
ENTROPIC GRAPHS FOR IMAGE
REGISTRATION

by

Huzefa Firoz Neemuchwala

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biomedical Engineering)

in The University of Michigan
2005

Doctoral Committee:

Professor Alfred O. Hero III, Co-chair
Professor Paul L. Carson, Co-chair
Professor Charles R. Meyer
Professor Jeffrey A. Fessler

ABSTRACT

ENTROPIC GRAPHS FOR IMAGE REGISTRATION

by
Huzefa Firoz Neemuchwala

Co-chairs: Alfred O. Hero III and Paul Carson

Given 2D or 3D images gathered via multiple sensors located at different positions, the

multi-sensor image registration problem is to align the images so that they have an identical

pose in a common coordinate system. Image registration methods depend crucially upon a

robust image similarity measure to guide the image alignment. This thesis concerns itself

with a new class of such similarity measures. The launching point of this thesis is the en-

tropic graph based estimate of Rényi’s α-entropy developed by Ma for image registration.

This thesis extends this initial work to develop other entropic graph-based divergence mea-

sures to be used with advanced higher dimensional features. A detailed analysis of entropic

graphs is followed by a demonstration of their performance advantages relative to conven-

tional similarity measures. This thesis introduces techniques to extend image registration

to higher dimension feature spaces using Rényi’s generalized α-entropy. The α-entropy

is estimated directly through continuous quasi-additive power-weighted graphs such as

the minimal spanning tree (MST) and k-Nearest Neighbor graph (kNN). Entropic graph

methods are further used to approximate similarity measures like the α-mutual informa-

tion, non-linear correlation coefficient, α-Jensen divergence, Henze-Penrose affinity and

Geometric-Arithmetic mean affinity. Entropic-graph similarity measures are applied to

problems in breast Ultrasound image registration for cancer management, geo-stationary

satellite registration, feature clustering and classification and for atlas based multi-image

registration. This last work is a novel and significant application of divergence estima-

tion for registering several images simultaneously. These similarity measures offer robust

registration benefits in a multisensor environment. Higher dimensional features used for

this work include basis functions like multidimensional wavelets, independent component

analysis (ICA) and discrete cosine transforms.

1

©
Huzefa Firoz Neemuchwala 2005

All Rights Reserved

to my daughter Zainab
who puts a smile on my face every morning.

ii

ACKNOWLEDGEMENTS

I have had two advisors, two mentors really, each with his own style, each with his

own philosophy and each with his own unique contribution toward this thesis, toward my

intellectual advancement and toward my outlook to life. While it is not my intention to

compare their contributions, I would certainly like to convey my gratitude to them.

I would like to thank Professor Alfred Hero for giving me this opportunity, for his

trust in me and his encouragement, for teaching me the value of time, the value of abstract

thinking and a lot of other concepts in electrical engineering!

I would like to thank my co-advisor Professor Paul Carson, who had a major role in

my coming to UM and my continued education here, even as I struggled. He has had me

thinking on challenging practical issues in engineering, patiently compelling me to discuss

relevancy to medical imaging even as I sometimes drifted into Utopian pursuits!

I would like to thank Professor Charles ’Chuck’ Meyer for supporting me through this

thesis, for encouraging my methods, for discussions on higher-order mutual information

and for his generosity in extending me more than my share of lab resources.

I would like to thank Professor Jeffrey Fessler for his contribution in my work. Never

have I walked out of his office without a new idea or a new approach toward my problems.

I would like to thank my wife Nadia (Nafisa) for her support in this long long period,

sometimes enduring separation for our sake but never losing faith, never losing hope, al-

ways inspiring always smiling. And how can I forget my daughter, Zainab, a blessing

straight from the Heavens. She has made the last four months seem so short!

iii

I would like to thank my parents, Firoz and Saeeda Neemuchwala for their support

and confidence in me as I pursued this thesis, for their contribution toward what I am and

what I stand-for today. I would like to thank my brother Zoher and his family including

my sister-in-law Shirin and their kids Sakina and Alifiya and my younger brother Moiz for

their love and affection and constant support as I spent these years studying.

I would like to thank Sharon Karaghan, my office-mate with whom I could always have

a discussion on any topic from Indian food to my job-hunt! I would like to thank Jochen

Krucker and Jerry LeCarpentier, for their help as I started out in the lab, learning the ropes.

Both of them are now close friends. I would like to thank Sakina who has been an exciting

colleague to work with and has always been eager to participate in the research. I would

like to thank my friends, colleagues, lab-mates (in no specific order): Desmond, Titaina,

Bing, HyunJin, Ram, Roshni, Derek, Jose, Brian, Oliver, Rich, Aaron, Thyag, Narayan

(PSLN) and many others. I would like to thank Tarry Goble, Carol Cribbins and Maria

Steele for helping me navigate through all the red-tape.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF ALGORITHMS . xvi

CHAPTER

I. Introduction . 1

1.1 Image Registration . 1
1.2 Previous approaches to image registration and their limitations . 3
1.3 Contributions of Thesis . 6
1.4 Outline of the thesis . 10
1.5 Publication related to thesis . 11

II. Image fusion and registration . 13

2.1 Motivations for Fusion in Imaging 15
2.2 The Role of Image Registration in Sensor Fusion 18
2.3 Chief Components of an Image Registration System 19
2.4 Historical Perspective on Image Registration 20
2.5 Classification of Sensor Fusion Techniques 21

2.5.1 Classification by Levels of Representation 22
2.5.1.1 Feature-level fusion 23
2.5.1.2 Symbol-level fusion 23

III. Entropic Feature Similarity and Dissimilarity Measures 27

3.1 Statistical Framework . 27
3.2 Rényi Entropy and Divergence 28
3.3 Mutual Information and α-Mutual Information 29

3.3.1 Relation of α-MI to Chernoff Bound 35
3.4 α-Jensen Dissimilarity Measure 36

v

3.5 α-Geometric-Arithmetic Mean Divergence 37
3.6 Henze-Penrose Affinity . 37
3.7 Entropy Estimation and Divergence 38

IV. Entropic Graph Estimators . 41

4.1 Minimal Spanning Tree Entropy Estimator 43
4.2 Nearest Neighbor Graph Entropy Estimator 46
4.3 Entropic Graph Estimate of Henze-Penrose Affinity 49
4.4 Entropic Graph Estimators of α-GA and α-MI 53

4.4.1 Implementation Issue 57
4.5 A non-linear correlation measure 57

4.5.1 Numerical experiments with NLCC 60

V. Feature-based Matching . 64

5.1 Local Tag Features . 64
5.2 ICA Basis Projection Features 68

5.2.1 Discrete vs. Continuous Features 71
5.3 Multiresolution Wavelet basis features 71

5.3.1 Significance of spatial coordinates in feature definition 74
5.4 Sample image registration problem 75

VI. Computational Considerations . 79

6.1 Complexity of the MST . 79
6.2 Previous efforts in making MST more efficient 82
6.3 Modified Projection-decomposition algorithm (MPDA) 83
6.4 Correctness . 87
6.5 Complexity Analysis . 90

6.5.1 Uniformly Distributed Point Set 91
6.5.2 Normally Distributed Point Set 92

6.6 Discussion and Future Work: Predicting ε 92
6.6.1 Heuristic approach 92
6.6.2 MST construction using the kNN graph 94
6.6.3 Relation to intrinsic dimensionality 95

6.7 Acceleration of the kNN Graph construction 96
6.8 Computation time . 97

VII. Applications . 99

7.1 Ultrasonic Breast Image Registration 99
7.1.1 Feature driven entropic graph registration of ultrasound

images . 102

vi

7.1.2 Database of breast UL images 103
7.1.3 Experiments . 106

7.2 Multimodal Face Retrieval . 115
7.3 Multimodal satellite image registration 116

7.3.1 Feature definition for registration 121
7.4 Local feature matching . 122

7.4.1 Deformation localization 125
7.4.1.1 Local deformation using B-Splines 126

7.4.2 Feature discrimination algorithm 127
7.4.3 Local Feature matching Results 128

7.5 Simultaneous multi-image registration 129
7.5.1 Divergence estimation for multi-image registration . . 132
7.5.2 Quantitative performance evaluation in multi-image reg-

istration . 133
7.6 Discussion and Future Work . 136

VIII. Conclusions . 138

APPENDIX . 142

BIBLIOGRAPHY . 184

vii

LIST OF FIGURES

Figure

1.1.1 Image fusion: (a) Co-registered images of the face acquired via visi-
ble light and longwave senors. (b) Registered brain images acquired by
time-weighted responses . Face and brain images courtesy ([33]) and
([25]) respectively. 2

2.0.1 Data fusion: The human brain performs complex data fusion from up to
five different sensors upon every sensory stimulation by an appropriate
signal. 14

2.3.2 Block diagram of an image registration system 20

2.4.3 MRI images of the brain, with additive noise. (a) T1 weighted I1, (b)
T2 weighted I2. Images courtesy [25]. Although acquired by a single
sensor, the time weighting renders different intensity maps to identical
structures in the brain. (c) Joint gray-level pixel coincidence histogram
is clustered and does not exhibit a linear correlation between intensities. 21

2.5.4 Single-pixel gray level coincidences are recorded by counting the num-
ber of co-occurrences of a pair of gray levels in the reference (a) and in
the secondary (b) images at a pair of homologous pixel locations. Here
the secondary image (b) is rotated by 15◦ relative to the reference image
(a). 24

2.5.5 Local tags features applied to image registration. Each pixel is labeled
by a 8×8 tag type extracted using Geman’s [44, 4] adaptive thresholding
technique. Occurrences and coincidences of tag labels can be mapped to
a coincidence histogram like Fig. 3.3.1 24

viii

2.5.6 Symbol-level fusion: An abstraction of feature-level fusion where rela-
tions between features are expressed as features themselves. (a) Here the
symbolic relation between two pixel neighborhoods is captured through
the magnitude and direction of vectorR. (b) The same vector R has now
moved from its position in Ultrasound image I1 due to the rotation of I1.
Tracking the change in position ofR may help identify common features
and enable fusion. 25

3.3.1 Joint coincidence histograms for single-pixel gray level features. Both
horizontal and vertical axes of each panel are indexed over the gray level
range of 0 to 255. (a): joint histogram scatter plot for the case that
reference image (X0) and secondary image (X1) are the same slice of
the US image volume (Case 142) at perfect 0◦ alignment (X1 = X0).
(c): same as (a) except that reference and secondary are misaligned by 8◦

relative rotation as in Fig. 3.3.2. (b): same as (a) except that the reference
and secondary images are from adjacent (2mm separation) slices of the
image volume. (d): same as (c) except that images are misaligned by 8◦

relative rotation. 32

3.3.2 Single-pixel gray level coincidences are recorded by counting number
of co-occurrences of a pair of gray level in the reference (a) and in the
secondary (b) images at a pair of homologous pixel locations. Here the
secondary image (b) is rotated by 15◦ relative to the reference image (a). 33

3.3.3 Mutual information based registration of multisensor, visible and ther-
mal infrared, images of Atlanta acquired via satellite [105]. Top row (in-
registration): (a) Visible light image I1 (b) Thermal image I2 (c) Joint
gray-level pixel coincidence histogram f̂0,1(z0, z1). Bottom row (out-
of-registration): (d) Visible light image, unaltered I1 (e) Rotationally
transformed thermal image T (I2) (f) Joint gray-level pixel coincidence
histogram shows wider dispersion f̂0,1(z0, zT). 34

4.1.1 (a) A set of n = 100 uniformly distributed points {Zi}ni=1 in the unit
square in R2 and (b) the corresponding Minimal Spanning Tree (MST). 43

4.1.2 (a) A set of n = 100 normally distributed points {Zi}ni=1 in the unit
square in R2 and (b) the corresponding Minimal Spanning Tree (MST). 44

4.1.3 (a) Mean Length functions Ln of MST implemented with γ = 1 and (b)
Ln/
√
n as a function of n for uniform and normal distributed points. . . 45

4.2.4 (a) A set of n = 100 uniformly distributed points {Zi}ni=1 in the unit
square in R2 and (b) the corresponding k-Nearest Neighbor graph (k = 4). 47

ix

4.2.5 (a) A set of n = 100 normally distributed points {Zi}ni=1 in the unit
square in R2 and (b) the corresponding k-Nearest Neighbor graph (k = 4). 48

4.2.6 (a) Mean Length functions Ln of kNN graph implemented with γ = 1
and (b) Ln/

