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ABSTRACT

Tagged Magnetic Resonance Imaging (MRI) is currently the
reference MR modality for myocardial motion and strain anal-
ysis. MI-based non rigid registration has proven to be an ac-
curate method to retrieve cardiac deformation fields. How-
ever, high frequency information in tags is not used. In a
previous work this information was included by using feature
vectors formed with wavelet coefficients and kNN graphs to
estimateαMI. It was shown that cardiac motion estimation
was feasible with these features. In this work, features were
derived from the complex wavelet transform, which is shift
invariant and provides more high frequency subimages than
conventional wavelets. The results show that lower errors are
obtained with respect to the use of pixel intensity, for both
histograms and kNN graphs.

1. INTRODUCTION

Tagged magnetic resonance imaging (MRI) is a well estab-
lished technique used to obtain regional information on left
ventricle (LV) deformation[1], and thus potentially valuable
to diagnose cardiovascular diseases. Basically, this technique
consists in perturbating the magnetization of the myocardium
in a specific spatial pattern at end-diastole. These perturba-
tions appear as dark stripes (tags) when imaged immediately
after application of the magnetic field. Since the myocardium
retains ”memory” of this disturbance, tags undergo the same
deformation as the heart does, allowing local strain parame-
ters to be estimated.

Several methods have been proposed to retrieve LV de-
formation field: optical flow, Harmonic Phase (HARP) MRI,
tag detection and tracking, and image registration. The use of
MI based non rigid registration to estimate cardiac motion [2]
has proven to overcome many drawbacks existent on previous
approaches. However, since MI is based on pixel intensity,
high frequency information in tags is not accounted for. With
the aim of including this information, in a previous work [3]
feature vectors formed by wavelet coefficients were used as
matching features, and kNN graphs to estimate theαMI be-
tween frames of the sequence. In the mentioned work, it was

shown that it was feasible to retrieve cardiac motion, but the
error obtained with MI was lower.

In this work it was used features vectors formed with the
coefficients obtained by applying a complex wavelet trans-
form to the image. This transform is shift invariant and de-
composes an image into an approximation and six high fre-
quency subimages. Therefore, it is possible to define for each
pixel a vector with additional information on directionality.
These features were used along with kNN graphs to improve
motion estimation with respect to the classic method based
on pixel intensity. The method was tested in four tagged MRI
sequences and the results compared against manual measure-
ments.

This paper is organized in six sections. In the next sec-
tion the Complex Wavelet Transform is introduced. Section 3
explains how to estimate cardiac deformation fields by using
image registration. In that section,αMI estimation by using
kNN graphs is also presented. Section 4 describes the dataset
used for the experiments. Results are presented in Section 5
and discussed in Section 6. Finally, the conclusions can be
found in Section 7.

2. COMPLEX WAVELET TRANSFORM

For one dimensional signals, the Discrete Wavelet Transform
(DWT) can be regarded as equivalent to filtering a signal with
a set of bandpass filters whose impulse responses are scaled
versions of a function called mother wavelet. At the coars-
est scale, an aditional filter is required to represent the lowest
frequencies of the signal. To remove redundancy in the trans-
form, the filter output must be subsampled. The usual way to
do this is the cascade filter bank shown in Fig. 1. The bidi-
mensional DWT of an image is obtained applying a 1D DWT
to rows and then to columns.

The DWT has two main drawbacks: 1) Lack of shift in-
variance: this means that the energy of DWT coefficients
changes with shifts in the image. For registration purposes it
would be desirable for energy to remain the same. 2) Poor di-
rectional selectivity: this is a consequence of separable filter-
ing of an image. The Lo-Hi and Hi-Lo filtering provide high



Fig. 1. Filter bank to implement three levels of DWT.H0:
Low pass filter;H1: High pass filter. An undersampling by 2
is applied to the filter output.

Fig. 2. One-level CWT decomposition of a tagging image.
Colors were chosen to represent complex values in the trans-
form.

horizontal and vertical frequencies respectively, and there is
no ambiguity in the information. However, the Hi-Hi filtering
provides information on diagonal features in both directions
(it does not differentiate between an edge at45o and135o de-
grees, for example).

