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Abstract. This paper presents a sensor management scheme based on
maximizing the expected Rényi Information Divergence at each sam-
ple, applied to the problem of tracking multiple targets. The underlying
tracking methodology is a multiple target tracking scheme based on re-
cursive estimation of a Joint Multitarget Probability Density (JMPD),
which is implemented using particle filtering methods. This Bayesian
method for tracking multiple targets allows nonlinear, non-Gaussian tar-
get motion and measurement-to-state coupling. Our implementation of
JMPD eliminates the need for a regular grid as required for finite element-
based schemes, yielding several computational advantages. The sensor
management scheme is predicated on maximizing the expected Rényi In-
formation Divergence between the current JMPD and the JMPD after a
measurement has been made. The Rényi Information Divergence, a gen-
eralization of the Kullback-Leibler Distance, provides a way to measure
the dissimilarity between two densities. We evaluate the expected infor-
mation gain for each of the possible measurement decisions, and select
the measurement that maximizes the expected information gain for each
sample.

1 Introduction

The problem of sensor management is to determine the best way to task a sensor
where the sensor may have many modes and may be pointed in many directions.
This problem has recently enjoyed a great deal of interest [9]. A typical applica-
tion, and one that we focus on in our model problem, is to direct an electronically
scanned aperture (ESA) radar [2]. An ESA provides great flexibility in pointing
and mode selection. For example, the beam can be redirected in a few microsec-
onds, enabling targets to be illuminated at will.
3 This material is based upon work supported by the United States Air Force under
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One way of designing a sensor management system is by optimizing informa-
tion flow. This is analogous to designing a communications system to maximize
the channel capacity. Past work in this area has been based on maximizing
Kullback-Leibler (KL) divergence. In this work, we use a more general infor-
mation measure called the Rényi Information Divergence (also known as the
α-divergence) [8], which reduces to the KL divergence under a certain limit. The
Rényi divergence has additional flexibility in that in allows for emphasis to be
placed on specific portions of the information.

We propose here an algorithm for sensor tasking that is motivated by in-
formation theory. First, we utilize a target tracking algorithm that recursively
estimates the joint multitarget probability density for the set of targets under
surveillance. We then strive to task the sensor in such a way that the sensing
action it makes results in the maximum amount of information gain. To that
end, we employ the Rényi information divergence as a measure of distance be-
tween two densities. The decision as to how to use a sensor then becomes one of
determining which sensing action will maximize the expected information gain
between the current joint multitarget probability density and the joint multitar-
get probability density after a measurement has been made. This methodology
is similar in spirit to that of [10], although our application is quite different. In
addition, [11] considers the sensor management as one of maximizing expected
information and examines a variety of information driven criteria, including the
Kullback-Leibler distance.

The paper is organized as follows. In Section 2, we present the target tracking
algorithm that is central to our sensor management scheme. Specifically, we
give the details of the JMPD and examine the numerical difficulties involved in
directly implementing JMPD on a grid. In Section 3, we present a particle filter
(PF) based implementation of JMPD. We see that this implementation provides
for computationally tractable implementation, allowing realistic simulations to
be made. A sensor management scheme, based on calculating the expected Rényi
Information Divergence is given in Section 4. A comparison of the performance
of the tracker using sensor management to the tracker using a non-managed
scheme on a model problem is given in Section 5. We furthermore include some
comments and results as the α parameter in the Rényi Divergence is varied. We
conclude with some thoughts on future direction in Section 6.

2 The Joint Multitarget Probability Density (JMPD)

In this section, we provide the details of using the Joint Multitarget Probability
Density (JMPD) for target tracking. The concept of JMPD was first discussed by
Kastella in [1], where an association free method of tracking multiple targets that
moved between discrete cells on a line based on a set of sensor measurements was
presented. We generalize that discussion here to deal with targets that have N -
dimensional continuous valued state vectors. In the model problem considered
herein, we are interested in tracking the position (x, y) and velocity (ẋ, ẏ) of
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multiple targets and so we describe targets by the four dimensional state vector
[x, ẋ, y, ẏ]′.

