and MI tests decreased with increasing SNR. In parti8-< 7 SLICY targets at different poses were also hand-extracted
ular, if one fixes a level of false alarm, sd, = 0.1, then fromtheimage datain Fig. 7. The images in Fig. 7 correspond to
note from Fig. 3(b) that the GLR test dominates the M test féhe same target but viewed at different pose angles of azimuth.
SNR = 19 dB while the reverse is true f&NR = 7 dB. This The elevation of 39was fixed for all poses. These images dis-
behavior is best explained by the fact that at high SNR, the MLy the magnitudes of complex-valued SAR data which have
is an accurate estimate of target amplitude, while at low SNR thgen converted into decibels. The data from which these images
MLE degrades significantly. Therefore, the GLR which dependge reproduced was downloaded from the MSTAR SAR data-
on the accuracy of the MLE for accurate detection breaks dolase at the Center for Imaging Science (http://www.cis.jhu.edu).
for low SNR. In a first experiment, the target signature at pose of azimuth
Since both the structured GLR and Ml tests can only be im63 from Fig. 7(e) was tested at different positions along the
plemented with the known boundary separating two differebbundary. In Fig. 6, the target is inserted additively with the
regions, sensitivity of the tests to boundary estimation errorsasnter at column 305 so that it straddles the boundary. From
illustrated in Fig. 5. In both cases, ROC curves obtained withe realigned image in Fig. 8, we took subimages (chips) along
the biased boundary are compared with those using the tthe boundary by centering a 2020 window at the boundary
boundary. As can be seen, the overall performance of each &t sliding it over the image from left to right. Each of these
is degraded with false information, but the relative advantagegbimages is then concatenated into a column vector of size
of the GLR and Ml tests still can be observed. m = 400 wherem 4 = 200 andmg = 200. Since we need
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Fig. 3. Comparison of GLR and Ml tests for Case 1 by (a) increasingth fixed SNR and (b) increasing SNR with fixed(m » = 60, mp = 40).
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snapshot. (True values: (84 = 60,mp = 40,n = 61 and (b)m 4 = 50,mp = 50,n = 51).
at least 200 secondary chips to implement the structured deteetect the target at the correct location. The resulting amplitude
is the minimum detectable threshold for each of the detectors

tors, clutter-alone pixels above and below thosexZ® subim-
ages taken along the boundary were used to generate encaigththese thresholds are shown in Table Ill for different number
secondary data for region A and B, respectively. Each of tloésecondary chip& — 1). As can be seen, with a large number

subimages along the boundary was tested as a primary clipchips(n — 1 = 250), both the GLR and MI tests perform
and the test statistics derived under Case 1 were calculated asdvell as the structured Kelly’s test. On the other hand, with a

maximized over each possible location in the subimage. Aftiémited number of chipgn — 1 = 200), Ml test 1 successfully
normalizing the known target signature, we obtained the midetects the target down to a significantly lower threshold than

imum magnitude of target amplitude required for each test for GLR 1 and structured Kelly detectors.
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Fig. 8. Magnitude-only SAR image (Fig. 6) realigned along the extracted
boundary. SLICY target is located at column 305 with= 0.015. This target

is just above the minimal detectable threshold for the three tests investigated
in Fig. 9.

TABLE I
MINIMUM DETECTABLE AMPLITUDES FORDETECTION OF THE
TARGET AT THE CORRECTLOCATION

e 00 [2] 1] 1000

Fig.6. Magnitude-only image of SAR clutter with targetin Fig. 7(e) straddling

the boundary at column 305. Complex image was used in all simulations. |al
Test (n—1=250) | (n—1=200)
Structured Kelly || 1.407 x 1072 | 1.049 x 107!
MI test 1 1.454 x 1072 | 0.609 x 107!
GLR 1 1.462 x 1072 | 1.042 x 107!

{a) 142°

{b) 147 {c) 152°

{d) 157° (e) 163°

() 169"

| (c)EGLR 1

Fig. 9. Peak values obtained for nine different target images in Hifg| 7=

(g) 1757 (h) 187" (I 193° 0.015,n — 1 = 250).

Fig. 7. Magnitude images of SLICY canonical targets at elevatioh &8l

different azimuth angles. Image in (e) is inserted in Fig. 6. TABLE IV

MINIMUM DETECTABLE AMPLITUDES WITH (1) THE HAND-EXTRACTED
BOUNDARY AND (2) THE ESTIMATED BOUNDARY

Next, we maximized the test statistics over the different target

poses in Fig. 7 as well as over all possible locations along the la| (n—1=200)
boundary. Again the normalized signature from Fig. 7(e) was in- Test

serted witha| = 0.015, and250 secondary chips were obtained () @
from the surrounding clutter. Test values for the three detectors MI test 1 || 0.609 x 1071 | 2.327 x 10!
under Case 1 are obtained using nine dlffert_ant target signatures. GLR1 || 1.042 x 10-1 | 8.655 x 10-1
For each test the peak values for 9 target signatures are plotted

in Fig. 9. Note that all the tests successfully picked the signature
at the true pose and location for this target amplitude. ROC simulation (Fig. 5), both detectors require larger target am-
As afinal experiment minimum detectable amplitudes for th@itudes for correct detection, but we conclude that the Ml test
GLR and Ml tests are obtained with a boundary extraction priemains more robust than the GLR test even in the presence of
cedure utilizing Sobel's edge detection method [25]. Note tha¢égmentation errors. In this experiment, the boundary between
we only applied the estimation algorithm to the clutter-alonvo regions was extracted using the simple Sobel operator. More
chips so as to evaluate the effect of boundary estimates on clugephisticated model-based methods of an automatic image seg-
covariance estimates. Table IV shows the results for 200 seeentation, e.g., methods such as proposed in [26]-[28], would
ondary chips using two different boundary extractions. As in tfpotentially perform better than the Sobel operator.
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