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ABSTRACT

We consider the problem of optimal waveform selection. We would
like to choose a small subset from a given set of waveforms that
minimizes state prediction mean squared error (MSE) given the past
observations. This differs from previous approaches to this problem
since the optimal waveform cannot be computed offline; it requires
the previous observations. Since the optimal solution to this subset
selection problem is combinatorially complex, we propose aconvex
relaxation of the problem and provide a low complexity suboptimal
solution. We present a specific model and show that the performance
of this suboptimal procedure approaches that of the optimal.

1. INTRODUCTION

Over the past decade, the problem of optimal waveform designhas
found important applications in synthetic aperture radar (SAR), au-
tomatic target recognition and radar astronomy [1]. Based on the
application, waveform design may depend on various optimality cri-
teria, e.g., target classification [2], accurate reconstruction of a high
resolution radar image [3], or estimating a set of target parameters.
One implication of choosing the set of transmitted waveforms opti-
mally is that the backscattered signals will contain maximum target
information.

Most of the work in the area of waveform design involves find-
ing the best functional form of the waveforms suited to a particular
task, e.g., design of waveforms from the radar ambiguity function for
narrowband signals [4] or design of wideband waveforms to resolve
targets in dense target environments [5]. In this paper, we focus on
the optimal waveform selection problem rather than the design of ac-
tual waveforms. We would like to choose only a small subset from
a given set of waveforms. This restriction is typical in radar systems
where there is a constraint on resources such as energy. To assess the
performance of a particular subset of waveforms, we need to define
an optimization criterion such as expected reward or risk.

The problem of choosingp out of M possible waveforms be-
comes a high complexity combinatorial optimization problem. E.g.,
if there areM = 128 waveforms and we need to selectp = 32 el-
ement subset, there are more than1030 combinations of indices that
need to be checked. As a result, significant work has been focussed
on approximation methods based on convex relaxation which lead to
sparse solutions. Complexity penalties have also been usedto find
sparse solutions to such problems [6]. One type of convex penalty is
the lasso, a shrinkage method which imposes anl1-norm constraint
on the optimization problem [7]. By nature of the constraint, making
the weighting of the constraint larger causes some of the coefficients
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to be zero thus giving rise to a suboptimal sparse solution tothe sub-
set selection problem. Recent work advocates the use ofl1-norm
constrained convex optimization problems to obtain spare represen-
tations [6]. Most of these problems deal with sparse regression and
are offline strategies where the solution to the problem is found based
on accumulated data.

In this paper, we consider the expected state prediction MSEas
a measure of performance and impose the problem of finding theop-
timal subset that minimizes this expected reward given the past mea-
surements (online strategy). We relax this combinatorially complex
problem into an optimization problem underl1-norm constraint and
propose a low complexity suboptimal solution whose performance
approaches that of the optimal subset selection. We then consider a
numerical example of this approach and provide simulation results
to compare the various solutions.

The organization of the paper is as follows: In Section 2, we
present the waveform selection problem. Section 3 proposesa sub-
optimal solution. In Section 4, we solve the problem for a specific
model and Section 5 provides simulation results. We conclude this
paper in Section 6.

2. PROBLEM FORMULATION

We consider the waveform selection problem for a hyper-spectral
radar system, where the radar can transmit and receive energy over
multiple channels simultaneously. We restrict the number of wave-
forms transmitted at any time to be a small subset withp out of M
available waveforms. Denote the state at timet asst and let the re-
ceived signals corresponding to a single transmit waveformφi be
denoted asyi

t, i = 1, . . . , M . We restrict our attention to single
stage policies, i.e., myopic policies that seek to maximizean ex-
pected reward conditioned on the immediate past.