JMPD provides a means for tracking an unknown number of targets in a
Bayesian setting. The statistics model uses the joint multitarget conditional
probability density p(xk

1 ,xk
2 , ...xk

T−1,x
k
T |Zk) as the probability density for ex-

actly T targets with states xk
1 ,xk

2 , ...xk
T−1,x

k
T at time k based on a set of obser-

vations Zk . The number of targets T is a variable to be estimated simultaneously
with the states of the T targets. The observation set Zk refers to the collection
of measurements up to and including time k, i.e. Zk = {z1, z2, ...zk}, where each
of the zi may be a single measurement or a vector of measurements made at
time i.

Each of the state vectors xi in the density p(xk
1 ,xk

2 , ...xk
T−1,x

k
T |Zk) is a vector

quantity and may (for example) be of the form [x, ẋ, y, ẏ]′. We refer to each
of the T target state vectors xk

1 ,xk
2 , ...xk

T−1,x
k
T as a partition of the state X.

For convenience, the density will be written more compactly in the traditional
manner as

p(Xk|Zk) (1)

With the understanding that the state-vector X represents a variable num-
ber of targets each possessing their own state vector. As an illustration, some
examples illustrating the sample space of p are

p(∅|Z), the posterior likelihood for no targets in the surveillance volume
p(x1|Z), the posterior likelihood for one target in state x1

p(x1,x2|Z), the posterior likelihood for two targets in states x1 and x2

p(x1,x2,x3|Z), the posterior likelihood for three targets in states x1,x2 and x3

The temporal update of the posterior likelihood on this density proceeds
according to the usual rules of Bayesian filtering. Given a model of target kine-
matics p(Xk|Xk−1), we may compute the time-updated or prediction density
via

p(Xk|Zk−1) =
∫

dXk−1p(Xk|Xk−1)p(Xk−1|Zk−1) (2)

Bayes rule enables us to update the posterior density as new measurements
zk arrive as

p(Xk|Zk) =
p(zk|Xk)p(Xk|Zk−1)

p(zk|Zk−1)
(3)

In practice, the sample space of Xk is very large. It contains all possible
configurations of state vectors xi for all possible values of T . The original formu-
lation of JMPD given in [1] approximated the density by discretizing on a grid.
It was immediately found that the computational burden in this scenario makes
evaluating realistic problems intractable, even when using the simple model of
targets moving between discrete locations in one-dimension. In fact, the number
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grid cells needed grows as LocationsTargets, where Locations is the number of
discrete locations the targets may occupy and Targets is the number of targets.

Thus, we need a method for approximating the JMPD that leads to more
tractable computational burden. In the next section, we show that the Monte
Carlo methods collectively known as particle filtering break this logjam.

3 Particle Filter Implementation of JMPD

We expect that a particle filter based implementation of JMPD will break
the computational logjam and allow us to investigate more realistic problems.
To implement JMPD via a particle filter (PF), we first approximate the joint
multitarget probability density p(X|Z) by a set of Npart weighted samples,
Xp, (p = 1...Npart):

p(X|Z) ≈
Npart∑
p=1

wpδ(X−Xp) (4)

Here we have suppressed the time superscript k everywhere for notational
simplicity. We will do this whenever time is not relevant to the discussion at
hand.

Recall from Section 2 that our multitarget state vector X has T partitions,
each corresponding to a target:

X = [x1, x2, ..., xT−1, xT ] (5)

Furthermore, the joint multitarget probability density p(X|Z) is defined for
T = 0...∞. Each of the particles Xp , p = 1...Npart is a sample drawn from
p(X|Z). Therefore, a particle Xp may have 0, 1, ...∞ partitions, each partition
corresponding to a different target. We will denote the number of partitions in
particle Xp by np, where np may be different for different Xp. Since a partition
corresponds to a target, the number of partitions that a particle has is that
particle’s estimate of the number of targets in the surveillance area.

To make our notation more concrete, assume that each target is modeled
using the state vector x = [x, ẋ, y, ẏ]′. Then a particular Xp, which is tracking
np targets, will be given as

Xp = [xp,1, xp,2, . . . xp,np ] =




xp,1 xp,2 . . . xp,np

ẋp,1 ẋp,2 . . . ẋp,np

yp,1 yp,2 . . . yp,np

ẏp,1 ẏp,2 . . . ẏp,np


 (6)

Where here we expand the notation a bit and use xp,1 to denote the x position
estimate that particle p has of target 1.