√
n as a function of n for uniform and Gaussian distributed

points. 49

4.2.7 (a) Mean Length functions Ln of Singe-Count kNN graph implemented
with γ = 1 and (b) Ln/

√
n as a function of n for uniform and normal

distributed points. 50

4.3.8 Illustration of MST for Gaussian case. Two bivariate normal distribu-
tions N (µ1,Σ1) and N (µ1,Σ1) are used. The ’x’ labeled points are
samples from f1(x) = N (µ1,Σ1), whereas the ’o’ labeled points are
samples from f2(o) = N (µ2,Σ2). (left) µ1 = µ2 and Σ1 = Σ2 and
(right) µ1 = µ2 − 3 while Σ1 = Σ2. 51

4.3.9 Illustration of kNN for Gaussian case. Two bivariate normal distribu-
tions N (µ1,Σ1) and N (µ1,Σ1) are used. The ’x’ labeled points are
samples from f1(x) = N (µ1,Σ1), whereas the ’o’ labeled points are
samples from f2(o) = N (µ2,Σ2). (left) µ1 = µ2 and Σ1 = Σ2 and
(right) µ1 = µ2 − 3 while Σ1 = Σ2. k = 4 52

4.3.10 Illustration of Henze-Penrose affinity for Gaussian case. Two bivariate
normal distributionsN (µ1,Σ1) andN (µ1,Σ1) are used. The ’x’ labeled
points are samples from f1(x) = N (µ1,Σ1), whereas the ’o’ labeled
points are samples from f2(o) = N (µ2,Σ2). (left) µ1 = µ2 and Σ1 = Σ2

and (right) µ1 = µ2 − 3 while Σ1 = Σ2. 52

4.3.11 Illustration of divergence and affinity functions, as a function of the dis-
tance between the means of two bivariate normal distributions, f1 and f2.
(a) αJensen divergence computed using MST, Friedman-Rafsky affinity
and αGeometric-Arithmetic affinity. (b) αJensen divergence computed
using kNNG and Single-count kNNG. 53

4.5.12 Illustration of the distances ei(o × x), ei(o) and ei(x) used in the α-MI
estimator (Equation 4.12) . 58

4.5.13 Illustration of modified distances ei(x) and ei(o) used to stabilize the
estimator (Equation 4.12), defining the non-linear correlation coefficient
(NLCC) . 59

x

4.5.14 The Nearest Neighbor Graph over the realizations {(oi × xi)}Ni=1 of the
paired features describes a monotone function in the plane. For this case,
the NLCC ρ̂ = 1 . 60

4.5.15 Comparison of Linear and non-linear correlation coefficient for a linear
model . 61

4.5.16 Comparison of Linear and non-linear correlation coefficient for a non-
linear model . 62

4.5.17 Plot of CC v/s NLCC for N = 50000 and a = 0.1 to 0.7071 62

5.1.1 (a) Feature tree structure used to pick tags for registration. (b) Feature
tree at leaf level shows examples of tag types used for registration . . . 66

5.1.2 Local tags features applied to image registration. Each pixel is labeled
by a 8×8 tag type extracted using Geman’s [44, 4] adaptive thresholding
technique. Occurrences and coincidences of tag labels can be mapped to
a coincidence histogram like Fig. 3.3.1 68

5.2.3 Subimages are projected onto the basis and the resultant coefficients
{Zref} and {Ztar} are used as features for registration. 69

5.2.4 16×16 ICA basis set obtained from training on randomly selected 16×16
blocks in 10 T1 and T2 time weighted MRI images. Only 64 of the 256
possible bases are shown. Features extracted from an image are the 64-
dimensional vectors obtained by projecting 16 × 16 sub-images of the
image on the ICA basis. 70

5.2.5 8 × 8 ICA basis set obtained from training on randomly selected 8 × 8
blocks in 10 Ultrasound image volumes. Features extracted from an
image are the 64-dimensional vectors obtained by projecting 8× 8 sub-
images of the image on the ICA basis. 70

5.3.6 Wavelet decomposition: Discrete Meyer Wavelet Basis. (a) Scale sub-
space and (b-d) three wavelet subspaces at level 1 decomposition. 73

5.3.7 Wavelet coefficients obtained by projecting visible and thermal satellite
images from Figure 3.3.3(a) and (b) onto each of the Meyer wavelet basis
shown in Figure 5.3.6. 74

5.4.8 (a) Original image, Iorig, is an UL image of the breast (b) Iorig is de-
formed by selectively filtering spatial frequencies to give Idef . Ilow−def

is not shown but it has an appearance similar to Iorig. 76

xi

5.4.9 (a) Pooled feature sample of image with itself {Zref

⋃
Zref}. (b) Pooled

feature sample with reference and target images {Zref

⋃
Ztar} 77

5.4.10 (a) Joint density of first harmonic DCT frequency from features {Zorig, Zlow−def}
when images are matched and (b) Joint density of first harmonic DCT
frequency from features {Zorig, Zdef} when images are mismatched. . . 77

6.1.1 Complexity of generating fully connected tree 81

6.3.2 (a) Disc-based acceleration of Kruskal’s MST algorithm from n2 log n to
n log n and (b) comparison of computation time for Kruskal’s standard
MST algorithm with respect to our accelerated algorithm. 88

6.4.3 (a) Bias of the n log n MST algorithm as a function of radius parameter
and (b) as a function of the number of nearest neighbors for uniform
points in the unit square. 89

6.6.4 Constructing the MST based on kNN based disc radius estimate could
be a problem in non-uniform distributions due to the slow convergence
of the length function . 94

6.6.5 Picking k-Nearest neighbors within a range ε using intersection of lists
of 1D ordered coordinates. 95

6.7.6 Approximate k-NNG: (a) Decrease in computation time to build approx-
imate kNNG for different ε, expressed as a percentage of time spent
computing the exact kNNG over a uniformly distributed points in [0, 1]8.
An 85% reduction in computation time can be obtained by incurring a
15% error in cumulative graph length. (b) Corresponding error incurred
in cumulative graph length. 97

7.1.1 Ultrasound (UL) breast scans from twenty volume scans of patients un-
dergoing chemotherapy. 105

7.1.2 Normalized average profiles of image matching criteria for registration
of UL breast images taken from two slices of the image volume database:
(a) MST-based α-Jensen and histogram-based α-MI for single pixel fea-
tures and (b) MST-based α-Jensen for 64D ICA coefficient vector features.107

xii

7.1.3 (a) Effect of additive Gaussian noise on the RMS error of the peak po-
sition of the Shannon-MI estimated using histograms on single-pixel in-
tensity gray levels, 8 × 8 tag features extracted using Geman’s [44, 4]
adaptive thresholding method and histograms on 8D ICA features binned
using Voronoi partitions. (b) RMS error for Shannon MI estimated us-
ing histograms on single-pixel intensity levels, α-Jensen difference di-
vergence estimated directly with the MST on single-pixels, 8D ICA co-
efficient vector features and 64D ICA coefficient vector features. These
plots are based on 250 repeated experiments from within the breast UL
volumetric database of 21 breast cancer patients undergoing therapy. The
two slices to be registered are spatially separated by 2mm. Search was
restricted to a maximum rotation angle of ±16◦. The confidence inter-
vals represent unit standard error in the computation of the mean of the
interval. 108

7.1.4 UL Images of the breast separated and rotationally deformed. (a) Cross-
sectional image through center of tumor. (b) Rotated cross-sectional im-
age acquired at a distance 5mm away from Image in (a). 111

7.1.5 Normalized average profiles of image matching criteria for registration
of UL breast images taken from two slices of the image volume database
under decreasing SNR. All plots are normalized with respect to the max-
imum variance in the sampled observations.(row 1) kNN-based estimate
of α-Jensen difference divergence between ICA features of the two im-
ages, (row 2) MST-based estimate of α-Jensen difference divergence
between ICA features of the two images, (row 3) NN estimate of α
Geometric-Arithmetic mean affinity between ICA features, (row 4) MST
based estimate of Henze-Penrose affinity between ICA features, (row
5) Shannon Mutual Information estimated using pixel feature histogram
method, (row 6) α Mutual Information estimated using NN graphs on
ICA features and lastly, (row 7) NN estimate of the Non-linear corre-
lation coefficient between the ICA feature vectors. Columns represent
objective function under increasing additive noise. Column 1-4 repre-
sent additive truncated Gaussian noise of standard deviation, σ = 0, 2, 8
and 16. Rotational deformations were confined to ± 16 degrees. 112

xiii

7.1.6 Rotational RMS error obtained from registration of UL imagery using
seven different image similarity/dissimilarity criteria namely αJensen
difference calculated using MST and kNN, Henze-Penrose affinity, αGeometric-
Arithmetic mean divergence, αMutual Information, NLCC and Shannon
MI. Shannon MI was computed using single-pixel intensity histograms
with 1 bin per intensity level. 64D ICA feature vectors were used with
MST or kNN graph to compute the other measures of divergence. These
plots are based on 250 repeated experiments from within the breast UL
volumetric database of 21 breast cancer patients undergoing therapy. The
two slices to be registered are spatially separated by 5mm. Search was
restricted to a maximum rotation angle of ±16◦. The confidence inter-
vals represent unit standard error in the computation of the mean of the
interval. 114

7.2.7 Sampling of faces in the Equinox V/LWIR face database [33]. The
database consists of 100 individual faces at various illumination, pose
and facial expression configurations. Each visible-light image is co-
registered to infrared counterpart by the camera. 117

7.2.8 Two examples of queries taken from the Equinox face database. 118

7.3.9 Visible-light image samples from multisensor satellite image database. . 119

7.3.10 Thermal image samples corresponding to visible-light images from mul-
tisensor satellite image database shown in Figure 7.3.9. 120

7.3.11 Images of downtown Atlanta obtained from Urban Heat Island project
[105]. (a) Thermal image (b) Visible-light image under artificial rota-
tional transformation . 121

7.3.12 Rotational RMS error obtained from registration of multisensor V/IR
Satellite imagery using six different image similarity/dissimilarity cri-
teria namely αJensen difference calculated using MST, kNN and kNN
’single-count’, Henze-Penrose affinity, αGeometric-Arithmetic mean di-
vergence, αMutual Information, and Shannon MI. Shannon MI was com-
puted using single-pixel intensity histograms with 1 bin per intensity
level. Wavelet feature vectors were used with MST or kNN graph to
compute the other measures of divergence. These plots are based on
250 repeated experiments from within the Satellite image database of
20 aerial images. Search was restricted to a maximum rotation angle
of ±16◦. The confidence intervals represent unit standard error in the
computation of the mean of the interval. 123

xiv

7.3.13 Average affinity and divergence, over all images, in the vicinity of zero
rotation error: (left) α-Jensen (kNN) and α-Jensen (MST), (right) α-GA
mean affinity, HP affinity and α-MI estimated using wavelet features and
kNN graph. 124

7.4.14 B-Spline deformation on MRI images of the brain. (a) Reference image,
(b) Warped target (c) True Deformation, (d) O10 = Hα as seen with a
32× 32 window, (e) 16× 16 window and (f) 8× 8 window. (g)∇(O) =
∇(Hα) = O10 − O0 as seen with a 32 × 32, (h) 16 × 16 and (i) 8 × 8
window. 130

7.4.15 Ratio of ∇(Hα) = ∇O calculated over deformation site v/s background
image for smaller deformation spanning m× n ≥ 8× 8. 131

7.4.16 Performance of Shannon MI, computed using pixel intensity histograms,
on deformed MRI images: (a) 32× 32 window, (b) 16× 16 window and
(c) 8× 8 window. 131

7.5.17 Multi-image registration example illustrated using three UL images of
the breast where the reference image is sandwiched between two target
images that are rotated ±16◦ respectively. 134

7.5.18 Quantitative performance comparison of divergence estimates while si-
multaneously registering three UL images of the breast. Plot shows sum
of rotational mean-squared registration errors for each of the target im-
ages using 64D ICA feature vectors and α-GA, α-MI, NLCC matching
functions. Shannon MI calculated using different intensity histogram bin
sizes is also shown. These plots were obtained from Monte Carlo trials
consisting of adding i.i.d. Gaussian distributed noise to the images prior
to registration. 480 repeated experiments were conducted from within
the breast UL volumetric database of 16 breast cancer patients undergo-
ing therapy. The three slices to be registered are spatially separated by
5mm. Search was restricted to a maximum rotation angle of ±16◦. The
confidence intervals represent unit standard error in the computation of
the mean of the interval. 135

xv

LIST OF ALGORITHMS

Algorithm

6.1 Modified Projection Decomposition Algorithm 85

6.2 Disjoint Set Union Find Data structure 86

6.3 Kruskal MST Algorithm . 87

xvi

CHAPTER I

Introduction

1.1 Image Registration

Given 2D or 3D images gathered via multiple sensors located at different positions, the

multi-sensor image registration problem is to align the images so that they have an identical

pose in a common coordinate system. In medical imaging, cross sectional anatomic im-

ages are routinely acquired by magnetic induction (Magnetic Resonance Imaging, MRI),

absorption of accelerated energized photons (X-Ray Computed Tomography, CT), ultra

high frequency sound ultrasound (UL) waves and radionuclide imaging (emission com-

puter tomography, (ECT), positron emission tomography (PET), single photon emission

computed tomography (SPECT)). Each sensor or modality provides unique information

about the object that is then combined with information from other sensors to arrive at

a decision. For example before a surgical procedure in the brain, doctors gather soft-

tissue information via MRI sensors and skull or hard-tissue information is acquired via

CT. These modalities are then registered to identify locations of tumor or disease in the

brain and perform surgical planning. Image fusion is defined as the task of extracting co-

occurring information from multisensor images. Image fusion finds several applications in

medical imaging where it is used to fuse anatomic and metabolic information [109, 87, 34],

and build global anatomical atlases [120], among other applications. Figure 1.1.1 shows

1

2

examples of multimodal face matching and brain image registration.