Let {i1, . . . , ip} ∈ {1, . . . , M} denote the indices of thep dif-
ferent waveforms taken from a set ofM (M ≥ p) waveforms. We
solve the optimal subset selection problem by maximizing the ex-
pected reduction in the variance of the optimal state estimator after
an action (choosingp out ofM waveforms) is taken:

max
i1,...,ip

{
E

[
‖st − E [st|yt−1] ‖2|yt−1

]
−

E
[
‖st − E

[
st|yi1

t , . . . , y
ip

t ,yt−1

]
‖2|yt−1

] }
. (1)

Since the first term is independent of{i1, . . . , ip}, the maximization
in (1) can be equivalently expressed as

min
i1,...,ip

E
[
‖st − ŝt(i1, . . . , ip)‖2|yt−1

]
, (2)



where

ŝt(i1, . . . , ip) = E
[
st|yi1

t , . . . ,y
ip

t ,yt−1

]
. (3)

The minimization in(2) requires one to evaluate (3) for all
(

M
p

)
pos-

sibilities of i1, . . . , ip. Two fundamental difficulties are encountered
in solving (2): computation of the conditional expectation (3); and
combinatorial minimization of (2). In the tracking examples consid-
ered here the computation of (3) is not difficult. Since the complex-
ity of problem is exponential inM (for fixed p/M ), we propose a
low complexity suboptimal solution for (2) whose performance ap-
proaches that of the optimal one.

3. PROPOSED SOLUTION

As an alternative to exhaustively searching over
(

M
p

)
possible sub-

sets we pose the following sparsity constrained predictionsurrogate:

min
γ

E

[

‖st −
∑

i

γigi(y
1
t , . . . ,y

M
t , yt−1)‖2|yt−1

]

+ β‖γ‖l,

(4)

whereβ ≥ 0, ‖γ‖l, 0 ≤ l ≤ 1 is a sparseness inducing penalty
and {gi} is a set of base predictors ofst and the linear combi-
nation of these predictors approximates the exact solutionin (3).
When ‖γ‖l = ‖γ‖0 is the l0-norm, gi(y

1
t , . . . , y

M
t , yt−1) =

gi(y
i1
t , . . . ,y

ip

t ,yt−1) = ŝt in (3), i indexes over the
(

M
p

)
com-

binations of indicesi1, . . . , ip, the solution of(4) yields the opti-
mal solution (2) for sufficiently largeβ. A surrogate investigated
by many [7, 8] for thel0-norm penalty is thel1-norm penalty‖γ‖1

which will be adopted here. In the special case thatgi depends only
on a single variableyi

t the regression in (4) is equivalent to using a
simple generalized additive model (GAM) [9]. We further assume
that gi(y

i
t) = E

[
st|yi

t,yt−1

]
. Thus the constrained prediction

problem can be formulated as

min
γ

E

[
‖st −

M∑

i=1

γiE
[
st|yi

t, yt−1

]
‖2|yt−1

]
+ β‖γ‖1, (5)

andβ is chosen such that exactlyp out of theM γi’s are nonzero.
This quadratic optimization inγ underl1-norm constraint is a con-
vex problem and can be evaluated in a straightforward fashion using
standard techniques, e.g., [7,8]. We first find the range ofβ that gives
rise to a sparse solution with exactlyp nonzero elements and fix it
to that value in the range which gives the minimum unconstrained
error. We take the indices of thep nonzero components ofγ corre-
sponding to thisβ as the solution to the waveform subset selection
problem in(2).

4. NUMERICAL STUDY

To illustrate this approach, we consider the following problem: At
time t = 1, we assume without loss of generality that an arbitrary
waveform indexη from {1, . . . , M} is chosen and waveformφη is
transmitted into the medium. The received signal at the firststage
can then be written as

y1 = L(φη)s1 + n1 = Lηs1 + n1, (6)

whereL(·) is based on the channel model,n1 is receiver noise, and
s1 is the initial state. We consider the state update equation as a hid-
den Markov model (HMM), equivalent to a Gaussian mixture model,

defined as

st = A st−1 + It w1,t + (1 − It) w0,t, t = 2, 3, . . . , (7)

where{wi,t, i = 0, 1}t are independent Normal random vectors
with meanµi and covariance matrixRwi

, A is a fixed matrix and
It are i.i.d Bernoulli random variables with success probability q.