Notice that this method differs from traditional particle filter tracking al-
gorithms where a single particle corresponds to a single target. We find that
when each particle is attached to a single target, some targets become particle
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starved over time. All of the particles tend to attach to the target receiving the
best measurements. Our method explicitly enforces the multitarget nature of the
problem by encoding in each particle the estimate of the number of targets and
the states of those targets. This helps top alleviate the particle starvation issue.

Note there is a permutation symmetry inherent in JMPD, i.e. p(x1,x2|Z) =
p(x2,x1|Z). This is particularly relevant when targets are near each other and
particle partitions begin to swap allegiances. We will have more to say about
this issue in Section 3.5.

In the following subsections, we detail the particle filter implementation of
JMPD.

3.1 Initialization

As this is primarily a target tracking application, we typically assume that an
estimate of the actual ground truth is available at time 0. To this end, we typi-
cally initialize a small set of particles (e.g. 10%) to contain the true target states
at time 0 and randomly assign values (both target states and number of targets)
to the rest of the particles.

Alternatively, we have successfully employed the following detection scheme.
All particles are initialized to believing there are 0 targets. For the first t time
steps the algorithm is in detection mode and the sensor is scheduled to period-
ically scan the surveillance area. As targets are detected, particles are mutated
to be consistent with the detection.

3.2 Particle Proposal

Several methods of particle proposal have been investigated. The standard method
used, which will be referred to as sampling from the kinematic prior, proposes
new particles at time k, Xk

p, according to the traditional Sampling-Importance
Resampling (SIR) method. For each particle at time k − 1, Xk−1

p , a new par-
ticle Xk

p is generated using the kinematic prior p(Xk|Xk−1). In the case where
the targets are indistinguishable and move independently, each target in Xk−1

p

behaves according to the same motion model and is proposed independently of
the other targets.

In addition, we have investigated three alternate particle proposal techniques,
all of which are developed as a means of biasing the proposal process towards
the measurements.

First, the multi-particle proposal method proposes a set of M distinct parti-
cles, Xk

p(m), m = 1...M , for each particle at time k − 1. The proposed particles
Xk

p(m) are then given weights according to the likelihood and a single represen-
tative is selected as Xk

p based on the weights.
Second, the multi-partition proposal method proposes M possible realizations

for each partition of a particle Xk
p,j(m). In this notation Xk

p,j(m) refers to the
mth proposal for the jth partition of the pth particle at time k. See (6) for a
concrete example of a particle and its partitions. The proposed partitions are
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then given weights according to the likelihood and a new particle Xk
p is chosen

by selecting a representative from each of the proposed partition sets.
Third, the independent-partition method proposed by [7] proposes new par-

titions and weights each partition independently. Particles at time k, Xk
p, are

formed by selecting partitions from the set of weighted proposed partitions from
the particles at time k − 1. This method assumes that the targets states are
independent, which is not the case when targets cross.

Finally, in any of these methods, target birth and death may be accounted for
by modifying the proposal density to incorporate a probability that the proposed
particle Xk

p has either fewer or more targets then Xk−1
p . For example, with some

birth rate probability α we propose a particle with np + 1 targets at time k + 1
starting from a particle with only np targets at time k. Similarly, we may propose
a particle with fewer targets according to some target death rate. In practice,
targets enter and leave only along the boundaries of the surveillance area and
so this must be taken into account as well.

3.3 Measurement Update

Each proposed particle is given a weight according to its agreement with the
measurements, the kinematic model, and the importance density [4]. Since we
are proposing particles based on p(Xk|Xk−1), it can be shown that the proper
weighting is given by

wp ∝ p(z|Xk
p) (7)

where the density p comes from the sensor model and incorporates both target
detection and false alarm rates.

