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ABSTRACT

Identifying differentially expressed genes over different phys-

iological/genetic conditions is fundamental to microarray

data analysis. Most of the traditional approaches do not con-

sider the inherent correlation structure of the repeated mea-

surements, and hence tend to give rise to inflated statistical

significance of estimated treatment effects. We propose in-

cluding dependency between time points and probes into a

mixed linear model for gene microarray data. The approach

can be viewed as an extension to existing linear model based

approaches such as ANOVA, Li-Wong’s Model and the lin-

ear mixed effect model proposed by Chu et al. Model fitting

diagnostics demonstrate significant performance improve-

ment for longitudinal probe level data. We illustrate our ap-

proach for an aging experiment in a mouse model for quan-

tifying retinal gene expression.

1. INTRODUCTION

Affymetrix GeneChip is a type of high-density oligonucleo-

tide expression array that is widely used to measure tens of

thousands gene expression levels simultaneously in vitro.

Each gene, or more generally a DNA sequence of interest,

is represented by a probe set that typically consists of 10 to

25 probe pairs. Each probe pair contains a perfect match

(PM) probe and a mismatch (MM) probe. The former was

designed to measure the true gene expression signal inten-

sity, and the later was designed to measure the background

noise [1]. The Affymetrix GeneChip design has been very

successful in reliably extracting the inherently noisy gene

expression signal from the gene microarray.

Gene expression signal intensities are represented in the

GeneChip as numerical values that have to be pre-processed

to be amenable to higher level statistical analysis. The typ-

ical pre-processing recipe consists of three steps [2]: back-

ground correction, normalization, and summarization of ex-

pression scores. There are a number of competing methods

for each step, e.g. Robust Multi-Array Average (RMA) [2],

This work was supported by grants from the National Institute of

Health (EY01115), The Foundation Fighting Blindness, Sramek Founda-

tion and Research to Prevent Blindness.

Li-Wong Model [3]. Each method has advantages and dis-

advantages, see [2] and [4]. The first two steps are to reduce

the unwanted system variation generated during the exper-

imental process, and the third step is to extract an estimate

of true signal intensities.

Detecting differentially expressed genes is a well-developed

subfield in microarray data analysis. The common practice

is to treat the summarized probe set expression scores as

observational data to which to apply modeling and analysis

[2], [3]. A more compelling integrated framework would be

to estimate differential expression levels directly from the

background corrected and normalized probe level intensi-

ties. Such approaches have recently been proposed [5], [6],

[7]. Barrera et al. [5] blocked out probe effect and presented

a simple parametric two-way ANOVA and nonparametric

Mack-Skillings test in the framework of Randomized Com-

plete Block Design (RCBD). Chu et al. [6] employed Lin-

ear Mixed Effect (LME) model to estimate the treatment ef-

fect(differential expression) and ranked genes based on the

estimated effects. These studies can be viewed as extensions

of the linear regression models employed in pre-processing

(e.g. [3]) to estimate the treatment effect. Integrated analy-

ses based on probe level intensities are substantially more

powerful than those based on summarized probe set expres-

sion scores [5], [6], [7].

However, to the best of our knowledge, no previous ap-

proach has tried to model the hidden correlation structure of

the probe level longitudinal and other effects, which may

lead to bias and inflated levels of statistical significance.

This kind of longitudinal microarray data is abundant, and

screening differentially expressed genes over time is often

of practical interest to biologists. Applying the existing lin-

ear model approaches with independence assumptions over

time is not always justified. In addition, background correc-

tion is needed due to factors such as non-specific hybridiza-

tion and instrument noise [2].

Here we propose an approach to estimate the longitudi-

nal and other treatment effects from background corrected

and normalized probe level intensities. Our algorithm falls

into the theoretical framework of Linear Mixed Models that

can be implemented using methods of Linear Mixed Effect
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(LME) modeling and Generalized Estimation Equations (GEE)[8].

The LME framework has been shown to have advantages.

Our method can be viewed as an extension of [9] which in-

cluded only random array effects, to probe level intensity

data collected over longitudinal conditions that introduce

additional dependency .

We illustrate and compare our method to other approaches

using retinal gene expression data obtained from our biol-

ogy collaborators in the Kellogg Eye Center, University of

Michigan, Ann Arbor. This data represents approximately

45101 probe set expressions on the Affymetrix mouse geno-

me 430 2.0 array over five time points (E16, P2, P6, P10,

Adult) with 4 replicates in each. The goal of this exper-

iment is to identify genes that are differentially expressed

over time. Since multiple comparisons can be reduced to a

sequence of pairwise comparisons, we focus on identifying

differentially expressed genes over only two postnatal time

points (P2 and P10). These two time points are of significant

interest to our collaborators as the developmental genes in

the retina are differentially expressed during early postnatal

stages of development.

