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Abstract—The performance of MIMO radar has been a subject
of intense study in the past decades. For such a system, however,
the important phenomenon of phase transition has received
little attention in the literature. In this paper, we study the
phase transition on the target detection probability of a SNR
maximizing detector. Such a detector declares a target to be
present when the largest eigenvalue of the observed data matrix
exceeds a threshold. In particular, we identify a critical value
below and above which the limiting detection performance is
described by the Tracy-Widom law and the Gaussian law,
respectively. Under both laws, the scaling limits and asymptotic
expansions of misdetection probability at the vanishing regime
are derived using tools from random matrix theory.

I. INTRODUCTION

The SNR-maximizing target detection algorithm is widely

used in MIMO radar [1, 2]. For single target detection [3],

the SNR maximizing detector is equivalent to the General-

ized Likelihood Ratio Test (GLRT) under a Rayleigh fading

model [4]. In this single target scenario, the GLRT reduces

to a detector that compares the largest eigenvalue of the

MIMO radar data matrix to a specified threshold. We call this

GLRT detector the largest eigenvalue based detector [5]. In

massive MIMO radar, the number of radar antennas (sensors)

is very large giving rise to a high dimensional data matrix. In

this paper, we show how methods of random matrix theory

can be used to specify fundamental limits in the detection

performance of the considered GLRT target detector.

Analytical performance of the largest eigenvalue based

detector has received substantial attention in different com-

munities. Despite the relatively long history, the behavior of

such a detector is still far from being completely understood.

In particular, the phase transition phenomenon on the perfor-

mance of the largest eigenvalue based detector seems to have

received little attention. This performance transition is induced

from the phase transition of the largest eigenvalue of the spiked

model well-known in random matrix theory [6]. The phase

transition implies that the performance is governed by more

than one distributional laws when the number of sensors and

samples approach infinity. In fact, it will be shown that the

detection probability is described by two distinct limiting laws

depending on the strength of the spikes. In MIMO radar detec-

tion, the value of the spike depends on the channel condition

and transmit power of the target. When the spike increases

the detection probability transitions from the Tracy-Widom

distribution to the Gaussian distribution. As a consequence of

the phase transition, two different scaling behaviors have been

found in the crucial regime when the detection probability

approaches one. In this regime, the asymptotic expansions of

detection probability under both limiting laws are derived by

means of random matrix theory. The phase transition also

implies that the target is undetectable if the spike is below

the critical value even if the number of sensors and samples

is arbitrary large.

The studied phase transition phenomenon and the developed

analytical framework in this paper can be applied to other

branches of engineering and applied sciences. Due to the du-

ality of MIMO radar and MIMO communications1, our results

are directly applicable to cognitive radio networks [4, 5]. Our

results are also applicable to social networks. For example, in

community detection a similar phase transition phenomenon

has been observed [7], where the characteristics of different

communities can be modeled by the spiked model. In inverse

covariance estimation [8], which has applications to inference

in Gaussian graphical models, the block-sparse covariance

matrix assumption is equivalent to the spiked model. The

detection probability studied in this paper may be applied to

establish detectability of a weak connected component in the

spiked Gaussian graphical model.

II. PROBLEM FORMULATION

A. System Model

Consider the standard model for m-sensor cooperative de-

tection2 in the presence of a single target

x = hs+w, (1)

1Note that the duality is mainly on the level of systems models. The detailed
operational assumptions of the two types of MIMO systems may differ in
practice.