Recall that each particle Xk
p simultaneously postulates that a specific number

of targets exist in the surveillance region (np) and that the target states are given
by [x1,x2, ...,xnp−1 ,xnp ]. In the case where the measurement set is made up of
a scan i cells (e.g. measurements taken on a XY grid) where the measurement
in each cell is independent of the measurements in the other cells, we compute
the weight as

wp ∝
∏

i

p(zi|Xp) (8)

where in this notation zi refers to the measurement made in cell i. A particular
particle Xp will postulate that there are targets in some cells ix (not
necessarily distinct):

ix = i1, i2, ...inp (9)

We denote the measurement density when there are 0 targets present as p0,
and simplify the weight equation as
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wp ∝
∏

i/∈ix

p0(zi)
∏

i∈ix

p(zi|Xp) (10)

wp ∝
∏

i

p0(zi)
∏

i∈ix

p(zi|Xp)
p0(zi)

(11)

wp ∝
∏

i∈ix

p(zi|Xp)
p0(zi)

(12)

If we let Oi,p (the occupation number) denote the number of targets that a
particle p postulates exist in cell i, then we write the weight as

wp ∝
∏

i∈ix

p(zi|Oi,p)
p0(zi)

(13)

Notice that there is no association of measurement to tracks as is done in
conventional multi-target trackers. Each particle Xp is an estimate of the system
state (both number of targets and their states) and has its weight wp computed
based on agreement with the measurements.

3.4 Resampling

As noted by [4], over time the variance of the weights wp can only increase. If
left unchecked, eventually all of the particles except one have near zero weight.
To remedy this situation a resampling step is added. When the variance of
the weights becomes too high, a new set of Npart particles is selected from the
existing set with replacement based on the weights wp. We then have a collection
of Npart particles with uniform weight that approximate the density p(X|Z). At
this step, particles that do not correspond to measurements are not retained –
in particular, particles that have an np that is unsupported by measurements
are not retained.

The particular resampling that we have implemented is called systematic
resampling [4]. We like this scheme because it is easy to implement, runs in
O(N), is unbiased, and minimizes Monte Carlo variance. In addition, we favor
resampling only when necessary as advocated by [6]. This saves time as well
as reduces the variance of the estimate. Many other resampling schemes and
modifications are presented in the literature [5]. Of these methods, we have
found that adaptive resampling [6] and Markov Chain Monte Carlo (MCMC)
moves using a Metropolis-Hasting scheme [5] lead to improved performance over
straightforward resampling in our application.

3.5 Estimation

Estimates of various interesting quantities may be easily made using the par-
ticles. Estimation is best performed before resampling, as resampling has been
shown to only increase the variance of the estimate.
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To compute the probability that there are exactly n targets in the surveillance
volume, first define the indicator variable

Ip =
{

1 if np = n
0 otherwise (14)

Then the probability of n targets in the surveillance volume, p(n|Z), is given by

p(n|Z) =
Npart∑
p=1

Ipwp (15)

So to estimate the probability of n targets in the surveillance volume, we
sum up the weights of the particles that have n partitions.

To compute the estimated state and covariance of target i, we first define
a second indicator variable Ĩp that indicates if particle p has a partition corre-
sponding to target i:

Ĩp =
{

1 if np ≥ n
0 otherwise (16)

Furthermore, we define the normalized weights to be

ŵp =
wpĨp∑Npart

l=1 Ĩlwl

(17)

So ŵp is the relative weight of particle p, with respect to all particles tracking
target i. Then the estimate of the state of target i is given by

X̂(i) = E[X(i)] =
Npart∑
p=1

ĨpŵpXp,i (18)

Which is simply the weighted summation of the position estimates from those
particles that are tracking target i. The covariance is given by

Λ̂(i) =
Npart∑
p=1

Ĩpŵp(Xp,i − ˆX(i))(Xp,i − ˆX(i))′ (19)

The indicator function Ĩp causes the summations in (18) and (19) to be taken
over only those particles that are tracking target i. The permutation symmetry
issue mentioned in Section 3 comes to the forefront here. Notice that it is not
necessarily true that partition i of particle j is tracking the same target that
partition i of particle j + 1 is tracking. Therefore, before evaluation of (18) or
(19) can be made, we must ensure that partition i, (i = 1...T ), corresponds to
the same target in each particle. In our work, this is accomplished by taking care
to retain the ordering during the particle proposal process.
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4 Rényi Information Divergence For Sensor Management

Our paradigm for tasking the sensor is to choose the sensing action (i.e. sensing
modality or sensor pointing direction) that maximizes the expected information
gain. To that end, we introduce the Rényi information divergence (20), also
known as the α-divergence, between two densities f1 and f0:

Dα(f1||f0) =
1

α− 1
ln

∫
fα
1 (x)f1−α

0 (x)dx (20)

The function Dα gives a measure of the distance between the two densities f0

and f1. In our application, we are interested in computing the divergence between
the predicted density p(X|Zk−1) and the updated density after a measurement
is made, p(X|Zk).