2. PROPOSED APPROACH

2.1. Background correction and normalization

When analyzing raw probe level intensity data from image

processing software, the total squared variation can be de-

composed into biological variation and technical variation.

While biological variations leading to differential expres-

sion are of interest, technical variations, such as array ef-

fects and background noise, are not of interest to the exper-

imenter. Background correction and normalization are both

necessary to reduce the technical variation without signifi-

cantly affecting measured biological variation. We follow

the algorithm described in Irizarry et al. 2003 [2]: the PM

probe intensities are corrected by using a global model for

the distribution of probe intensities, and then followed by

quantile normalization. As in [2], the MM probes are not

used in this analysis.

2.2. Experimental design and models

For each gene, there are two potential experimental effects,

time (τ ) at 2 levels and probe (φ) at 11 levels or 10 levels

with 4 replicates at each level. One affymetrix probe set

consists of 10-11 probe pairs for each gene in the mouse

genome 430 2.0 array. Therefore, the total number of probe

level intensities for each gene is 2*4*11 = 88 or 2*4*10 =

80. The experimental design is a balanced two-factor design

(Table 1). In this design, two effects (time and probe) are

blocked out, i.e. modeled and fitted as fixed effects, and

the array effect is modeled as random effect to account for

variation among replicates.

We first present a general mathematical model for probe

level intensity data, which connects previous approaches to

our approach. In a general model, both random and fixed

effects can be estimated. In our case, microarray (α) vari-

ation is a random effect and includes the accumulation of

small experimental sources of noise. Time (τ ), on the other

hand, is a fixed effect since it is due to a biological varia-

tion between the two time points in this study. The probe

effect is also a fixed effect but it is not of direct interest to

the experimenter.

Define the Affymetrix probe intensity yijk for a specific

probe at time i = 1, 2, treatment j = 1, . . . , J, J = 10 or

11, and replicate k = 1, . . . ,K. The general model for the

probe set response at a particular oligonucleotide location

on the GeneChip array is given by the Linear Mixed Effect

(LME) model:

yijk = µ + τi + φj + (τφ)ij + Zijαijk + ǫijk, (1)

i = 1, 2, j = 1, . . . , 11, k = 1, . . . , 4,

where µ is a global offset affecting all replicates, probes,

and time points for this oligonucleotide. The quantities τi,

φj , (τφ)ij , are fixed (non-random) effects modeling tem-

poral effect, probe effect, and mixed temporal-probe effect.

The quantities αijk and ǫijk are mutually independent zero

mean random variables with variances σ2
ij and η2

ij , respec-

tively. In this paper, these random effects will be assumed

to be Gaussian-distributed. Zij is the fixed non-random co-

variate of αijk, which models possible longitudinal depen-

dencies and also possible dependencies over 10 or 11 oligos

in the probeset. Throughout this paper, it is assumed that

different probesets have independent responses.

In the standard ANOVA model, the general model (1)

reduces to a linear fixed effect model with no random effects

Zijk = 0.

yijk = µ + τi + φj + (τφ)ij + ǫijk, (2)

In this case, the two-sided paired-t test is the generalized

likelihood ratio test (GLRT) for differential expression over

time, which can be stated in terms of testing the hypotheses:

H0 : τ1 = τ2 versus Hα : τ1 6= τ2. (3)

The paired-t test is one of the most widespread statistical

tests used to detect differential expression. Note, that by ig-

noring random effects, the paired-t test does not account for

possible dependency in probe response over time, probeset,

or array.

To account for the array random effect, the full gen-

eral model (1) will be employed. In this case, GLRT is not
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directly implementable since the maximum likelihood esti-

mates can no longer be found in closed form. These parame-

ter estimates are approximated by a variety of approaches

including: EM algorithm applied to the profile likelihood or

to the restricted likelihood [10]. These approximate MLE’s

can be used in the likelihood ratio test of (2) leading to a

test that accounts for fixed probe and temporal effects and

random array effects. We will call this model LME1.

To account for all of the random effects, including both

probe, time and array, the LME model (1) becomes:

yijk = µ + τi + φj + (τφ)ij + α + ǫijk, (4)

Here α is a random variable with variance η2 that cor-

relates across all effects. Again, there is no closed form

for the maximum likelihood estimates under this model.