2For spatially distributed sensors and co-located sensors, the corresponding
MIMO radar systems are often referred to as statistical MIMO radars and
waveform diverse MIMO radars, respectively. The analysis in this paper is
valid for both scenarios.



where the m dimensional complex vector x ∈ C
m is the

received data vector. The m × 1 vector w is the complex

Gaussian noise with zero mean and covariance matrix σ2Im,

where σ2 denotes the noise power. The m × 1 vector h =
(h1, . . . , hm) represents the channels between the target and

the m sensors. The scalar s denotes the transmitted signal of

the target, which follows a zero mean Gaussian distribution

and is uncorrelated with the noise. The channel vector h is

assumed to be constant during the detection, i.e. we consider

deterministic channels. We collect n i.i.d. observations from

model (1) to a m × n (m ≤ n) received data matrix

X = (x1, . . . ,xn). By the above assumptions, the sample

covariance matrix R = XX†/n follows a complex Wishart

distribution of dimension m with n degrees of freedom and

a population covariance matrix Σ. We denote the ordered

eigenvalues of R by 0 ≤ λm ≤ . . . ≤ λ1 <∞.

B. Detection Problem

We consider a binary hypothesis test

H0 : Σ = σ2Im (2)

H1 : Σ = σ2Im + γhh†, (3)

where hypotheses H0 and H1 denote the absence and presence

of the target3. Here, γ = E[ss†] is the transmit power4 of the

target and the received SNR is given by

SNR = γ||h||2/σ2. (4)

Under this hypothesis test, we further assume that the noise

power σ2 is known, which without loss of generality is set at

σ2 = 1. In this case, the largest eigenvalue based detector

TLE = λ1 (5)

is optimal under the generalized likelihood ratio criterion [4].

Comparing TLE with a predetermined threshold z,

TLE

H1

≷
H0

z (6)

the presence or absence of the target is decided.

The ordered eigenvalues of the population covariance ma-

trix (3) under the hypothesis H1 are given by

σi =

{
1 + γ||h||2, i = 1,

1, i = 2, . . . ,m,
(7)

where σi, i = 1, . . . ,m are also referred to as spikes in random

matrix theory. Since the entries of the received data matrix X
are i.i.d. Gaussian, we can assume without loss of generality

that Σ under H1 is given by

Σ =

(
1 + γ||h||2 0

0 Im−1

)
. (8)

3For hypothesis H1, we assume to have infinite time-bandwidth product,
i.e., the ambiguity function is a delta function.

4We assume perfect time-frequency synchronization at radar receiver unit.

We are interested in the asymptotic regime when the num-

bers of sensors and samples approach infinity with their ratio

being fixed, i.e.,

m,n→∞, c2 =
n

m
∈ [1,∞). (9)

The focus of this paper is to study the detection probability

Pd(z) = 1− P (λ1 ≤ z) (10)

in the asymptotic regime (9), which relies on the limiting

distribution of the largest eigenvalue λ1. In particular, from

a detection theoretical viewpoint, it is important to understand

the behavior when the misdetection probability vanishes, i.e.,

1− Pd(z) = Pm(z)→ 0. (11)

As will be shown, depending on the strength of the spike

σ1, the asymptotic detection performance behaves differently,

which is induced from the phase transition of the largest

eigenvalue.

Note that the covariance matrix Σ under H1 can be also

mapped to presence of a strong target return. There, the

magnitude of the spike will be dependent on target reflectivity,

fading in the medium, and target location.

III. PHASE TRANSITION OF THE LARGEST EIGENVALUE

The covariance matrix Σ of the form (8) is also known

as the spiked model in literature. The essential feature is

that as the dimension m approaches infinity, the number of

eigenvalues of Σ that are greater than one is finite5. In the

asymptotic regime (9), it is known that there exists a critical

value such that the limiting laws of λ1 are different for spikes

below and above the critical value.