Dα(p(X|Zk)||p(X|Zk−1)) =
1

α− 1
ln

∑

X

p(X|Zk)αp(X|Zk−1)1−α (21)

The integral in (20) reduces to a summation since any discrete approximation
of p(X|Zk−1) only has nonzero probability at a finite number of target states.
After some algebra and the incorporation of Bayes rule (3), one finds that this
quantity can be simplified to

Dα(p(X|Zk)||p(X|Zk−1)) =
1

α− 1
ln

1
p(z|Zk−1)α

∑

X

p(X|Zk−1)p(z|X)α (22)

Our particle filter approximation of the density reduces (22) to

Dα(p(X|Zk)||p(X|Zk−1)) =
1

α− 1
ln

1
p(z)α

Npart∑
p=1

wpp(z|Xp)α (23)

where

p(z) =
Npart∑
p=1

wpp(z|Xp) (24)

We would like to make the divergence between the current density and the
density after a new measurement has been made as large as possible. This indi-
cates that the sensing action has maximally increased the information content of
the measurement updated density, p(X|Zk) , with respect to the density before
a measurement was made, p(X|Zk−1).

Of course, we cannot calculate (23) exactly until after the measurement at
time k has been made. However, we can calculate the expected value of this quan-
tity for different sensing actions. We propose as a method of sensor management,
then, calculating the expected value of (23) for each of the m, (m = 1...M) pos-
sible sensing actions and choosing the action that maximizes the expectation.
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In this notation m refers to any possible sensing action under consideration,
including but not limited to sensor mode and sensor beam positioning. In this
manner, we say that we are making the measurement that maximizes expected
information gain. Notice that this is a greedy scheme, which chooses to make
the measurement that optimizes information gain for the next time step.

The expected value of (23) may be written as an integral over all possible
outcomes zm when performing sensing action m:

< Dα >m=
∫

dzmp(zm|Zk−1)Dα(p(X|Zk)||p(X|Zk−1)) (25)

In the special case where measurements are thresholded and are therefore
either detections or no-detections, this integral reduces to

< Dα >m= p(z = 0|Zk−1)Dα|m,z=0 + p(z = 1|Zk−1)Dα|m,z=1 (26)

Which, using (23) results in

< Dα >m=
1

α− 1

1∑
z=0

p(z)ln
1

p(z)α

Npart∑
p=1

wpp(z|Xp)α (27)

Implementationally, the value of equation (27) can be calculated for a host
of possible actions using only a single loop through the particles.

In summary, our sensor management algorithm is a recursive algorithm that
proceeds as follows. At each occasion where a sensing action is to be made,
we evaluate the expected information gain as given by (27) for each possible
sensing action m. We then select and make the sensing action that gives maximal
expected information gain.

We note here that the α parameter may be used to adjust how heavily one
emphasizes the tails of the two distributions. In the limiting case of α → 1 the
Rényi divergence becomes the more commonly known Kullback-Leibler (KL)
discrimination (28).

lim
α→1

Dα(f1||f0) =
∫

f0(x)ln
f0(x)
f1(x)

dx (28)

5 Simulation Results

We test the performance of the sensor management scheme by considering the
following model problem. We have three targets moving on a 12x12 sensor grid.
Each target is modeled using the four-dimensional state vector [x, ẋ, y, ẏ]′ . Tar-
get motion is simulated using a constant-velocity (CV) model with a (relatively)
large diffusive component. The trajectories have been shifted and time delayed
so that there are two times during the simulation where targets cross paths.

The target kinematics assumed by the filter (2) are CV as in the simulation.
At each time step, a set of L (not necessarily distinct) cells are measured. The
sensor is at a fixed location above the targets and all cells are always visible to the
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sensor. When measuring a cell, the imager returns either a 0 (no detection) or a 1
(detection) governed by Pd, Pf , and SNR. This model is known by the filter and
used to evaluate (3). In this illustration, we take Pd = 0.5, and Pf = P

(1+SNR)
d ,

which is a standard model for thresholded detection of Rayleigh returns.
We contrast in this section the performance of the tracker when the sensor

uses a non-managed (periodic) scheme versus the performance when the sensor
uses the management scheme presented in Section 4. The periodic scheme mea-
sures each cell in sequence. At time 1, cells 1...L are measured. At time 2, cells
L + 1...2L are measured. This sequence continues until all cells have been mea-
sured, at which time the scheme resets. The managed scheme uses the expected
information divergence to calculate the best L cells to measure at each time.