(a) (b)

Figure 1.1.1: Image fusion: (a) Co-registered images of the face acquired via visible
light and longwave senors. (b) Registered brain images acquired by time-
weighted responses . Face and brain images courtesy ([33]) and ([25]) re-
spectively.

Image registration is a challenging multi-sensor fusion problem due to the diversity

of sensors capable of imaging objects and their intrinsic properties. Artifacts such as mo-

tion, occlusion, specular refraction, noise, inhomogeneities in the object and imperfections

in the transducer compound the difficulty of image registration. Cost and other physical

considerations can constrain the spatial or spectral resolution and the signal to noise ra-

tio (SNR). Despite these hindrances, image registration is now commonplace in medical

imaging, satellite imaging and stereo vision. Image registration also finds widespread

usage in other pattern recognition and computer vision applications such as image seg-

mentation, tracking and motion compensation. A comprehensive survey of the image reg-

istration problem, its applications, and implementable algorithms can be found in [86, 85].

In this thesis, we present extended entropic graph registration methods using accelerated

3

minimum spanning tree (MST) and k-nearest neighbor graph (kNNG) algorithms. Higher

dimensional features extracted from images using independent component analysis and

wavelets are used to represent images. This chapter describes past attempts to address the

multimodal image registration problem. It also underlines the major contributions of this

thesis and presents an outline of the work herein.

1.2 Previous approaches to image registration and their limitations

Early image registration methods were developed mostly often for images acquired

via the same modality. Thus the pixel intensity maps of the reference and target image re-

sembled each other closely except for intensity preserving deformation. Early researchers

in image registration methods thus used measures like linear correlation to measure the

similarity between images. Correlation was measured between the pixel intensity maps of

the two images. Since images were captured using the same sensor or sensors with close

physical characteristics, a linear relationship could be expected between pixel intensity

maps of the images. Today, these early correlation methods find limited application in

multisensor registration applications. Images acquired with multiple sensors often exhibit

non-linear relationships amongst each other. In medical imaging, this is commonly seen

in registration of images involving two different imaging modalities.

To overcome limitations of linear correlation, Viola and Wells [125] and Maes et. al.

[84] devised a similarity measure based on an information divergence, specifically the

Kullback-Liebler [74] divergence between the joint feature density and the product of the

marginal densities. This is the mutual information (MI) measure and it quantifies the

non-linear correlation between images as the amount of statistical dependency in the un-

derlying joint probability distribution functions (pdf). They defined an estimate of MI

measured as the divergence between the joint histograms of pixels and product of the

4

marginal histograms of pixel intensities. The histogram density estimator is substituted in

the MI formula in place of the actual pdf’s of the pixel features. Scalar pixel intensities

enable histogram building in 1D to estimate marginal densities and in 2D to estimate joint

density of pixel features. With the ability to capture non-linear relationships between pix-

els, registration methods received a boost. However, although the pixel-histogram method

overcomes the nonlinear correlation problem, drawbacks abound due to the use of his-

togram density estimators. Histograms are efficient density estimators in low dimensions,

but cannot be reliably constructed in higher dimensional feature spaces (> 4) thus limit-

ing themselves to applications where dimensionality of feature space is very low. Several

applications in multisensor fusion require the higher dimensional feature descriptors to ef-

fectively capture signal properties. Unfortunately, the pixel-histogram method cannot be

directly extended to address these problems. While correlation can be measured in higher

dimensional feature spaces, it cannot account for the nonlinear relationships between fea-

tures.

Recently, Ma and Hero [82] proposed the use of entropic-graph methods for image reg-

istration. As contrasted to the previous approaches, entropic graphs estimate an informa-

tion divergence without the need to compute histogram density estimates. The launching

point of this thesis is the entropic graph based estimate of Rényi’s α-entropy introduced

by [56, 55, 54] and developed by Ma for image registration [82]. An entropic graph is any

graph whose normalized total weight (sum of the edge lengths) is a consistent estimator

of α-entropy. An example of an entropic graph is the minimal spanning tree and due to its

low computational complexity it is an attractive entropic graph algorithm. This graph esti-

mator can be viewed as a multidimensional generalization of the Vasicek-Shannon entropy

estimator for one dimensional features [124, 12]. Graph methods such as the MST sidestep

the issue of density estimation and have asymptotic convergence to the Rényi α-entropy

5

of the feature distribution. The α-entropy of a multivariate distribution is a generalization

of the better known Shannon entropy. Alfred Rényi introduced the α-entropy in a 1961

paper [108] and since then many important properties of α-entropy have been established

[9]. From Rényi’s α-entropy the Rényi α-divergence and the Rényi α-mutual information

(α-MI) can be defined in a straightforward manner. For α = 1 these quantities reduce

to the standard (Shannon) entropy, (Kullback-Liebler) divergence, and (Shannon) MI, re-

spectively. Another useful quantity that can be derived from the α-entropy is the α-Jensen

difference, which is a generalization of the standard (Shannon) Jensen difference. Ma [82]

demonstrated that this generalization allows for an image matching algorithm that benefits

from a simple estimation procedure and an extra degree of freedom (α).

Various forms of α-entropy have been exploited by others for applications including:

reconstruction and registration of interferometric synthetic aperture radar (ISAR) images

[49, 39]; blind deconvolution [35]; and time-frequency analysis [8, 128]. The innovation

of Ma’s work [82] and this thesis with respect to these other methods is the extension

to high dimensional features via entropic graph estimation methods. On the other hand,

the α-entropy approaches described in this thesis should not be confused with entropy-

alpha classification in SAR processing [24]. A tutorial introduction to the use of entropic

graphs to estimate multivariate α-entropy and other entropy quantities was published by

in a recent survey article [55]. Generalized measures of dissimilarity were estimated from

the features using MST and kNN graphs.

This discussion leads us to the next section where the chief contributions of this thesis

are described with an emphasis on its attempts to overcome the deficiencies in previous

methods as well as extensions.

6

1.3 Contributions of Thesis

Several new applications of entropic graphs in high dimensional feature spaces are

presented in this thesis. These entropic graph estimates can be computed via a host

of combinatorial optimization methods including the MST and the k-Nearest neighbor

graph (kNNG). The computation and storage complexity of the MST and kNNG-based

estimates increase linearly in feature dimension as opposed to the exponential rates of

histogram-based estimates of entropy. Furthermore, as will be shown, entropic graphs can

also be used to estimate more general similarity measures. Specific examples include the

α-mutual information (α-MI), α-Jensen difference divergence, the Henze-Penrose (HP)

affinity, which is a multidimensional approximation to the Wald-Wolfowitz test [127], the

α-geometric-arithmetic (α-GA) mean divergence [118] and a new measure of nonlinear

correlation called the nonlinear correlation coefficient, presented here for the first time.

To our knowledge, the latter divergence measures have never been utilized in the context

of image registration problems. We also explore variants of entropic graph methods that

which exhibit faster convergence and reduced computational complexity.

A primary motivating problem for this thesis is the registration of UL images. Com-

pared with other modalities, UL registration has not been studied extensively. This the-

sis thus extends the application of entropic graphs to new applications like Ultrasound

breast image registration, multisensor satellite image registration, registration involving

several images (simultaneous multi-image registration), MRI small volume registration

and matching of human face images. Ultrasound imaging is a cheaply available and widely

used modality to detect malignant breast lesions. However, compressibility of the breast

tissue, high specular imaging noise, low resolution and small field-of-view have compli-

cated past registration efforts. Through the use of graph-based registration methods and a

7

data-driven features extraction process, lower registration errors in test cases were seen.

Besides mono-modality UL registration, graph methods have been applied to various

multimodal images. Aerial images of the earth taken by geo-stationary satellites in the

thermal and visible bands of the electromagnetic spectrum are registered using graph meth-

ods and higher-dimensional features. In registering multiple images to form a representa-

tive atlas, high dimensional estimation of density is performed. With only 50 patients, the

pixel-histogram method would require histogram construction in 100 dimensional space.

Even if the computation technology would be available to build it, histogram estimation

of a 100D joint density would be highly biased and non-smooth. Graph methods with

linear complexity in feature dimensionality make a stronger case for a direct estimation of

entropy and divergence without the need to estimate density in higher dimensions. Certain

imaging applications involve detecting and tracking regions that have a small volume, such

as micro-calcification in the breast and tumor in the brain. Histograms are poor estimators

of density in the small sample regime i.e., when the number of features or voxels is low.

Small volumes cannot be matched accurately with histogram methods due to the noisy

density estimation process. This thesis overcomes such drawbacks with entropic graph

methods which provide remarkable estimates of entropy and divergence even with a small

number of features. A multimodal face matching examples is included to demonstrate the

versatility of entropic graphs to perform other image matching tasks.

A requirement to accomplish accurate high dimensional image matching is a discrimi-

nating feature space adapted to the image characteristics. Different modalities and imaging

characteristics demand different features. Higher dimensional features used for this work

include those based on independent component analysis (ICA), multidimensional wavelet

image analysis and discrete cosine transforms (DCT). ICA is a data-driven process of

estimating statistically independent basis and is used to extract features from ultrasound

8

images. Local basis projection coefficients are implemented by projecting local 8 by 8

sub-images of the image onto the ICA basis. The high dimensionality (= 64 for local basis

projections) of these feature spaces precludes the application of standard entropy-based

pattern matching methods and provides a good illustration of the power of our approach.

Satellite images are registered with entropic graph methods operating on features extracted

using Meyer wavelets. The ability of the wavelet basis to capture spatial-frequency infor-

mation in a hierarchical setting makes them an attractive choice for use in registration.

For demonstration purposes, primitive tag features that are local quantized pixel neigh-

borhoods are used. Tags serve as a good introductory feature set before advancing to other

feature extraction methods. In the past, pixel-pairs [110] were the only vector features

used within the MI context of registration. It should be noted that local feature extraction

via basis projection is a commonly used technique for image representation [112, 123].

Image registration methods that do not rely on information divergence often use wavelet

features, e.g. [129, 117]. In [64] multiresolution wavelet analysis is used to perform

pixel-histogram MI-based matching from a coarse to a high resolution. ICA features are

somewhat less common but have been similarly applied by Olshausen, Hyvärinen and

others [77, 61, 101].

Further, this thesis seeks to overcome issues associated with the algorithmic construc-

tion of the MST and kNN graph. It explores advanced algorithms to overcome the time-

memory limitations of building the MST and kNN graph. A disc-based approach is used

to pick candidate nodes and cull the number of edges used to build the MST. Similar ap-

proaches have enabled rapid MST construction for about 100,000 feature samples residing

in 64 dimensional space. By comparison, a full search method would require several min-

utes to construct the MST over 10,000 points in 2D. It is virtually impossible to construct

a MST for 100,000 points in 64D spaces using a traditional full search approach. This

9

acceleration has allowed evaluation of entropic graphs methods over several hundreds of

images with a variety of feature spaces. This was not possible earlier due to computa-

tional limitations of MST construction methods. A kd-tree approach is used to rapidly

construct the kNN graph and further accelerate the estimation process. We establish that

computational complexity is less of a hurdle in registration with graph methods due to

contributions made here. Functions written in the ANSI C and MATLAB programming

language for each of our entropic graph methods is included in the appendix and can be

downloaded from the website [1].