Assume the initial states1 is a Normal random vector with zero
mean and covariance matrixRs. Receiver noises{nt} are i.i.d Nor-
mal with zero mean and covariance matrixRn and{nt, {wi,t, i =
0, 1}, It, s1} are all independent. The model (7) captures the non-
Gaussian nature of the tracking problem where the state dynamics
switch at random between the hidden states It = 1 and It = 0.
The received signal at timet = 2 corresponding to transmission of
waveformφi can be written as

y
i
2 = Lis2 + n

i
2, i = 1, . . . , M. (8)

Our goal is to maximize expected reduction in the variance ofthe
state estimator after sending the waveforms{φik

}p
k=1

and receiving

the backscatteryi1
2 , . . . ,y

ip

2 , i.e.,

min
i1,...,ip

E
[
‖s2 − E

[
s2|yi1

2 , . . . ,y
ip

2 ,y1

]
‖2|y1

]
. (9)

For the proposed GAM prediction problem underl1-norm constraint,
we need to minimize

E

[
‖s2 −

M∑

i=1

γiE
[
s2|yi

2,y1

]
‖2|y1

]
+ β‖γ‖1 (10)

with respect toγ and use the nonzero indices obtained through this
method as our solution to the subset selection problem.

Given I2 = k ∈ {0, 1}, the random vectorsx2, yi
2 andy1 are

jointly Gaussian. Lety = [yi1
2

T
, . . . ,y

ip

2

T
,y1

T ]T . Then the joint
distribution can be written as

(
s2

y

)

I2=k

= N
[(

µk

µ
y,k

)
,

(
Rs2,k Rs2,k,y

RH
s2,k,y Ry,k

)]
, (11)

where

µ
y,k =

[[
LH

i1 , . . . ,LH
ip

]H
µk

0

]
, (12)

Rs2,k,y =
[
(Rs2,k)

[
L

H
i1 , . . . ,L

H
ip

]
,ARsL

H
η

]
, (13)

Rs2,k = Rwk
+ ARsA

H . (14)

If y1 is aN × 1 vector, thenRy is aN(p + 1) × N(p + 1) matrix
whosemn-th block is given by

Ry,km,n = LimRs2,kL
H
in

+ Rnδ(m − n), 1 ≤ m, n ≤ p

Ry,km,p+1
= R

H
y p+1,m

= LimRsL
H
η , 1 ≤ m ≤ p.

Ry,kp+1,p+1
= LηRsL

H
η + Rn.

Since the random vectorss2, y
i1
2 , . . . ,y

ip

2 ,y1 are jointly Gaussian,
the conditional mean ofs2 giveny and I2 = k can be evaluated as

E
[
s2|yi1

2 , . . . , y
ip

2 ,y1, I2 = k
]

= µk + Rs2,k,yR
−1

y,k

(
y − µ

y,k

)
,



and the conditional mean estimator is

E
[
s2|yi1

2 , . . . ,y
ip

2 ,y1

]
=

1∑

k=0

E
[
s2|yi1

2 , . . . ,y
ip

2 ,y1, I2 = k
]

P
(

I2 = k|yi1
2 , . . . ,y

ip

2 ,y1

)
, (15)

where the conditional probability of I2 can be found using Bayes
formula:

Πk(y) = P(I2 = k|y)

= P
(

I2 = k|yi1 , . . . ,yip , y1

)

=
f(y|I2 = k)P(I2 = k)∑

i f(y|I2 = i)P(I2 = i)
, (16)

wheref(y|I2 = k)

=
|Ry,k|−0.5

(
√

2π)N/2
exp

(
−0.5(y − µ

y,k)H
R
−1

y,k(y − µ
y,k)

)

and P(I2 = 1) = q. Thus equation (15) can be rewritten as

E [s2|y] =

1∑

k=0

Πk(y)
(
µk + Rs2,k,yR

−1

y,k

(
y − µ

y,k

))
. (17)

The estimator given in (17) is in closed-form and hence the major
complexity in finding the optimal solution is in its evaluation for
all

(
M
p

)
possible combinations of waveforms. The MSE criteria in

(9) can now be evaluated by substituting for the conditional expec-
tation from (17). For the suboptimal criterion in (10), we need to
find E

[
s2|yi

2,y1

]
which is a specific case of our previous deriva-

tion with p = 1. It is worthwhile to note that even in the case where
the states follow a Gaussian process, the solution to (10) is subopti-
mal, i.e., it is not equivalent to the conditional expectation (3). This
is because the predictor does not take into account the spatial cor-
relation between the received signalsy1

2, . . . ,y
M
2 . However, if we

replace the predictor in (10) by
∑

i,j γi,jE
[
s2|yi

2, y
j
2,y1

]
, then the

l1-norm constrained solution can be shown to be the optimal solution
for the Gaussian case.