For the simulations that follow, we have taken α in (27) near 1. However, we
still use the Rényi formulation of (20) rather than the KL formulation of (28)
because the Rényi formulation provides some computational advantages.

In Fig. 1, we give a single-time snapshot, which graphically illustrates the
difference between the two schemes. On the left, we show the managed scheme
and on the right the periodic scheme. In both panes, the three targets are marked
with an asterisk, the covariance ellipses of the estimated target position are
shown, and we use grayscale to indicate the number of times each cell has been
measured at this time step.

Fig. 1. A Comparison of Non-Managed and Managed Tracking. (L) Using Sensor Man-
agement, and (R) Using a Periodic Scheme. With Sensor Management, Dwells are Only
Used in Areas that Contain Targets and the Covariance Ellipses are Much Tighter.

Qualitatively, in the managed scenario the measurements are focused in or
near the cells that the targets are in. Furthermore, the covariance ellipses, which
reflect the current state of knowledge of the tracker conditioned on all previous
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measurements, are much tighter. In fact, the non-managed scenario has confusion
about which tracks correspond to which target as the covariance ellipses overlap.

A more detailed is provided in the Monte Carlo simulation results of Figure
2. The sensor management algorithm was run with L = 24 (i.e. was able to scan
24 cells at each time step) and is compared to the non-managed scheme with 24
to 312 looks. The unmanaged scenario needs approximately 312 looks to equal
the performance of the managed algorithm in terms of RMSE error. We say
that the sensor manager is approximately 13 times as efficient as allocating the
sensors without management.
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Fig. 2. Median and Mean Error vs. Signal To Noise Ratio (SNR). Managed Perfor-
mance With 24 Looks is Similar to Unmanaged Performance With 312 Looks.
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In addition, we have investigated the performance of the sensor management
algorithm with different values of α in (27) under the same set of simulation
parameters. As shown in 3, it appears that in the case under consideration that
the technique is rather insensitive to the choice of α. We anticipate that values
of α that deviate from unity may be useful in the case of model mismatch.
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Fig. 3. Performance of the Sensor Management Technique for Different α.

6 Conclusion

In this paper, we have proposed an algorithm for multiple target tracking and
sensor management. The central element of interest in both the target track-
ing and sensor management schemes is the posterior density p(X|Z), which is
approximated using particle filtering methods.

The particle filter implementation we have proposed has three main benefits.
First, by nature of being a particle filter implementation, it allows for non-linear
measurement to state coupling, non-linear state evolution (target motion), and
non-Gaussian densities. Second, the formulation explicitly enforces the multi-
target nature of the problem. Each particle simultaneously postulates both the
number of targets and their states, both of which are unknown. Finally, the
particle filter implementation breaks the computational logjam that grid-based
techniques have presented in the past. This makes this technique applicable to
larger scale problems.

The information-based sensor management scheme presented in this paper
is based on computing the expected information gain for each sensor tasking
under consideration. The sensor management algorithm is integrated with the
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target tracking algorithm in that it too uses the posterior density p(X|Z). In
this case, the posterior is used in conjunction with target kinematic models and
sensor models to predict which measurements will provide the most information
gain. In simulated scenarios, we find that the tracker with sensor management
gives similar performance to the tracker without sensor management while using
a factor of 13 fewer sensor dwells.

There are two interesting directions in which we see this work evolving. First,
this method is amenable to incorporating auxiliary information such as ground
elevation maps and sensor trajectories. For example, if the appropriate auxiliary
information were incorporated, this method would clearly never choose to make
a measurement in a region that was not visible to the sensor due to hill regions
between the sensor and the desired look location. Second, the current algorithm
is a greedy algorithm, choosing to make the measurement that is best at the
current time step. It would be beneficial to extend the methodology to plan
several time instances in the future.
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