This thesis has thus developed several new techniques to address the image registration

problem. Comprehensive simulation analysis of the performance of each of these metrics

in rotational image registration scenarios described above is presented. Extensive com-

parisons between these methods and other existing methods, such as the pixel-histogram

method and correlation coefficient based methods are also included. Testing has been

performed on several images from the same modality, such as Ultrasound, and different

modalities, such as time-weighted MRI, on imagery obtained from medical, satellite and

face-matching applications. Numerical performance comparisons among the metrics and

features are aimed at identifying the algorithms that best discriminate between rotationally

aligned and misaligned images. The rotational deformations are local in nature since the

thesis does not intend to focus on iterative optimization techniques. The discrimination

ability for local rotational deformations provides a good comparison of the accuracy of

registration for more general image deformations. Sensitivity and robustness to noise is

also evaluated.

The next section provides an outline so as to help navigation of the thesis.

10

1.4 Outline of the thesis

Chapter II describes the multi-modality image registration problem, chief components

of an image registration system, historical approaches to solve the registration problem

and the main contributions of this thesis.

Chapter III presents a host of dis-similarity measures such as α-divergence, α-mutual

information, α-Jensen difference divergence, α-geometric arithmetic mean divergence,

non-linear correlation coefficient and Henze-Penrose affinity. We choose to focus on these

measures due to our ability to estimate them reliably without density estimation.

Chapter IV illustrates entropic graph based entropy estimation, estimation of α-Jensen

difference divergence and Henze-Penrose divergence. Chapter IV further introduces sev-

eral new approximations that can be used to estimate α-MI, NLCC and other divergences

using nearest neighbor graphs.

As a generalization of the pixel-level representation for registration of images, tag, ICA

and wavelet feature representations are described in Chapter V. Chapter V also provides

descriptions of how feature selection can be performed with tag, ICA and wavelet features.

A significant amount of time was spent on developing faster MST and kNN methods.

Improvements over existing algorithms are described in detail in Chapter VI. Source code

is provided freely on the Internet [1] and in the appendix of this thesis.

In Chapter VII we present experiments to validate and evaluate entropic graph meth-

ods in the context of other similar registration methods were performed on real images

derived from ultrasound data of the breast of female patients undergoing chemotherapy

and MRI images of the brain. Other multisensor satellite and face images were also used

for evaluation of our methods.

11

1.5 Publication related to thesis

① Neemuchwala HF, Hero AO and Carson PL, “Pairwise and simultaneous multi-

image registration using entropic graphs”, (in preparation for), International Journal

of Imaging, 2005.

② Neemuchwala HF, Hero AO, and Carson PL,“Image matching using alpha-entropy

measures and entropic graphs”,(in press, http://dx.doi.org/10.1016/j.sigpro.2004.10.002)

European Journal on Signal Processing, Special Issue on: Content-based Visual In-

formation Retrieval, 2005.

③ Neemuchwala HF and Hero AO, “Entropic graphs for registration”, (in press) ‘Multi-

sensor image fusion and its applications’, Eds. R. S. Blum and Z. Liu, Marcel-

Dekker, Inc 2005.

④ Neemuchwala HF, Hero AO, and Carson PL, “Algorithms for constructing Euclidean

minimum spanning trees in fully-connected graphs”, Technical Report CSPL Com-

munications and Signal Processing Laboratory, The University of Michigan Ann

Arbor, MI 48109-2122, 2005

⑤ Neemuchwala HF and Hero AO, “Image registration in higher dimensional feature

space”, Proceedings of the IS&T/SPIE 17th Annual Symposium on Electronic Imag-

ing: Science and Technology, San Jose, California, January 2005.

⑥ Neemuchwala HF, Hero AO, Carson PL and Meyer CR, “Local feature matching

using entropic graphs”, Proceedings of the 2004 IEEE Symposium on Biomedical

Imaging; From nano to macro, Arlington VA, April 2004.

⑦ Neemuchwala HF, Hero AO, and Carson PL,“Image registration using entropic graph-

matching criteria”, Proceedings of 36th Asilomar Conf. on Signals Systems and

12

Computers, Pacific Grove, CA, Nov. 2002.

⑧ Neemuchwala HF, Hero AO, and Carson PL,“Feature Coincidence Trees for Reg-

istration of Ultrasound Breast Images”, Proceedings of IEEE Int. Conf. on Image

Proc., Thesaloniki, Greece, Oct. 2001.

⑨ Neemuchwala HF, Hero AO, and Carson PL,“Feature Coincidence Trees for Reg-

istration of Ultrasound Images”, AIUM 46th Annual Convention, Nashville, March

10-13, J. Ultras. Med., 21, S55, 2002.

⑩ Carson PL, Kruecker JF, Meyer CR, LeCarpentier GL, Fowlkes JB, Roubidoux,

MA, Neemuchwala HF, Hero AO, “Image Registration: Breast Applications, Ac-

curacy and Advanced Metrics”, in Carson PL, Parker KJ, et al., Ultrasound Image

Registration, Categorical Course, AIUM 46th Annual Convention, Nashville, March

10-13, J. Ultras. Med., 21, S73, 2002.

CHAPTER II

Image fusion and registration

Sensors provide information about the environment. These days, multiple sensors are

available to sample different properties of the environment or of an object of interest. Pre-

suming that each sensor is capable of measuring a new object property, streams of sensor

data are used to recreate object views in the computer or processing unit. Multisensor

information fusion addresses the problem of combining information from multiple sen-

sors to arrive at inferences about the object or its role in the environment. In recent years,

multisensor data fusion has been extensively investigated by researchers in a variety of

disciplines, such as artificial intelligence [78], pattern recognition [90], medical imaging

[86], automated target recognition [3], speaker identification in video [36], remote sens-

ing [111], monitoring of manufacturing processes [22] and robotics [62]. Sensor fusion

typically involves different signal sources. The animal brain routinely integrates up to five

different types of sensory information perceived by the eyes, ears, nose, tongue and skin

to achieve a more accurate assessment of the surrounding environment and identification

of threats, thereby improving its chances of survival. Humans fuse multiple information at

every stimulation of their senses by appropriate signals (Figure 2.0.1). For example, con-

sider a barking dog. Visual information is gathered by eye, audio information is provided

by the ears. The brain is capable of fusing both sources of information to deduce that the

13

14

dog is barking. Humans identify each other through a fusion of sight and voice. Animals

identify their cubs through a fusion of smell, voice and sight. However, as easy as it is for

the brain to perform this task, training a computer to fuse this information is not trivial.

Figure 2.0.1: Data fusion: The human brain performs complex data fusion from up to five
different sensors upon every sensory stimulation by an appropriate signal.

Information retrieved from an object in the real world has several dimensions, some

are physical dimensions related to its position and appearance, some others are intrinsic

properties such as its heat content and density. Consider the example of geostationary

satellites that image the earth with several sensors monitoring properties of a region such

as its visible geography, heat content, mineral content, water content and underlying ge-

ological activity among others. Sensors provide quantitative measurements which are de-

pendent on the structure and configuration of the object under scrutiny. However, not all

information is meaningful and even the meaningful data requires interpretation. To extract

meaningful information from streams of sensory data, one has to devise features capable

of capturing the structure and configuration of the object. Sensing is prone to information

loss due to the sampling, physical limitations of the sensor, interference from nuisance

objects and transients and projections. Inversion of the sensing process is ill-posed due

to the information loss. One attempts to extract common information about the object

15

from multiple sensors to arrive at an inference. Multisensor data fusion addresses these

problems by combining data not only from from multiple sensors but also from related in-

formation found in associated databases, to achieve improved accuracies and more specific

inferences than could be achieved by the use of a single sensor alone. Multiple sensors

overcome information loss by providing redundancy and reducing uncertainty in the mea-

surements. Multisensor fusion critically depends upon multisensor registration. When the

information from the sensors is not acquired simultaneously and from the same position

and view angle, registration must be performed through software processing to correct for

coordinate differences.

2.1 Motivations for Fusion in Imaging

Sensor fusion techniques are commonly adopted in applications where direct object

perception is difficult, noise-prone or expensive. One example is medical image fusion,

where organs inside the body are not directly accessible. In medical imaging, this in-

accessibility mandates multiple sensor usage, each sensor providing measurements of a

different tissue property. Information from a single sensor is fraught with common prob-

lems related to sensor noise, physical constraints, obstruction of view, shadowing, tissue

movement and patient motion among others. Sensors providing complimentary tissue in-

formation or complimentary object views allow for a more complete observation of the

anatomy, physiology (metabolism) or pathology (disease, tumor). Sensor fusion methods

are then adopted to parse through the information from multiple sensors, perform complex

deductions and provide consistent conclusions. Required margins of error from an auto-

mated fusion and inference system are required to be at least as low as that arrived at by

the physician herself. An example of the use of fusion is in radiotherapy treatment, where

CT and MRI are employed to provide complimentary soft-tissue hard-tissue information

16

in the brain and skull [121]. Mammography performed with X-Ray imaging is now fused

with UL images of the breast to provide an additional perspective of the tumor or cyst and

perform a better analysis of the case [65]. Treatment verification by comparison of pre-

and post-intervention images, tumor growth monitoring or assessment of therapy can be

performed using time series of UL data of breast tumors [71, 72], MRI scans on brain tu-

mors [48] or CT scans on bones. In these applications, the sensor and sensing technology

remains the same but the fusion occurs over data collected at two different time points.

Most automated artificial intelligence imaging systems rely on an information pro-

cessing unit. In these systems multiple environment parameters are collected by sensors

leading to an information overload from the glut of accumulated data. Automated systems

are required to provide reliable decisions in a timely fashion. The amount of time needed

to reach a reliable decision increases rapidly with the amount of information available.

Sensor fusion is necessary to combine information in a way that removes inconsistencies

and presents clearly the best interpretation of measurements input from many individual

sources. Manual fusion requires a level of information processing that is extremely labo-

rious and expensive and requires specialized training and knowledge. Automatic sensor

fusion is a necessity to overcome time constraints and parse unimportant information.

Through sensor fusion, we can combine measurements from several different sensors in

order to combine different aspects of the environment into one coherent structure. When

done properly, sensor fusion combines input from many independent sources of limited

accuracy and reliability to give information of known accuracy and proven reliability.

Medical imaging applications use expensive sensors that are calibrated on a regular

basis and are maintained to perform at high standards. Other applications require that sen-

sors be placed in hostile environments where access is reduced or eliminated, such as in

outer space, deep sea, forests, mountains or river beds. Due to this reason, applications

17

such as monitoring soil toxicity or water contamination can be addressed by distributing

several hundreds of cheap sensors in the environment [70]. Such systems can be built with

redundancy to reduce the impact of a single sensor failure on the outcome. Unforeseen,

adverse circumstances and changing interfaces with the environment limit the ability of

the some sensors to interact with their habitat. When numerous sensors gather data in-

dependently sensor fusion is performed to arrive at reliable conclusions and reduce the

impact of sensor failure. Combining measurements from several different kinds of sensors

can give a system more accurate information than otherwise possible. Combining several

measurements from the same sensor makes a system less sensitive to noise because in the

measurements of the same environment at different times the signal components are highly

correlated while the noise components are independent.

Lastly, diversity in sensor types allows sensing of a variety of object or environment

properties. Diversity could be achieved by harnessing sensors that focus on different bands

in the electromagnetic spectrum. For example, visible and infrared sensors can be used

in security systems, or visible light and audible sound can be used in a video camera.

Satellites often image earth in up to 12 different bands of the electromagnetic spectrum.

These observations are correlated with water vapor to predict weather patterns and with

greenhouse gases to monitor environmental impact on food production. This diversity

leads to a reduction in the probability of decision error and uncertainty encountered in the

measurements thus making the sensing system more reliable which ultimately benefits the

inference-making procedure. The probability of decision error in such a system would

be expected to fall asymptomatically as the number of sensors providing new and useful

object information is increased.