5. SIMULATION RESULTS

Based on the formulation in Section 4, we perform a simulation for
the simple case ofM = 5 different waveforms. This will allow us
to quantify the gap between the optimal solution (3) and the solution
to the approximation (10). We assume a radar receiver array with
N = 25 antenna elements so that the received signalsy1,y2 are
25 × 1 vectors. The state vector is assumed to be aNs × 1 vector
with Ns = 10. The correlation matricesRn,Rw0

,Rw1
, Rs are

identity matrices. The mean vectorsµ0 andµ1 are10 × 1 vectors
consisting of all zeros and all0.1 respectively. The Bernoulli random
variables It takes the value1 with probabilityq = 0.4. We assumed
the channel model to be linear and selected the waveforms{φi}M

i=1

at random over25 dimensional unit sphere. These waveforms are
unit norm and have cross correlation less than0.1. We simulated
the performance of the optimal subset selector along with the l1-
norm constrained convex problem under this setting. We solved the
l1-norm constraint quadratic minimization problem using theitera-
tive thresholding technique proposed by Daubechies [8]. The per-
formance criteria considered in the simulations is shown inTable1.

We first present the MSE of thel1-norm penalized solution found
from (5) (solid line, GAM with l1) as a function of the sparseness

regularization parameterβ in Fig. 1. For each value ofβ, we also
show the correspondingl0-norm of optimalγ (on top of the solid
line) in the figure. The MSE is a increasing function ofβ and as
explained earlier, we notice that increasingβ induces more sparse-
ness in the solution. Whenβ is large, the MSE converges to the
variance of the state parameter. We also plot the MSE of the optimal
subset selection solution (dashed line) corresponding to thel0-norm
obtained through thel1-norm constrained solution. We see a clear
difference in performance between the two techniques. Thisis be-
cause of two main reasons: The primary reason is the fact thatwe
find a suboptimal solution by assuming the GAM estimator of the
form in (5) rather than the optimal estimator given in (3). The other
reason is due to the fact that we solve the minimization problem sub-
ject to anl1-norm constraint rather than anl0-norm constraint.
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Fig. 1. Minimum MSE for optimal subset selection (dotted and
dashed-dotted line) andl1-norm constrained solution (solid line)with
respect toβ. ‖γ‖0, corresponding to the number of nonzero com-
ponents in the optimal solution ofγ for constrained optimization is
shown adjacent to the solid line as a function ofβ.

In Fig. 2, we plot the performance of state estimators mentioned
in Table 1. We observe that the performance of GAM underl0-
norm constraint is indeed found to be optimal for‖γ‖0 = 1 case
and clearly suboptimal for other cases due to the restrictive additive
model. Finally we see that our proposed solution has a significant
performance gain as compared to the simplel1-norm constrained
minimization and approaches the optimal subset selection perfor-
mance. This suggests that we can considerably reduce the computa-
tional complexity of the problem and at the same time achievenearly
optimal performance using such a design approach.

6. CONCLUSIONS

We considered the problem of optimal waveform selection. Weop-
timally choose a small subset of waveforms that minimizes the state
prediction MSE given the past observations. We observe thatthe
optimal subset selection is a combinatorially complex optimization
problem and hence infeasible. We proposed a suboptimal solution
through convex relaxation which achieves near optimal performance.
We considered a particular model and compared the performance of
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Approach Form of predictor Constr.

Subset Selection E
[
s2|yi1

2 , . . . ,y
ip

2 ,y1

]
-

GAM + l0
∑

i γiE
[
s2|yi

2,y1

]
‖γ‖0

GAM + l1
∑

i γiE
[
s2|yi

2,y1

]
‖γ‖1

Optimal predictor E
[
s2|y1

2, . . . ,y
M
2 , y1

]
-

Proposed Solution Use optimal from GAM +l1 ‖γ‖1

in subset selection

Table 1. Form of predictors

the various strategies through simulation. This problem isa natu-
ral extension to the problem of optimal energy allocation between
two stages of transmission under energy constraints using sequential
design strategies [10, 11]. One extension is to solve this problem
simultaneously for both optimal waveform selection and optimal en-
ergy allocation.
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