We will implement the method of Generalized Estimating

Equations (GEE), described in more detail below, to obtain

a test which we will call LME2.

The LME2 method approximates the maximum likeli-

hood estimates by an iteratively reweighted least square ap-

proach [11] applied to the marginalized likelihood. Under

the assumption of independence of different gene probes,

the marginalized likelihood factors into a product of the

densities:

f(y|θ) =

∫

f(y|θ, α)f(α|θ)dα, (5)

where y is a matrix consisting of yijk elements, θ = {µ, τi, φj , (τφ)ij , η
2}

are fixed effects, and f(y|θ) can be represented as a multi-

variate Gaussian density with mean θ and covariance ma-

trix Λ(η) of known form. The marginal log-likelihood is

expressed as

logf(y|θ) = −
1

2
tr{(y−Ψ)TΛ

−1(η)(y−Ψ)}−
1

2
log|det(Λ(η))|,

(6)

where E[y|θ] = Ψ is a matrix composed of fixed effects

µ, τi, φj , (τφ)ij . The GEE model method alternates be-

tween estimating covariance Λ(η) and estimating Ψ [10].

The tests under LME1 and LME2 can be implemented using

the R function lme() and gee() using the following inputs:

• The mean of yijk, E(yijk) = µij ,is related to the co-

variates for fixed effects by a Gaussian link

µij = τi + φj + (τφ)ij + ǫij , (7)

• The variance of each yijk, given the effects of covari-

ates, is σ2
j . Under a Gaussian assumption, the vari-

ance σj does not depend on the mean response. That

is,

Var(yijk|αijk) = σ2
j , (8)

• The temporal correlation over the five sample times is

modeled as first-order autoregressive,

Cov(yijk, yi′j′k′)
√

Var(yijk)Var(yi′j′k′)
= ρ|i

′−i|. (9)

The correlation coefficient ρ is a nuisance parameter.

For the two sample comparisons considered here, equation

(9) reduces to a single correlation coefficient having values

ρ or 1.
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Fig. 1. Model fitting diagnostics for three probesets. Each row

shows residual plots in which longitudinal probe level intensities

for two genes were fitted with the LME1 and LME2 model respec-

tively.

3. RESULTS

We distinguish two classes of “one-gene-at-a-time” meth-

ods for identifying differentially expressed genes: probe

level intensity based methods and probe set expression score

based methods. We aim to first show that our LME2 model

for probe level intensities has equally strong discriminative

power for estimating the biological main effect (τ ) as the

competing LME1 and Paired t methods [5], [6], [7]. We

then show that for longitudinal data our LME2 model bet-

ter estimates the main effect (τ ) than does the LME1 model

and simple ANOVA model.

Fig.1 shows residuals vs. fitted plot for the probe level

data of two genes selected from a pool of 45101 genes. Fol-

lowing previous notations, the residual and fitted value for
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Probeset ID Gene Title Gene Symbol GEE Rank LME Rank Paired t Rank

1416309 at nucleolar and spindle associated protein 1 Nusap1 1 4 413

1416474 at neighbor of Punc E11 Nope 2 21 357

1417457 at CDC28 protein kinase regulatory subunit 2 Cks2 3 6 671

1419998 at Unknown Unknown 4 9 403

1423774a at protein regulator of cytokinesis 1 Prc1 5 1 735

1426604 at ribonuclease L (2’, 5’-oligoisoadenylate synthetase-dependent) Rnasel 6 11 199

1426936 at cDNA sequence BC005512 BC005512 7 29 2658

1429051s at RIKEN cDNA 6230403H02 gene 6230403H02Rik 8 15 270

1434437x at ribonucleotide reductase M2 Rrm2 9 2 18

1434645 at RIKEN cDNA C530008M17 gene C530008M17Rik 10 10 244

Table 1. Top 10 down-regulated genes from Post-natal 2 days (P2) to Post-natal 10 days (P10) identified by LME2 model.