In summary, the advantages of sensor fusion over single sensor processing are due to

the redundancy, diversity and complementarity among multiple sensors. When data from

18

multiple sensors is fused together the resultant observation is expected to have a higher

signal to noise ratio, a reduction in overall measurement variance and a better and more

sophisticated picture of the environment. Redundancy is caused by the use of multiple

sensors to measure the same entity. It is well known that redundancy reduces uncertainty.

This can be appreciated from the fact that for multiple sensors, the signal related to the

measured quantity is often correlated, whereas the uncertainty associated with each indi-

vidual sensor tends to be uncorrelated. If multiple sensors are different modalities, they

measure the same scene with different laws of physics, and one obtains physical sensor di-

versity. Another diversity, spatial diversity, which offers different viewpoints of the sensed

environment simply by having sensors in different locations, also plays a very important

role in multisensor fusion. Multiple sensors observe a subset of the environment space,

and the union of these subsets makes up broader environment observation. In this way,

one achieves data complementarity.

2.2 The Role of Image Registration in Sensor Fusion

In many applications in medical imaging, satellite imaging and image and video pro-

cessing, sensors acquire 2D cross-sectional and projection information. In volumetric

imaging, several 2D images may be acquired to form a stack of cross-sectional views in

3D. A common problem related with such systems is the misalignment in the acquired

images due to the coordinate differences in the images. This misalignment is further com-

plicated by camera and object movement which change camera geometry relative to the

object thus affecting object pose and view direction. For example, handheld UL trans-

ducers with a small field-of-view have a different coordinate system compared with large

field-of-view X-Ray systems that are fixed on the floor. Further, the images are acquired at

different resolutions, at different times and often with significant tissue change. Lastly, the

19

sensors acquire fundamentally different tissue properties thus the measurements differ in

their units. For example, X-Ray sensors image object density, UL sensors image acoustic

reflectivity, thermal sensors are sensitive to reflective heat energy, MRI sensors capture

water content or and digital cameras capture visible light and thus the visual appearance

of the object through a projection.

In systems that are not co-registered during image acquisition, the alignment of images

is crucial and pivotal in the sensor fusion. Image registration is a precursor to sensor

fusion and enables information extraction from multiple images. Recently, the distinction

between fusion and registration has blurred in literature. Partly, this is due the evolution of

sophisticated image registration algorithms that use fusion technology like pixel, feature

or symbol level fusion. In this thesis registration and fusion terminology will be used

interchangeably.

2.3 Chief Components of an Image Registration System

The three chief components of an effective image registration system (Figure 2.3.2)

are: (1) definition of features that discriminate between different image poses; (2) adap-

tation of a matching criterion that quantifies feature similarity, is capable of resolving

important differences between images, yet is robust to image artifacts; (3) implementation

of optimization techniques which allow fast search over possible transformations. In this

chapter, we shall be principally concerned with the first two components of the system.

In a departure from conventional pixel-intensity features, we present techniques that use

higher dimensional features extracted from images. We adapt traditional pixel matching

methods that rely on entropy estimates to include higher dimensional features. We pro-

pose a general class of information theoretic feature similarity measures that are based on

entropy and divergence and can be empirically estimated using entropic graphs, such as

20

Image Itar

Image Iref

Transformation T Feature Extraction

Feature Extraction

Similarity Measure

-

-

-
6

?

6

Optimization Loop

Figure 2.3.2: Block diagram of an image registration system

the minimal spanning tree (MST) or k-Nearest Neighbor (kNN) graph, and do not require

density estimation or histograms.

2.4 Historical Perspective on Image Registration

Traditional approaches to image registration have included single pixel gray level fea-

tures and correlation type matching functions. The correlation coefficient is a poor choice

for the matching function in multi-sensor fusion problems. Multi-sensor images typically

have intensity maps that are unique to the sensors used to acquire them and a direct linear

correlation between intensity maps may not exist (Figure 2.4.3). Several other matching

functions have been suggested in the literature [57, 63, 103]. Some of the most widespread

techniques are: histogram matching [59]; texture matching [6]; intensity cross correlation

[86]; optical flow matching [75]; kernel-based classification methods [27]; boosting clas-

sification methods [29, 68]; information divergence minimization [122, 116, 115, 49]; and

mutual information (MI) maximization [125, 84, 45, 87, 17]. The last two methods can be

called “entropic methods” since both use a matching criterion defined as a relative entropy

between the feature distributions. The main advantage of entropic methods is that they

21

can capture non-linear relations between features in order to improve discrimination be-

tween poor and good image matches. When combined with a highly discriminatory feature

set, and reliable prior information, entropic methods are very compelling and have been

shown to be virtually unbeatable for some multimodality image registration applications

[76, 87, 57]. However, due to the difficulty in estimating the relative entropy over high di-

mensional feature spaces, the application of entropic methods have been limited to one or

two feature dimensions. The independent successes of relative entropy methods, e.g., MI

image registration, and the use of high dimensional features, e.g., SVM’s for handwriting

recognition, suggest that an extension of entropic methods to high dimensions would be

worthwhile. Encouraging initial studies on these methods have been conducted by these

authors and can be found in [96, 94].

(a) T1 weighted MRI (b) T2 weighted MRI

50 100 150 200 250

50

100

150

200

250

(c) Joint histogram

Figure 2.4.3: MRI images of the brain, with additive noise. (a) T1 weighted I1, (b) T2
weighted I2. Images courtesy [25]. Although acquired by a single sensor,
the time weighting renders different intensity maps to identical structures in
the brain. (c) Joint gray-level pixel coincidence histogram is clustered and
does not exhibit a linear correlation between intensities.

2.5 Classification of Sensor Fusion Techniques

As documented above, sensor fusion techniques have several motivations depending

upon the particular application. The actual process of sensor fusion can be conducted in

22

various ways. The particular method adopted determines the choice of parameters and af-

fects the results of the fusion process. There are several criteria to categorize current sensor

fusion techniques. These are broadly divided by: types of sensor data, levels of represen-

tation and choice of mathematical basis. In multimodal image registration applications,

sensor data may come from a time-series of images, often with redundancy. Different

modalities may provide complementary information about the object. Some applications

such as atlas registration involve multimodal time-series registration. Thus types of sensor

data may not provide the best framework for classification of the methods provided here.

This work extends on the information theoretic framework to provide the mathematical

foundation for registration. The choice of classification of fusion types covered in this

thesis may be classified by examining the different levels of feature representation.

2.5.1 Classification by Levels of Representation

Applications of multisensor fusion may be characterized by the level of representation

given to data during the fusion process. Observational data may be combined, or fused, at

a variety of levels: signal, feature, and symbol levels. Note that these levels of fusion are

only a rough classification of representation possibilities, and in no way can capture the

subtlety of numerous applications. Image registration applications often involve temporal

and spatial alignment of image signals. In the information-theoretic framework signals

are modeled as random processes corrupted by uncorrelated noise and the fusion process

is considered as an estimation procedure. Signal level fusion methodology refers to a

combination of the signals in a group of sensors in order to arrive at a fusion decision.

Signal level fusion methods such as weighted averaging of images are superseded by ad-

vanced metrics that correlate feature or symbolic relationships between images. However,

in cases where signals represent different phenomenologies, signal-level fusion may be

23

used as demonstrated in [37].

2.5.1.1 Feature-level fusion

In the multisensor registration scenario where each sensor observes a different object

property, alignment must be accomplished through the use of features. Pixels are the most

commonly used features for registration due to their low complexity and ease of use with

minimum effort required in feature extraction. The downside of using primitive features

is that they offer little or no spatial resolving capability of texture, image structure and

spatial frequency. Figure 2.5.4 shows the coincidence measuring using pixel pairs from

the images being considered for registration. When adequately represented, features have

the ability to represent the sensory information, reduce the complexity of the processing

procedure and increase the reliability of the processing results. Spatial features can be

adapted for the purpose of image representation in multimodal image registration. Typical

features extracted from an image and used for fusion include edges and regions of similar

intensity. In Figure 2.5.5 a collection of quantized pixels (a pixel neighborhood) is used

to extract edge information from image regions, called the method of tags in [4]. When

multiple sensors have similar features at the same location, the likelihood that the features

are actually present can be increased significantly and thus fusion improves the processing

accuracy.

2.5.1.2 Symbol-level fusion

Symbolic representation of features strives to achieve a level of sophistication in the

feature extraction process. Symbol-level fusion can effectively integrate the information

from multiple sensors at the highest level of abstraction. The symbols can be derived

through a symbolic reasoning processes that may make use of prior knowledge from a

world model or sources external to the system. The most common type of symbol-level

24

Pixel at location (i, j)

(a)

Pixel at location (i, j) in rotated image

(b)

Figure 2.5.4: Single-pixel gray level coincidences are recorded by counting the number
of co-occurrences of a pair of gray levels in the reference (a) and in the
secondary (b) images at a pair of homologous pixel locations. Here the sec-
ondary image (b) is rotated by 15◦ relative to the reference image (a).

(a) (b)

Figure 2.5.5: Local tags features applied to image registration. Each pixel is labeled by a
8 × 8 tag type extracted using Geman’s [44, 4] adaptive thresholding tech-
nique. Occurrences and coincidences of tag labels can be mapped to a coin-
cidence histogram like Fig. 3.3.1

25

fusion application is pattern recognition. Feature information is extracted from sensor

data, defining a point in the feature space. This point may be mapped to a symbolic in-

terpretation of the world based on that symbol’s neighborhood in the feature space. The

ability to specify relations between features is used by humans for eclectic cognition and

representation tasks. For example, humans identify voice modulation and facial expression

and can relate the two to concur fight or flight decisions. This thesis attempts to identify

primitive symbols through the relations between features. Figure 2.5.6 demonstrates fea-

ture extraction using symbolic directional relations between tag features at different spatial

locations. Such spatial correspondence was introduced by [4]. Two lines running parallel

can be identified as a feature and may identify a road or railway tracks on an aerial im-

age or an artery in a medical image. Co-occurrences can then be evaluated between such

features.

(a) Image I1 (b) Image I2

Figure 2.5.6: Symbol-level fusion: An abstraction of feature-level fusion where relations
between features are expressed as features themselves. (a) Here the symbolic
relation between two pixel neighborhoods is captured through the magnitude
and direction of vector R. (b) The same vector R has now moved from its
position in Ultrasound image I1 due to the rotation of I1. Tracking the change
in position of R may help identify common features and enable fusion.

In conclusion, it should be noted that sensor fusion plays a significant role in the multi-

26

sensor imaging. Image registration is a precursor to the image fusion process since the

extraction of common features can occur only after the images are spatially aligned. The

development of multi-sensor image registration techniques has led to application of regis-

tration in cross modality applications. This thesis focuses on a feature-level representation

of images where alignment between images is quantified by measuring similarity between

features extracted from images. A critical component of image registration is the similarity

measure used to estimate alignment between images. Features may be higher dimensional

and hence require reliable and robust measures of similarity that can operate in higher di-

mensional space. The next chapter introduces entropic feature similarity and dis-similarity

measures that enable image alignment through a higher dimensional feature representation

of images.

CHAPTER III

Entropic Feature Similarity and Dissimilarity Measures

In this chapter we review entropy, relative entropy, and divergence as measures of dis-

similarity between probability distributions. Let Y be a d-dimensional random vector and

let f(y) and g(y) denote two possible densities for Y . Here Y will be a feature vector

constructed from the reference image and the target image to be registered and f and g

will be multidimensional feature densities. For example, information divergence methods

of image retrieval [115, 31, 123] specify f as the estimated density of the reference image

features and g as the estimated density of the target image features. When the features are

discrete valued the densities f and g are interpreted as probability mass functions.

3.1 Statistical Framework

Let X0 be a reference image, and consider a database of one or more target images

Xi, i = 1, . . . , K of images to be registered to the reference image. Let Zi be a feature

vector extracted from Xi. Assume Zi is a p-dimensional vector random variable. Specif-

ically, assume that image Xi’s feature vector Zi is realization Z generated by a j.p.d.f.

f(Z|θ) which depends on a vector of unknown parameters θ lying in a specified param-

eter space Θ. Under this probabilistic model the k-th observed image feature vector Zk

is assumed to have been generated from model f(Zk|θk), where θk is called the “true pa-

27

28

rameter” underlying Zk. Under this statistical framework the similarity between images

X0;X1 is reduced to similarity between feature probability models f(Z0|θ0); f(Z1|θ1).