To overcome this problems, Kingsburyet al. [4] intro-
duced the CWT. This transform can be represented by the
same block diagram in Fig. 1, but in this case the filters have
complex coefficients and generate complex signals as well.
Therefore, a 2:1 redundancy is introduced which results into
a 4:1 redundancy for images. Despite being implemented sep-
arably, complex filters provide true directional selectivity as
they separate all parts of the frequency space. For 2D images
the CWT produces six bandpass subimages oriented at±15o,
±45o, ±75o. A comprehensive explanation and more details
on CWT can be found in the paper by Kingsburyet al. [5].
Fig. 2 shows the CWT of a tagged MRI image.

3. METHOD

3.1. Motion estimation

To track cardiac motion throughout multiple time frames, Mul-
tilevel Free Form Deformations (MFFDs) were used as sug-
gested by Schnabelet al.[6], where the transformationT(u, t)
is represented as the sum of a series of local FFDs:

T(u, t) =
t∑

p=1

Tp
local(u, t)

Thus, the motion estimation starts registering the first two
frames of the sequenceI(x, 0) andI(x, 1), and a single FFD
is obtained. Then, for the next frameI(x, 2), a new FFD is
added and the frame is registered toI(x, 0) taking as initial
transformation the one obtained forI(x, 1). This process is
repeated for the remaining framesI(x, t) in the cardiac cycle.
Once all the frames are registered to the first one, the MFFD
consists ofN FFDs that model the myocardium deformation.

The local transformations are obtained by means of the
registration algorithm proposed by Rueckertet al. [7] for de-
tection of cancerous lesions in contrast enhanced MR breast
images. This approach uses MI of pixel intensity to find the
transformation that best matches source and target.

The method used in this work proceeds in two steps. First,
source and target are registered using CWT aproximation co-
efficients, and after that, with vectors formed by concatenat-
ing detail coefficients taking as input the transformation used
in step one. In such a way, the registration process is pre-
vented from being dominated by approximation coefficients,
which have higher values than detail coefficients. The last
step is where high frequency information in tags is introduced
into the registration process. Since feature vectors are in high
dimensional spaces, the use of histograms for MI estimation
is quite inexact. Therefore, kNN graph estimators were used,
which bypass probability function estimation (pdf) estima-
tion.

3.2. αMI estimation using kNN graphs

Given a setZ = {z1, . . . , zn} of n vectors inRd, the k-
Nearest Neighbor Graph (kNN Graph) is formed by the points
zi and the edges with theirk nearest pointsNk,i(Z). This
kind of graph allows the estimation ofαMI as explained in
the next paragraph.

Let Is andIt be two images from which the sets of fea-
ture vectorsZs = {zs1, . . . , zsn} andZt = {zt1, . . . , ztn}
have been extracted. After calculating the corresponding kNN
graphs,αMI can be estimated as [8]:

α̂MI =
1

α− 1
log

1
nα

n∑

i=1

k∑
p=1

(
‖eip(zsi, zti)‖√‖eip(zsi)‖ ‖eip(zti)‖

)2γ

,



where‖eip(zsi, zti)‖ is the distance from the point(zsi, zti) ∈
R2d to itsp-nearest neighbor in{zsj , ztj}j 6=i, and‖eip(zsi)‖
(‖eip(zti)‖) is the distance from the pointzsi ∈ Rd, (zti ∈
Rd) to itsp-nearest neighbor in{zsj}j 6=i({ztj}j 6=i).

To make a more fair comparison with respect to the results
obtained with Shannon MI, (αMI |α=1) was usedα = 0.9.

3.3. Feature vectors

As commented before in this section, feature vectors at each
point in the image were obtained by concatenating wavelet
transform coefficients. For DWT, this vectors were formed
by grouping corresponding values of LoLo, LoHi, HiLo and
HiHi subimages, resulting in points inR4. When CWT is
used, feature vectors are points inR12 (six complex values
corresponding to six directional filters).