Specifically, for the considered model (8) the critical value

was found in [6] as

σcrit = 1 +
1

c
. (12)

In the case σ1 < σcrit the limiting law of the largest eigenvalue

is governed by the Tracy-Widom distribution [6],

P

(
λ1 − aTW

bTW
≤ z

)
(9)−→ FTW(z), (13)

where the respective center and scale sequences are given by

aTW =

(
1 +

1

c

)2

, (14)

bTW =
(1 + c)4/3

c
n−2/3. (15)

On the other hand, when σ1 > σcrit the limiting law of

the largest eigenvalue is governed by the standard Gaussian

distribution [6, 9],

P

(
λ1 − aG

bG
≤ z

)
(9)−→ FG(z) =

1√
2π

∫ z

−∞
e−

1
2 t

2

dt, (16)

5In our case, only σ1 is greater than one.
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Fig. 1. Phase transition of the largest eigenvalue: n = 10, m = 4, and
σcrit = 1.6325.

where the respective center and scale sequences are given by

aG = σ1 +
σ1c

−2

σ1 − 1
, (17)

bG =

(
σ2
1 −

σ2
1c

−2

(σ1 − 1)2

)1/2

n−1/2. (18)

The above transition is often referred to as Baik-Ben Arous-

Péché phase transition [6]. To illustrate this phase transition

phenomenon, we plot in Fig. 1 the density of λ1 as a function

of the largest spike σ1 = 1 + γ||h||2. We consider a scenario

of m = 4 sensors with n = 10 samples per sensor. As a result,

the critical value (12) equals σcrit = 1.6325. We observe that

as σ1 increases the shape of the density changes significantly,

cf. [10, Fig. 2]. In particular, the mean and fluctuation of λ1

increase notably as predicted by (14), (15), (17), and (18).

Under hypothesis H0, the corresponding largest eigenvalue

also converges to the Tracy-Widom distribution [11] with

the same center (14) and scale (15) sequences. Thus, the

result (13) implies that if the spike is below the critical value,

the largest eigenvalue behaves asymptotically as if σ1 equals

one. In this case, the hypothesis H1 in (3) degenerates to

hypothesis H0 in (2), which corresponds to the undetectable

scenario. This can also be seen from the fact that the se-

quences (14) and (15) do not depend on σ1. To see the

impact of this behavior on the vanishing rate of misdetection

probability, we first reformulate the results (13) and (16) by

the definitions (10) and (11) as

Pm (z) = P (λ1 ≤ z)
(9)−→

⎧⎨
⎩
FTW

(
z−aTW

bTW

)
, σ1 < σcrit,

FG

(
z−aG

bG

)
, σ1 > σcrit.

(19)

Since both the Tracy-Widom and Gaussian distributions are

supported on (−∞,∞), the rate Pm(z)→ 0 is determined by

the rate −aTW/bTW → −∞ in the Tracy-Widom regime and

the rate −aG/bG → −∞ in the Gaussian regime. These rates

are obtained respectively as

−aTW

bTW
= −c

(
1 + 1

c

)2
(1 + c)4/3

n2/3 ∼ −n2/3, (20)

−aG

bG
= −

(
σ1 +

σ1c
−2

σ1−1

)
(
σ2
1 − σ2

1c
−2

(σ1−1)2

)1/2
n1/2 ∼ −n1/2. (21)

Thus, the rate that the misdetection probability tends to zero

scales with the number of samples6 as n2/3 and n1/2 when

the spike is below and above the critical value, respectively.

IV. ASYMPTOTICS OF MISDETECTION PROBABILITY AT

VANISHING REGIME

A detailed analysis beyond the scaling limits requires the

left tail behavior of the Tracy-Widom and Gaussian distribu-

tion functions. In this section, we derive explicit asymptotic

expansions of misdetection probability in the vanishing regime

by using recent advances in random matrix theory.

A. Tracy-Widom Regime
To define the Tracy-Widom distribution we need the fol-

lowing notations. Let A be the operator on L2(z,∞) with the

kernel given by the Airy kernel [10, 11],

A(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
, (22)

where Ai(x) denotes the Airy function. The corresponding

Fredholm determinant [11] of the operator A in terms of

classical matrix determinants is written as

det (I −A) |L2(z,∞) =
∞∑
k=0

(−1)k
k!