3.2 Rényi Entropy and Divergence

The basis for entropic methods of image fusion is a measure of dissimilarity between

densities f and g. Dis-similarity or divergence measures between f and g, denoted as

D(f‖g), should have the following properties:

• D(f‖g) ≥ 0, when f 6= g,

• D(f‖g) = 0, when f = g (a.e.),

• D(f‖g) is smooth in f so that optimization can be readily accomplished over f ,

• D(f‖g) is easily estimated from data samples,

• D(f‖g) is related to and is an accurate measure of mis-registration error,

• D(f‖g) is generalizable to features in d-dimensional space,

• D(f‖g) is robust to noise and sensitive to local and global perturbations in the im-

ages.

A very general entropic dis-similarity measure is the Rényi α-divergence, also called

the Rényi α-relative entropy, between f and g of fractional order α ∈ (0, 1) [108, 28, 9] :

Dα(f‖g) =
1

α− 1
log

∫
g(z)

(
f(z)

g(z)

)α

dz

=
1

α− 1
log

∫
fα(z)g1−α(z)dz. (3.1)

When the density f is supported on the d-dimensional unit cube and g is uniform over this

domain the (negative) α-divergence reduces to the Rényi α-entropy of f :

Hα(f) =
1

1− α log

∫
fα(z)dz. (3.2)

29

When specialized to various values of α the α-divergence can be related to other well

known divergence and affinity measures. Two of the most important examples are the

Hellinger dissimilarity −2 log
∫ √

f(z)g(z)dz obtained when α = 1/2, which is related

to the Hellinger-Battacharya distance squared,

DHellinger(f‖g) =

∫ (√
f(z)−

√
g(z)

)2

dz

= 2
(
1− exp

(
1
2D 1

2

(f‖g)
))
, (3.3)

and the Kullback-Liebler (KL) divergence [74], obtained in the limit as α→ 1,

lim
α→1

Dα(f‖g) =

∫
g(z) log

g(z)

f(z)
dz. (3.4)

3.3 Mutual Information and α-Mutual Information

The mutual information (MI) can be interpreted as a similarity measure between the

reference and target pixel intensities or as a dis-similarity measure between the joint den-

sity and the product of the marginals of these intensities. The MI was introduced for gray

scale image registration [125, 84] and has since been applied to a variety of image match-

ing problems [45, 76, 87, 106]. Let X0 be a reference image and consider a transformation

of the target image (X1), defined as XT = T (X1). We assume that the images are sampled

on a grid of M × N pixels. Let (z0k, zTk) be the pair of (scalar) gray levels extracted

from the k-th pixel location in the reference and target images, respectively. The basic

assumption underlying MI image matching is that {(z0k, zTk)}MN
k=1 are independent identi-

cally distributed (i.i.d.) realizations of a pair (Z0,ZT), (ZT = T (Z1)) of random variables

having joint density f0,1(z0, zT). If the reference and the target images were perfectly cor-

related, e.g., identical images, then Z0 and ZT would be dependent random variables. On

the other hand, if the two images were statistically independent, the joint density of Z0

30

and ZT would factor into the product of the marginals f0,1(z0, zT) = f0(z0)f1(zT). This

suggests using the α-divergence Dα(f0,1(z0, zT)‖f0(z0)f1(zT)) between f0,1(z0, zT) and

f0(z0)f1(zT) as a similarity measure. For α ∈ (0, 1) we call this the α-mutual information

(or α-MI) between Z0 and ZT and it has the form

αMI = Dα(f0,1(Z0,ZT) ‖ f0(Z0)f1(ZT))

=
1

α− 1
log

∫
fα

0,1(z0, zT)f 1−α
0 (z0)f

1−α
i (zT)dz0dzT . (3.5)

When α→ 1 the α-MI converges to the standard (Shannon) MI

MI =

∫
f0,1(z0, zT) log

(
f0,1(z0, zT)

f0(z0)f1(zT)

)
dz0dzT . (3.6)

For registering two discrete M ×N images, one searches over a set of transformations

of the target image to find the one that maximizes the MI (3.6) between the reference and

the transformed target. The MI is defined using features (Z0,ZT) ∈ {z0k, zTk}MN
k=1 equal

to the discrete-valued intensity levels at common pixel locations (k, k) in the reference

image and the rotated target image. We call this the “single pixel MI”. In [125, 84],

the authors empirically approximated the single pixel MI (3.6) by “histogram plug-in”

estimates, which when extended to the α-MI gives the estimate

α̂MI
def
=

1

α− 1
log

255∑

z0,zT =0

f̂α
0,1(z0, zT)

(
f̂0(z0)f̂1(zT)

)1−α

. (3.7)

In (3.7) we assume 8-bit gray level, f̂0,1 denotes the joint intensity level “coincidence

histogram”

f̂0,1(z0, zT) =
1

MN

MN∑

k=1

Iz0k,zTk
(z0, zT), (3.8)

and Iz0k,zTk
(z0, zT) is the indicator function equal to one when (z0k, zTk) = (z0, zT) and

equal to zero otherwise. Other feature definitions have been proposed including gray level

differences [17] and pixel pairs [110].

31

To illustrate the general procedure, the coincidence histogram is shown in Fig. 3.3.1

for the case of registration of US breast images X0, X1 (Fig. 3.3.2). Fig. 3.3.1 shows two

cases. At top left is the coincidence histogram when the reference and secondary images

are taken from the same two-dimensional slice of the US breast volume and are in perfect

alignment (X0 = X1). At bottom left is the same histogram when the secondary image is

rotated by 8◦. The top right and bottom right panels in Fig. 3.3.1 are analogous except that

the secondary images is extracted from a different two-dimensional slice separated from

the reference (query) by 2mm which is approximately 4 times the distance of the minimum

UL slice thickness . At this separation distance along the depth of the scan, the speckle in

the images is decorrelated, but the anatomy in the images remains largely unchanged. In

both cases the spread of the histogram is greater for the bottom panels (out of alignment)

than for the top panels (in alignment) of the figure. The α-MI will take on greater values

for the less spread top panels than for the more spread bottom panels.

Figure 3.3.3 illustrates the MI alignment procedure through a multisensor remote sens-

ing example. Two modalities are illustrated, visible (a) and Infrared (b). Aligned images

acquired by visible and thermally sensitive satellite sensors generate a joint gray level

pixel coincidence histogram f0,1(z0, z1), shown in (c). Note, that the joint gray-level pixel

coincidence histogram is not concentrated along the diagonal due to the mixed modali-

ties of the images. When the thermal image is rotationally transformed, the correspond-

ing joint gray-level pixel coincidence histogram f0,1(z0, zT) is dispersed, thus yielding a

lower mutual information than in the case of aligned images. The higher dispersion of

the gray-level pixel coincidence histogram for the mixed modality problem suggests that

single-pixel features are inadequate.

32

50 100 150 200 250

50

100

150

200

250

(a)

50 100 150 200 250

50

100

150

200

250

(b)

50 100 150 200 250

50

100

150

200

250

(c)

50 100 150 200 250

50

100

150

200

250

(d)

Figure 3.3.1: Joint coincidence histograms for single-pixel gray level features. Both hori-
zontal and vertical axes of each panel are indexed over the gray level range
of 0 to 255. (a): joint histogram scatter plot for the case that reference image
(X0) and secondary image (X1) are the same slice of the US image volume
(Case 142) at perfect 0◦ alignment (X1 = X0). (c): same as (a) except
that reference and secondary are misaligned by 8◦ relative rotation as in Fig.
3.3.2. (b): same as (a) except that the reference and secondary images are
from adjacent (2mm separation) slices of the image volume. (d): same as (c)
except that images are misaligned by 8◦ relative rotation.

33

Pixel at location (i, j)

(a)

Pixel at location (i, j) in rotated image

(b)

Figure 3.3.2: Single-pixel gray level coincidences are recorded by counting number of co-
occurrences of a pair of gray level in the reference (a) and in the secondary
(b) images at a pair of homologous pixel locations. Here the secondary im-
age (b) is rotated by 15◦ relative to the reference image (a).

34

(a) I1: Urban Atlanta - ther-
mal

(b) I2: Urban Atlanta, visi-
ble

50 100 150 200 250

50

100

150

200

250

(c) Joint gray-level pixel co-
incidence histogram of reg-
istered I1 and I2

(d) I1 (e) T (I2)

50 100 150 200 250

50

100

150

200

250

(f) Joint gray-level pixel co-
incidence histogram of I1

and T (I2)

Figure 3.3.3: Mutual information based registration of multisensor, visible and thermal
infrared, images of Atlanta acquired via satellite [105]. Top row (in-
registration): (a) Visible light image I1 (b) Thermal image I2 (c) Joint
gray-level pixel coincidence histogram f̂0,1(z0, z1). Bottom row (out-of-
registration): (d) Visible light image, unaltered I1 (e) Rotationally trans-
formed thermal image T (I2) (f) Joint gray-level pixel coincidence histogram
shows wider dispersion f̂0,1(z0, zT).

35

3.3.1 Relation of α-MI to Chernoff Bound

The α-MI (3.5) can be motivated as an appropriate registration function by large devi-

ations theory through the Chernoff bound. Define the average probability of error Pe(n)

associated with a decision rule for deciding whether ZT and Z0 are independent (hypoth-

esis H0) or dependent (hypothesis H1) random variables based on a set of i.i.d. samples

{z0k, zTk}nk=1, where n = MN . For any decision rule, this error probability has the repre-

sentation:

Pe(n) = β(n)P (H1) + α(n)P (H0), (3.9)

where β(n) and α(n) are the probabilities of Type II (say H0 when H1 true) and Type I

(say H1 when H0 true) errors, respectively, of the decision rule and P (H1) = 1− P (H0)

is the prior probability of H1. When the decision rule is the optimal minimum probability

of error test the Chernoff bound implies that [30]:

lim
n→∞

1

n
logPe(n) = − sup

α∈[0,1]

{(1− α)Dα(f0,1(z0, zT)‖f0(z0)f1(zT)} . (3.10)

Thus the mutual α-information gives the asymptotically optimal rate of exponential de-

cay of the error probability for testing H0 vs H1 as a function of the number n = MN of

samples. In particular, this implies that the α-MI can be used to select the optimal transfor-

mation T that maximizes the right side of (3.10). The appearance of the maximization over

α implies the existence of an optimal parameter α ensuring the lowest possible registration

error. When the optimal value α is not equal to 1 the MI criterion will be suboptimal in the

sense of minimizing the asymptotic probability of error. For more discussion of the issue

of optimal selection of α we refer the reader to [53].

36

3.4 α-Jensen Dissimilarity Measure

An alternative entropic dissimilarity measure between two distributions is the α-Jensen

difference. This function was independently proposed by Ma [82, 52] and He et al [49]

for image registration problems. It was also used by Michel et al in [89] for characterizing

complexity of time-frequency images. For two densities f and g the α-Jensen difference

is defined as [9]

∆Hα(p, f, g) = Hα(pf + qg)− [pHα(f) + qHα(g)], (3.11)

where α ∈ (0, 1) and p ∈ [0, 1] and q = 1− p. As the α-entropy Hα(f) is strictly concave

in f , Jensen’s inequality implies that ∆Hα(p, f, g) > 0 when f 6= g and ∆Hα(p, f, g) = 0

when f = g (a.e.). Thus the α-Jensen difference is a bona-fide measure of dissimilarity

between f and g.

The α-Jensen difference can be applied as a surrogate optimization criterion in place of

the α-MI or the α-divergence. When applied as a surrogate for α-divergence One identifies

f = f1(zT) and g = f0(z0) in (3.11). In this case an image match occurs when the α-

Jensen difference is minimized over i. This is the approach taken by [49, 52] for image

registration applications and discussed in more detail below.

On the other hand, the α-Jensen difference can also be used as a surrogate for the α-

MI if one identifies f = f0,1(z0, zT) and g = f0(z0)f1(zT) in (3.11). In this case to find

a matching image to a query the α-Jensen difference is maximized over T . Asymptotic

comparison between the α-MI and the α-Jensen difference can give useful insight [53].

It can be shown that when the features Z0,ZT are nearly independent then the most dis-

criminating value of α is 1/2 for the α-MI. For the α-Jensen difference the best value of

α is 1 and the best value of p is 1/2. While use of α-Jensen as a surrogate for α-MI is

certainly worthy of additional study, its computational requirements and its performance

37

appear similar to that of α-MI and therefore we do not consider it any further.