Probeset ID Gene Title Gene Symbol GEE Rank LME Rank Paired t Rank

1419025 at retinal S-antigen Sag 1 3 506

1421084 at retinoschisis 1 homolog (human) Rs1h 2 2 40

1424256 at retinol dehydrogenase 12 Rdh12 3 10 260

1424963 at retinitis pigmentosa 1 homolog (human) Rp1h 4 7 137

1425100a at phosphodiesterase 6G, cGMP-specific, rod, gamma Pde6g 5 11 193

1425172 at rhodopsin Rho 6 8 215

1425696 at thioredoxin-like 6 Txnl6 7 9 190

1427044a at amphiphysin Amph 8 13 29

1428288 at RIKEN cDNA 2310051E17 gene 2310051E17Rik 9 19 239

1430128a at deleted in polyposis 1-like 1 Dp1l1 10 4 394

Table 2. Top 10 up-regulated genes from P2 to P10 identified by LME2 model. 7 (Sag, Rs1h, Rdh12, Rp1h, Pde6g, Rho,

Dp1l1) out of 10 genes are well-known genes for the development of adult mouse retina. LME2 model misses the Pde6g, and

has lower rank for the remaining five of six genes.

Probeset ID Gene Title Gene Symbol LME Rank GEE Rank Paired t Rank

1423774a at protein regulator of cytokinesis 1 Prc1 1 5 735

1434437x at ribonucleotide reductase M2 Rrm2 2 9 18

1437750 at RIKEN cDNA 2310037P21 gene 2310037P21Rik 3 12 277

1416309 at nucleolar and spindle associated protein 1 Nusap1 4 1 413

1448698 at cyclin D1 Ccnd1 5 15 71

1417457 at CDC28 protein kinase regulatory subunit 2 Cks2 6 3 671

1438434 at Rho GTPase activating protein 11A Arhgap11a 7 14 543

1452242 at RIKEN cDNA 1200008O12 gene 1200008O12Rik 8 17 1095

1419998 at Unknown Unknown 9 4 403

1434645 at RIKEN cDNA C530008M17 gene C530008M17Rik 10 10 244

Table 3. Top 10 down-regulated genes from Post-natal 2 days (P2) to Post-natal 10 days (P10) identified by LME1 model.

Probeset ID Gene Title Gene Symbol LME Rank GEE Rank Paired t Rank

1434657 at glutaminase Gls 1 12 497

1421084 at retinoschisis 1 homolog (human) Rs1h 2 2 40

1419025 at retinal S-antigen Sag 3 1 506

1430128a at deleted in polyposis 1-like 1 Dp1l1 4 10 394

1438641x at RIKEN cDNA 1500016O10 gene 1500016O10Rik 5 14 92

1456341a at basic transcription element binding protein1 Gli3 6 19 178

1424963 at retinitis pigmentosa 1 homolog (human) Rp1h 7 4 137

1425172 at rhodopsin Rho 8 6 215

1425696 at thioredoxin-like 6 Txnl6 9 7 190

1424256 at retinol dehydrogenase 12 Rdh12 10 3 260

Table 4. Top 10 up-regulated genes from Post-natal 2 days (P2) to Post-natal 10 days (P10) identified by LME1 model. No

additional relevant genes are identified.
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(c) Paired-t estimation

Fig. 2. QQ plot of treatment (time) effects estimated by three different methods.
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(c) Volcanic plot for Paired-t estimation

Fig. 3. Volcanic plot of treatment (time) effects and p-values estimated by three different methods.

one probe level intensity observation are: yijk − ŷijk, and

ŷijk = µ̂ + τ̂i + ̂φj + ̂(τφ)ij , respectively. The plot in

Fig.1 is frequently used to check the goodness of fit of the

model. For a good fit the distribution of the variance resid-

uals should not be dependent on the fitted values. Overall,

the residual fitting errors of LME1 models appear to have

stronger heteroscedasticity (non-constant variance) than those

of the LME2 models (Fig.1). The heteroscedasticity is seen

from the “fish shaped” residual scatter on the left column of

Fig.1. This suggests that LME2 models fit longitudinal data

better than LME1 models do.

Looking into LME2 residual plots more carefully, we

find that residuals of some fitted values show non random

patterns. This is attributed to the fact that the total squared

variation is mostly explained by only one effect, in our case,

either time effect (τ ) or probe effect (φ). The more obvious

the non random pattern is, the more a single effect dom-

inates over others. As mentioned before, in the GeneChip

experimental design, the probe effect is responsible for most

of squared technical variation, as observed by Li and Wong

[3]. Biological effect such as time effect is responsible for

most of biological variation, and it varies drastically from

gene to gene. Therefore, we expect to see stronger non-

random pattern in the LME2 residual plot for weakly differ-

entially expressed genes while non-random patterns would

occur for strongly differentially expressed genes. Fig.1 con-

firms this reasoning, e.g. LME2 model fitting of Gene Nmt1

has stronger non-random pattern since it is a house-keeping

gene (constantly expressed gene) [12]; LME2 model fitting

of Gene Rho has much weaker non-random pattern since its

expression level greatly increases from P2 to P10 [13].