∫
(z,∞)k

det (A(xi, xj))
k
i=1,j=1 dx1 · · · dxk.

The Tracy-Widom distribution (13) can be then defined as

FTW(z) = det (I −A) |L2(z,∞). (23)

The asymptotics of the Airy-kernel Fredholm determinant as

z → −∞ was derived in [12, 13] as

det (I −A) |L2(z,∞) = τ
e−

1
12 |z|3

|z|1/8
(
1 +

3

26|z|3 +O (|z|−6
))

,

(24)

where the constant

τ = 21/24eζ
′(−1) ≈ 0.87237 (25)

and ζ(x) denotes the Riemann zeta function. The constant is

also known as Dyson’s constant, which was first conjectured

to be the form (25) in [10]. This was rigorously proven in [12,

13]. Finally, by the relation (19), the misdetection probability

at the vanishing regime Pm(z) → 0 in the case σ1 < σcrit is

approximated by

Pm(z) ≈ τb
1/8
TW

e
−|z−aTW|

12b3
TW

3

|z − aTW|1/8
(
1 +

3b3TW

26 |z − aTW|3
)
. (26)

6The scaling with number of sensors would be the same since we assumed
that c =

√
n/m is a constant.
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Fig. 2. Asymptotic expansions of misdetection probability (26) and (30).

Note that by incorporating higher order terms of the expan-

sion (24) that are computed in a recursive manner, we could

obtain refined estimates of Pm(z).

B. Gaussian Regime

The asymptotic expansion of the Gaussian tail is rather

straightforward to derive. By the relation

FG(z) =
1

2

(
1− erf

(
− z√

2

))
, (27)

where erf(x) is Gauss error function and the fact that

erf(x) = 1− 1√
πx

e−x2

(
1 +O

(
1

x2

))
, (28)

we have as z → −∞,

FG(z) = − 1√
2πz

e−
z2

2

(
1 +O

(
1

z2

))
. (29)

Consequently, for the case σ1 > σcrit the outage probability at

the vanishing regime is approximated by

Pm(z) ≈ − bG√
2π (z − aG)

e
− (z−aG)

2

2b2
G . (30)

C. Numerical Results

In Fig 2, we plot the asymptotic expansions of misdetection

probability (26), (30) versus simulations. A single target

MIMO radar system is considered, where we assume m = 50
sensors and each sensor collects n = 100 samples. In this

case, the critical value equals σcrit = 1.707. The deterministic

channel h follows a vector-valued complex Gaussian distribu-

tion with zero mean and covariance matrix Im. We consider

the set of the signal powers −13 dB, −15 dB, −20 dB, and

−25 dB, where the largest spikes equal 3.505, 2.581, 1.5, and
1.158, respectively. As a result, the signal powers −13 dB and

−15 dB correspond to the Gaussian case (30) and the signal

powers −20 dB and −25 dB correspond to the Tracy-Widom

case (26). As can be observed, in the Tracy-Widom regime

the misdetection probability can not be effectively reduced

by increasing the transmit power. This observation is in line

with the discussion in Section III. It is also seen that the

derived asymptotic expansions capture the behavior of the

misdetection probability in the regime of practical interest.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the phase transition (detectability)

phenomenon on the performance of GLRT for detecting a

single target in a MIMO radar, equivalent to the SNR max-

imizing detector and also to the largest eigenvalue detector.

It was shown that the detection performance is described by

two distinct distributional laws: the Tracy-Widom distribution

and the Gaussian distribution. In both regimes, we derived

the scaling limits and asymptotic expansions of the misdetec-

tion probability. This analysis was made possible by recent

progress in random matrix theory.

Future work include applying the proposed framework and

analytical results to other related problems. In particular, we

would like to generalize the results in [7] from a single

to multiple observations, where the spiked model becomes

relevant. We also plan to examine the phase transition of the

false alarm probability in inverse covariance estimation [8].
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