3.5 α-Geometric-Arithmetic Mean Divergence

The α-geometric-arithmetic (α-GA) mean divergence [118] is another measure of dis-

similarity between probability distributions. Given continuous distributions f and g, the

α-GA is defined as:

αDGA(f, g) = Dα(pf + qg‖f pgq)

=
1

α− 1
log

∫
(pf(z) + qg(z))α(f p(z)gq(z))1−αdz (3.12)

The α-GA divergence is a measure of the discrepancy between the arithmetic mean and

the geometric mean of f and g, respectively, with respect to weights p and q = 1 − p,

p ∈ [0, 1]. The α-GA divergence can thus be interpreted as the dissimilarity between the

weighted arithmetic mean pf(x) + qg(x) and the weighted geometric mean f p(x)gq(x).

Similarly to the α-Jensen difference (3.11), the α-GA divergence is equal to zero if and

only if f = g (a.e.) and is otherwise greater than zero.

3.6 Henze-Penrose Affinity

While divergence is a measure of dissimilarity between distributions, similarity be-

tween distributions can be measured by affinity measures. One measure of affinity between

probability distributions f and g is

AHP (f, g) = 2pq

∫
f(z)g(z)

pf(z) + qg(z)
dz, (3.13)

with respect to weights p and q = 1 − p, p ∈ [0, 1]. This affinity measure was introduced

by Henze and Penrose [50] as the limit of the Friedman-Rafsky statistic [42] and we shall

call it the Henze-Penrose (HP) affinity. The HP affinity can be related to the divergence

38

measure:

DHP (f‖g) = 1− AFR(f, g) =

∫
p2f 2(z) + q2g2(z)

pf(z) + qg(z)
dz (3.14)

All of the above divergence measures can be obtained as special cases of the general

class of f-divergences, e.g., as defined in [28, 9]. Two categories exist in the list of diver-

gences presented above. Some, like the αJensen between two densities, αGA and Henze-

Penrose affinity operate in the marginal spaces with half the dimensionality of some others

like the αMI and Shannon MI that operate in the joint space of distributions.

3.7 Entropy Estimation and Divergence

Accurate estimation of divergence is related to accurate estimation of the entropy.

Three general classes of entropy estimation methods can be identified: parametric es-

timators, non-parametric estimators based on density or function estimation, and non-

parametric estimators based on direct estimation. The first two methods use density “plug-

in” techniques where a parametric or non-parametric density estimate f̂ is simply plugged

into the divergence formula. When an accurate parametric model and good parameter es-

timates are available parametric plug-in estimates of divergence are attractive due to their

1/
√
n RMS convergence properties [82]. An analytical parametric form of the divergence

can often be derived over the parametric class of densities considered and maximum like-

lihood can be used to estimate parameters in the divergence formula. Non-parametric

plug-in divergence estimates do not benefit from closed form parametric expressions for

divergence but avoid pitfalls of model dependent estimates. For example, when a non-

parametric estimate of f̂ is available the following plug-in estimates of α-entropy is natu-

ral

39

Hα(f̂) =
1

1− α log

∫
f̂α(z)dz. (3.15)

For the special case of Shannon entropy limα→1Hα = −
∫
f(z) log f(z)dz non-parametric

estimation methods have included: histogram estimation plug-in, kernel density estimation

plug-in and sample-spacing density estimation plug-in. The main difficulties with non-

parametric plug-in methods are due to the infinite dimension of the spaces in which the

unconstrained densities lie. Specifically: density estimator performance is poor without

stringent smoothness conditions; no unbiased density estimators generally exist; density

estimators have high variance and are sensitive to outliers; the high dimensional integration

in Equation 3.15 might be difficult. Consider the α-entropy (Equation 3.2) which could

be estimated by plugging in feature histogram estimates of the multivariate density f . A

deterrent to this approach is the curse of dimensionality, which imposes prohibitive com-

putational burden when attempting to construct histograms in large feature dimensions.

For a fixed resolution per coordinate dimension the number of histogram bins increases

geometrically in feature vector dimension. For example, for a 32 dimensional feature

space even a coarse 10 cells per dimension would require keeping track of 1032 bins in

the histogram, an unworkable and impractically large burden for any envisionable digital

computer. As high dimensional feature spaces can be more discriminatory this creates a

barrier to performing robust high resolution histogram-based entropic registration.

The problems with the above methods can be summarized by the basic observation: on

the one hand parameterizing the divergence and entropy functionals with infinite dimen-

sional density function models is a costly over parameterization, while on the other hand

artificially enforcing lower dimensional density parametrization can produce significant

bias in the estimates. This observation has motivated us to develop direct methods which

40

accurately estimate the entropy without the need for performing artificial low dimensional

parameterizations or non-parametric density estimation. The next chapter describes the

method for estimating the α-entropy via an entropic graph whose vertices are the locations

of the feature vectors in feature space. This thesis focuses on those measures of divergence

where an implementation using entropic graph methods is known and tractable.

CHAPTER IV

Entropic Graph Estimators

A principal focus of this thesis is the use of minimal graphs over feature vectors

Zn = {z1, . . . , zn}, and their associated minimal edge lengths, for estimation of entropy

of the underlying feature density f(z). For consistent estimates we require convergence of

minimal graph length to an entropy related quantity. Such convergence issues have been

studied for many years, beginning with Beardwood, Halton and Hammersley [11]. The

monographs of Steele [114] and Yukich [132] cover the interesting developments in this

area. In the general unified framework of Redmond and Yukich [107] a widely applicable

convergence result can be invoked for graphs whose length functionals can be shown to

be Euclidean, continuous and quasi additive. This result can often be applied to minimal

graphs constructed by minimizing a graph length function Lγ of the form:

Lγ(Zn) = min
E∈Ω

∑

e∈E

‖e(Zn)‖γ,

where Ω is a set of graphs with specified properties, e.g., the class of acyclic or spanning

graphs, e is an edge in Ω, ‖e‖ is the Euclidean length of e, γ is called the edge exponent

or the power weighting constant, and 0 < γ < d. The determination of Lγ requires a

combinatorial optimization over the set Ω.

If Zn = {z1, . . . , zn} is a random i.i.d. sample of d-dimensional vectors drawn from a

Lebesgue multivariate density f and the length functional Lγ is continuous quasi additive

41

42

then the following limit holds [107]

lim
n→∞

Lγ(Zn)/nα = βd,γ

∫
fα(z)dz, (a.s.) (4.1)

where α = (d − γ)/d and βd,γ is a constant independent of f . Comparing this to the

expression (3.2) for the Rényi entropy it is obvious that an entropy estimator can be con-

structed as (1 − α)−1 log (Lγ(Zn)/nα) = Hα(f) + c, where c = (1 − α)−1 log βd,γ is a

removable bias. Furthermore, it is seen that one can estimate entropy for different values

of α ∈ [0, 1] by adjusting γ. In many cases the topology of the minimal graph is indepen-

dent of γ and only a single combinatorial optimization is required to estimate Hα for all

α.

A few words are in order concerning the sufficient conditions for the limit (4.1).

Roughly speaking, continuous quasi additive functionals can be approximated closely by

the sum of the weight functionals of minimal graphs constructed on a uniform partition of

[0, 1]d. Examples of graphs with continuous quasi-additive length functional are the Eu-

clidean minimal spanning tree, the traveling salesman tour solving the traveling salesman

problem (TSP), the steiner tree, the Delaunay triangulation, and the k nearest neighbor

graph. An example of a graph that does not have a continuous quasi additive length func-

tional is the k-point MST (kMST) discussed in [56].

Even though any continuous quasi additive functional could in principle be used to

estimate entropy via relation (4.1), only those that can be simply computed will be of

interest to us here. An computationally intractable example is the TSP length functional

LTSP
γ (Zn) = minC∈c

∑
e∈C ‖e‖γ , where C is a cyclic graph that spans the points Zn

and visits each point exactly once. Construction of the TSP is NP hard and hence is not

attractive for practical image registration applications. The following sections describe, in

detail, the MST and kNN graph functionals.

43

4.1 Minimal Spanning Tree Entropy Estimator

A spanning tree is a connected acyclic graph which passes through all n feature vectors

in {Zi}ni=1. The MST connect these points with n− 1 edges, denoted {ei}, in such a way

as to minimize the total length:

Lγ(Zn) = min
e∈T

∑

e

‖e‖γ, (4.2)

where T denotes the class of acyclic graphs (trees) that span Zn. While several spanning

trees can be built over a set of points, the MST is unique if no two points overlap. However,

the length of the MST, which has asymptotic convergence to αentropy, is always unique.

is always unique See Figures 4.1.1 and 4.1.2 for an illustration when each Zn is a set of n

points in the unit square. We adopt γ = 1 for the following experiments.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z0

z1

100 uniformly distributed points

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z0

z1

MST through 100 uniformly distributed points

(b)

Figure 4.1.1: (a) A set of n = 100 uniformly distributed points {Zi}ni=1 in the unit square
in R2 and (b) the corresponding Minimal Spanning Tree (MST).

The MST length Ln = L(Zn) is plotted as a function of n in Figure 4.1.3 for the

case of an i.i.d. uniform sample (right panel) and non-uniform sample (left panel) of

n = 100 points in the plane. It is intuitive that the length of the MST spanning the more

44

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z0

z1

100 normally distributed points

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z0

z1

MST through 100 normally distributed points

(b)

Figure 4.1.2: (a) A set of n = 100 normally distributed points {Zi}ni=1 in the unit square
in R2 and (b) the corresponding Minimal Spanning Tree (MST).

concentrated non-uniform set of points increases at a slower rate in n than does the MST

spanning the uniformly distributed points. This observation has motivated the MST as

a way to test for randomness in the plane [58]. As shown in [132], the MST length is

a continuous quasi additive functional and satisfies the limit (4.1). More precisely, with

α
def
= (d− γ)/d the log of the length function normalized by nα converges (a.s.) within a

constant factor to the α-entropy.

lim
n→∞

log

(
Lγ(Zn)

nα

)
= Hα(f) + cMST , (a.s.), (4.3)

Thus we can identify the difference between the asymptotes shown on the left Figure

4.1.3 as the difference between the α-entropies of the uniform and non-uniform densities

(α = 1/2). If f is the underlying density of Zn, the α-entropy estimator

Ĥα(Zn) = 1/(1− α) [logLγ(Zn)/nα − log βd,γ] , (4.4)

is an asymptotically unbiased and almost surely consistent estimator of the α-entropy of f

where βd,γ is a constant which does not depend on the density f .

45

The constant (cMST = (1− α)−1 log βd,γ) in (4.3) is a bias term that can be estimated

offline. The constant βd,γ is the limit of Lγ(Zn)/nα as n → ∞ for a uniform distribution

f(z) = 1 on the unit cube [0, 1]d. This constant can be approximated by Monte Carlo

simulation of mean MST length for a large number of d-dimensional random samples on

the unit cube.

0 1 2 3 4 5

x 10
4

20

40

60

80

100

120

140

Number of points

M
in

im
u

m
 S

p
an

n
in

g
 T

re
e

L
en

g
th

Uniform
Gaussian

(a)

0 1 2 3 4 5

x 10
4

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of points

N
o

rm
al

iz
ed

 M
S

T
 L

en
g

th

Uniform
Gaussian

(b)

Figure 4.1.3: (a) Mean Length functions Ln of MST implemented with γ = 1 and (b)
Ln/
√
n as a function of n for uniform and normal distributed points.

The MST approach to estimating the α-Jensen difference between the feature densi-

ties of two images can be implemented as follows. Assume two sets of feature vectors

Z0 = {z(i)
0 }n0

i=1 and Z1 = {z(i)
1 }n1

i=1 are extracted from images X0 and X1 and are i.i.d. re-

alizations from multivariate densities f0 and f1, respectively. In the applications explored

in this paper n0 = n1 but it is worthwhile to maintain this level of generality. Define the

set union Z = Z0 ∪ Z1 containing n = n0 + n1 unordered feature vectors. If n0, n1

increase at a constant rate as a function of n then any consistent entropy estimator con-

structed from the vectors {Z (i)}n0+n1

i=1 will converge to Hα(pf0 + qf1) as n → ∞ where

p = limn→∞ n0/n. This motivates the following finite sample entropic graph estimator of

46

α-Jensen difference

∆Ĥα(p, f0, f1) = Ĥα(Z0 ∪ Z1)− [pĤα(Z0) + qĤα(Z1)], (4.5)

where p = n0/n, Ĥα(Z0 ∪ Z1) is the MST entropy estimator constructed on the n point

union of both sets of feature vectors and the marginal entropies Ĥα(Z0), Ĥα(Z1) are con-

structed on the individual sets of n0 and n1 feature vectors, respectively. We can similarly

define a density-based estimator of α-Jensen difference. Observe that for affine image

registration problems the marginal entropies {Hα(fi)}Ki=1 over the set of image transfor-

mations will be identical, obviating the need to compute estimates of the marginal α-

entropies.