Fig. 2 presents the QQ plot of the estimated time ef-

fect (τ ) distributions by three different methods vs. normal

quantile distribution. The use of QQ plot is not used to test

whether the time effects follow a particular distribution, but

as a visual aid for identifying genes with unusual test sta-

tistics. QQ plots informally correct for the large number of

comparisons and the points which deviate markedly from

an otherwise linear relationship are likely to correspond to

those genes whose expression levels differ between the two

time points, therefore, we can expect a large number of dif-

ferentially expressed genes between two time points. Al-

though the histograms of differential expressions estimated

by the three different methods are quite similar across the

three methods (Fig. 2), the relative ranks are very different

as shown in Table 2 and 3 and discussed below.

We also used volcanic plots to visualize differentially

expressed genes estimated from three different methods. In

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 6, 2009 at 09:51 from IEEE Xplore.  Restrictions apply.



1425

a volcanic plot, logs of raw p-values are plotted against the

estimated fold change on a negative log scale. The p-values

of the time effect in LME1 and LME2 models are calculated

from Gaussian quantiles, and the p-values of the time effect

in paired-t test are calculated from t quantiles. The volcanic

plot better illustrates the time effect than the QQ plot since

each gene is plotted in a two dimensional space. In a vol-

canic plot, (e.g. Fig.3a), each dot corresponds to a gene,

the dots down at the bottom represent those house keeping

genes, and the dots on the top (outliers) represent differen-

tially expressed genes. Fig. 3a demonstrates that the LME2

is a more powerful test than Fig. 3b and Fig. 3c since the

differentially expressed genes in Fig.3a are better separated

and have smaller p-values (see y-axis) than those in Fig.3b

and Fig.3c.

In practice, biologists usually care about the genes in

order of the strength of differential expression. Table 1

and Table 2 list top 10 up-regulated and down-regulated

genes selected by the LME2 model, and the ranks of these

genes in gene lists from LME and ANOVA models are also

shown for comparison. Similarly, Table 3 and Table 4 list

top 10 up-regulated and down-regulated genes selected by

the LME1 model. The top genes from probe level inten-

sity based methods (LME2 and LME1) tend to be similar

to each other but quite different from those from probe set

expression score based method, i.e ANOVA paired-t test.

In comparing different methods, the one that is able to

pull out more biologically relevant genes with relatively lower

ranks is considered to be a better method. Much biolog-

ical experimental data is available for genes that are up-

regulated during retinal development. Therefore, we focus

on the following discussion of the top 10 up-regulated genes

(Table 2 and Table 4). Among the top 10 genes pulled out

by the LME2 model, 7 genes (Sag, Rs1h, Rdh12, Rp1h,

Pde6g, Rho, Dp1l1) (Table 2) are well known to our collab-

orators in Kellogg as genes governing the development of

adult mouse retina as recognized by our collaborating biol-

ogists in Kellogg Eye Center. The LME1 approach missed

an important one (Pde6g), which is rod specific [14]. Fur-

ther, five of the remaining six genes had lower ranks (Table

2).

We also did the same comparison based on the top 10

up-regulated genes selected by the LME1 model. The re-

sults showed that the LME1 model did not identify addi-

tional relevant genes that were missed by the LME2 ap-

proach (Table 4). This confirms that the proposed LME2

approach has stronger discovery power. Compared with the

paired-t test, the LME1 and LME2 approaches tend to gen-

erate better results since none of these 7 genes are in the

top 10 as pulled out by the paired-t test. Our analysis sug-

gests that more extensive use of model-based approaches

will be useful in identifying differentially expressed genes

from Affymetrix GeneChip data.

4. DISCUSSION

Identifying differentially expressed genes from longitudinal

microarray experiments remains a difficult problem. New

approaches for analysis of this type of data are urgently

needed. The structure of probe level intensity data fits very

nicely in the framework of experimental design so that many

well known methods such as mixed model analysis have po-

tential for improving discovery from genomics data. In this

paper, we demonstrated including of random effects in the

probe response value can lead to significant improvement

of differential expression analysis for gene microarray ex-

periments. In particular, including the random probe and

time effects can improve the array effect as proposed by [6].

The approach can be applied to both probe level (cDNA)

and probe-set level (Oligo) data by properly adjusting model

settings.
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