4. MATERIALS

4.1. Dataset

Four tagged 2D sequences were acquired with a GE Gene-
sis Signa 1.5T MRI scanner. A cine breath-hold sequence
with a SPAMM grid tag pattern was used, with imaging being
done at end expiration. The in-plane image resolution was
1.56mm×1.56mm. Cardiac cycle was sampled by acquiring
a total of 16 frames. However, only images from End of Di-
astole (ED) to End of Systole (ES) (systolic phase) were used
in the experiments due to the interest on evaluating deforma-
tion during heart contraction. The length of this cardiac cycle
segment is 5 frames.

4.2. Manual measurements

In order to assess the method performance in tracking my-
ocardial motion, tag intersection points were marked manu-
ally in each frame by two observers in two independent ses-
sions. For each sequence, 18 points (average) were chosen
to be tracked, and thus 90 (18×5) points were marked. Gold
standard measurements (GS) were derived for each tag inter-
section point by taking the average of the measurements made
by the observers. Fig. 3 shows the GS point set for each frame
in sequence A.

5. RESULTS

The mean error was calculated between the GS and the mea-
surements made by the observers. Table 1 shows the intra and
interobserver variabilities of manual landmarking.

The deformation field of the myocardium was calculated
with the method explained in Section 3. Fig. 4 shows an
example of motion fields obtained and how the landmarks
marked by one observer are mapped onto the GS. The re-
sulting transformations were then applied to the GS at ED
to map these points to each phase. The mean error between

(1) (2) (3)

(4) (5)

Fig. 3. Gold standard points in each frame from ED to ES for
one of the sequences used in this work.

Table 1. Accuracy of manual measurements. Bias and standard deviation of the
differences with respect to GS.

Observer A Observer B Observer A and B

Bias (mm) 0.01 0.06 0.03
SD (mm) 0.35 0.31 0.29

these mapped points and the GS for each phase was calcu-
lated. Since this error is different for each phase and in gen-
eral increases from ED to ES, the sum of this error over all
phases was taken as index of method performance. Fig. 5
shows this value for all sequences and methods compared in
this work.

6. DISCUSSION

Fig. 5 shows that for all sequences except B, the use of CWT
allowed to obtain lower mean errors than pixel intensity for
both histograms and kNN graphs. It is particularly important
to note that for most cases CWT and DWT outperform pixel
intensity when kNN graphs are used, because the same esti-
mator is used for different features and it allows a more fair
comparison on the effect of including high frequency infor-
mation (the potential effect of using histograms on the per-

(a) (b) (c)

Fig. 4. (a) Motion field from ED to ES. Markers at ES before
(b) and after (c) registration



Fig. 5. Sum of mean error over all phases for sequences and
metrics used in this work. MI: Standard Mutual Informa-
tion (pixel intensity and histograms); PXL/WAV/CWT:αMI
for Pixel Intensity/Haar Wavelet/Complex Wavelets and kNN
graphs.

formance is removed). A possible explanation to the results
obtained for sequence B is that this sequence has a very low
dynamic range, and therefore tags provide less high frequency
information.

The main drawback of the presented method is the speed.
The computational burden comes from two sources: calcula-
tion of a wavelet transform for each degree of freedom modi-
fied during the optimization process, and the use of graphs to
estimateαMI. However, whenever features other than pixel
intensity are considered the computational cost will be higher,
since these features must be calculated someway. With re-
spect to the estimator, some alternatives to kNN graphs are
currently being studied and the results will be presented in a
future paper.

One possible way of improving the obtained results is
the use of CWT phase information, since it depends almost
linearly on displacements in the image. Some other ideas
are the selection of coefficients based on noise level estima-
tion, and to take advantage of the multiresolution nature of
wavelet transform to implement an intrinsically multiresolu-
tion method.

7. CONCLUSIONS

High frequency information present in tags has been intro-
duced into a registration based method used for cardiac mo-
tion estimation. This has been accomplished by means of
CWT, which offers shift invariance, good directional selec-
tivity, and provides a multiresolution image representation in-

trinsicaly. The use of CWT features allowed to obtain lower
errors than Haar wavelet and pixel intensity. However, the
computational cost is high, which could limit its practical
application (specially in 3D datasets). Currently, the use of
CWT phase information, other estimators as alternatives to
kNN graphs, and the extension of this method to 3D, are be-
ing investigated.
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