As contrasted with histogram or density plug-in estimator of entropy or Jensen differ-

ence, the MST-based estimator enjoys the following properties [53, 51, 56]: it can easily

be implemented in high dimensions; it completely bypasses the complication of choosing

and fine tuning parameters such as histogram bin size, density kernel width, complexity,

and adaptation speed; as the topology of the MST does not depend on the edge weight

parameter γ, the MST α-entropy estimator can be generated for the entire range α ∈ (0, 1)

once the MST for any givenα is computed; the MST can be naturally robustified to outliers

by methods of graph pruning. On the other hand the need for combinatorial optimization

may be a bottleneck for a large number of feature samples for which accelerated MST

algorithms are necessary.

4.2 Nearest Neighbor Graph Entropy Estimator

The k-nearest neighbor graph is a continuous quasi-additive power-weighted graph

that is a computationally attractive alternative to the MST. Given i.i.d vectors Zn in Rd,

47

the 1-nearest neighbor of zi in Zn is given by

arg min
z∈Zn\{zi}

‖z − zi‖, (4.6)

where ‖z − zi‖ is the usual Euclidean (L2) distance in Rd. For general integer k ≥ 1, the

k-nearest neighbor of a point is defined in a similar way [13, 19, 98]. The kNN graph puts

a single edge between each point in Zn and its k-nearest neighbors. Let Nk,i = Nk,i(Zn)

be the set of k-nearest neighbors of zi in Zn. The kNN problem consists of finding the set

Nk,i for each point zi in the set Zn − {z}. As with the MST, the length of a kNN graph

built over a set of random vectors is always unique. See Figures 4.2.4 and 4.2.5 for an

illustration when Zn are points in the unit square.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension 1

D
im

en
si

o
n

 2

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension 1

D
im

en
si

o
n

 2

Figure 4.2.4: (a) A set of n = 100 uniformly distributed points {Zi}ni=1 in the unit square
in R2 and (b) the corresponding k-Nearest Neighbor graph (k = 4).

This problem has exact solutions that run in linear-log-linear time [15]. The total graph

length is:

Lγ,k(Zn) =

N∑

i=1

∑

e∈Nk,i

‖e‖γ . (4.7)

In general, the kNN graph will count edges at least once, but sometimes count edges more

48

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Dimension 1

D
im

en
si

on
 2

(a)

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Dimension 1

D
im

en
si

on
 2

(b)

Figure 4.2.5: (a) A set of n = 100 normally distributed points {Zi}ni=1 in the unit square
in R2 and (b) the corresponding k-Nearest Neighbor graph (k = 4).

than once. For example, if two points X1 and X2 are mutual k-nearest neighbors, then the

same edge between X1 and X2 will be doubly counted.

Analogously to the MST, the log length of the kNN graph has limit

lim
n→∞

log

(
Lγ,k(Zn)

nα

)
= Hα(f) + ckNNG, (a.s.). (4.8)

Once again this suggests an estimator of the Renyi α-entropy

Ĥα(Zn) = 1/(1− α) [logLγ,k(Zn)/nα − log βd,γ,k] , (4.9)

As in the MST estimate of α-entropy, the constant ckNNG = (1 − α)−1 log βd,γ,k can

be estimated off-line by Monte Carlo simulation of the kNNG on random samples drawn

from the unit cube. The complexity of the kNNG algorithm is dominated by the nearest

neighbor search, which can be done in O(n logn) time for n sample points. This contrasts

with the MST that requires a O(n2 log n) implementation.

A related k-NN graph is the graph where edges connecting two points are counted

only once. Such a graph eliminates one of the edges from each point pair that are mu-

tual k-nearest neighbors. A kNN graph can be built by pruning such that every unique

49

0 1 2 3 4 5

x 10
4

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of points

K
−N

ea
re

st
 N

ei
gh

bo
r

G
ra

ph
 L

en
gt

h

Uniform
Gaussian

(a)

0 1 2 3 4 5

x 10
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Number of points

N
or

m
al

iz
ed

 K
−N

N
 G

ra
ph

 L
en

gt
h

Uniform
Gaussian

(b)

Figure 4.2.6: (a) Mean Length functions Ln of kNN graph implemented with γ = 1 and
(b) Ln/

√
n as a function of n for uniform and Gaussian distributed points.

edge contributes only once to the total length. The resultant graph has the an identical

appearance to the initial unpruned k-NN graph, when plotted on the page. However, the

cumulative length of the edges in the graphs differ, and so does their β factor (Compare

Figures 4.2.6 and 4.2.7). We call this special pruned k-NN graph, the “Single-Count k-NN

graph”.

4.3 Entropic Graph Estimate of Henze-Penrose Affinity

Friedman and Rafsky [42] presented a multivariate generalization of the Wald-Wolfowitz

[127] runs statistic for the two sample problem. The Wald-Wolfowitz test statistic is used

to decide between the following hypothesis based on a pair of samples X , O ∈ R with

densities fx and fo respectively:

H0: fx = fo (4.10)

H1: fx 6= fo,

50

0 1 2 3 4 5

x 10
4

200

400

600

800

1000

1200

Number of points

k−
N

N
 G

ra
ph

 L
en

gt
h:

 U
ni

qu
e

ed
ge

s
on

ly

Uniform
Gaussian

(a)

0 1 2 3 4 5

x 10
4

3

3.5

4

4.5

5

5.5

6

Number of points

N
or

m
. k

−N
N

 G
ra

ph
 L

en
gt

h:
 U

ni
qu

e
ed

ge
s

on
ly

Uniform
Gaussian

(b)

Figure 4.2.7: (a) Mean Length functions Ln of Singe-Count kNN graph implemented with
γ = 1 and (b) Ln/

√
n as a function of n for uniform and normal distributed

points.

The test statistic is applied to an i.i.d. random sample {Xi}mi=1, {Oi}ni=1 from fx and fo. In

the univariate Wald Wolfowitz test, the n + m scalar observations {Zi}i = {Xi}i, {Oi}i

are ranked in ascending order. Each observation is then replaced by a class label X or

O depending upon the sample to which it originally belonged, resulting in a rank ordered

sequence. The Wald-Wolfowitz test statistic is the total number of runs (run-length) R` of

X ’s or O’s in the label sequence. As in run-length coding, R`, is the length of consecutive

sequences of length ` of identical labels.

In Friedman and Rafsky’s paper [42], the MST was used to obtain a multivariate gen-

eralization of the Wald-Wolfowitz test. This procedure is called the Friedman-Rafsky (FR)

test and is similar to the MST for estimating the α-Jensen difference. It is constructed as

follows:

1. construct the MST on the pooled multivariate sample points {Xi}
⋃{Oi}.

2. retain only those edges that connect an X labeled vertex to an O labeled vertex.

3. The FR test statistic, N , is defined as the number of edges retained.

51

The hypothesis H1 is accepted for smaller values of the FR test statistic. As shown in

[50], the FR test statistic N converges to the Henze-Penrose affinity (3.13) between the

distributions fx and fo. The limit can be converted to the HP divergence by replacing N

by the multivariate run length statistic RFR
` = n+m− 1−N .

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Dimension 1

D
im

en
si

on
 2

N(µ
1
,Σ

1
): µ

1
=3,Σ

1
=1 × I

N(µ
2
,Σ

2
): µ

1
=3,Σ

1
=1 × I

(a) MST µ1 = µ2 and Σ1 = Σ2

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Dimension 1

D
im

en
si

on
 2

N(µ
1
, Σ

1
) : µ

1
=0, Σ

1
=1 × I

N(µ
2
, Σ

2
) : µ

2
=3, Σ

2
=1 × I

(b) MST µ1 = µ2 − 3 and Σ1 = Σ2

Figure 4.3.8: Illustration of MST for Gaussian case. Two bivariate normal distributions
N (µ1,Σ1) andN (µ1,Σ1) are used. The ’x’ labeled points are samples from
f1(x) = N (µ1,Σ1), whereas the ’o’ labeled points are samples from f2(o) =
N (µ2,Σ2). (left) µ1 = µ2 and Σ1 = Σ2 and (right) µ1 = µ2 − 3 while
Σ1 = Σ2.

For illustration of these graph constructions we consider two bivariate normal dis-

tributions with density functions f1 and f2 parametrized by their mean and covariance

(µ1,Σ1), (µ2,Σ2). Graphs of the α-Jensen divergence calculated using MST (Figure 4.3.8),

kNNG (Figure 4.3.9), and the Henze-Penrose affinity (Figure 4.3.10) are shown for the

case where µ1 = µ2,Σ1 = Σ2. The ‘x’ labeled points are samples from f1(x) =

N (µ1,Σ1), whereas the ‘o’ labeled points are samples from f2(o) = N (µ2,Σ2). µ1 is then

decreased so that µ1 = µ2 − 3. The resultant trends in the different divergence measures

are seen in Figure 4.3.11. The α-Jensen divergence is minimized, as expected, when the

two distributions are aligned and indistinguishable (µ1 = µ2), whereas the Henze-Penrose

52

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Dimension 1

D
im

en
si

on
 2

N(µ
1
,Σ

1
): µ

1
=3,Σ

1
=1 × I

N(µ
2
,Σ

2
): µ

1
=3,Σ

1
=1 × I

(a) kNN µ1 = µ2 and Σ1 = Σ2

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Dimension 1

D
im

en
si

on
 2

N(µ
1
, Σ

1
) : µ

1
=0, Σ

1
=1 × I

N(µ
2
, Σ

2
) : µ

2
=3, Σ

2
=1 × I

(b) kNN µ1 = µ2 + 3 and Σ1 = Σ2

Figure 4.3.9: Illustration of kNN for Gaussian case. Two bivariate normal distributions
N (µ1,Σ1) andN (µ1,Σ1) are used. The ’x’ labeled points are samples from
f1(x) = N (µ1,Σ1), whereas the ’o’ labeled points are samples from f2(o) =
N (µ2,Σ2). (left) µ1 = µ2 and Σ1 = Σ2 and (right) µ1 = µ2 − 3 while
Σ1 = Σ2. k = 4

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Dimension 1

D
im

en
si

on
 2

N(µ
1
,Σ

1
): µ

1
=3,Σ

1
=1 × I

N(µ
2
,Σ

2
): µ

1
=3,Σ

1
=1 × I

(a) Henze-Penrose µ1 = µ2 and Σ1 = Σ2

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Dimension 1

D
im

en
si

on
 2

N(µ
1
, Σ

1
) : µ

1
=0, Σ

1
=1 × I

N(µ
2
, Σ

2
) : µ

2
=3, Σ

2
=1 × I

(b) Henze-Penrose µ2 = µ1 + 3 and Σ1 = Σ2

Figure 4.3.10: Illustration of Henze-Penrose affinity for Gaussian case. Two bivariate nor-
mal distributionsN (µ1,Σ1) andN (µ1,Σ1) are used. The ’x’ labeled points
are samples from f1(x) = N (µ1,Σ1), whereas the ’o’ labeled points are
samples from f2(o) = N (µ2,Σ2). (left) µ1 = µ2 and Σ1 = Σ2 and (right)
µ1 = µ2 − 3 while Σ1 = Σ2.

53

affinity is maximized.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Distance between the mean of f
1
 and f

2

α−Jensen(MST) divergence
Friedman−Rafsky affinity
GA affinity

(a)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
25

30

35

40

45

50

55

60

α−Jensen(kNNG) divergence
α−Jensen(kNNG,Single Count)

(b)

Figure 4.3.11: Illustration of divergence and affinity functions, as a function of the distance
between the means of two bivariate normal distributions, f1 and f2. (a)
αJensen divergence computed using MST, Friedman-Rafsky affinity and
αGeometric-Arithmetic affinity. (b) αJensen divergence computed using
kNNG and Single-count kNNG.

4.4 Entropic Graph Estimators of α-GA and α-MI

Assume for simplicity that the target and reference feature sets O = {oi}i and X =

{xi}i have the same cardinality m = n. Here i denotes the ith pixel location in target

and reference images. An entropic graph approximation to α-GA mean divergence (3.12)

between target and reference is:

α̂DGA =
1

α− 1
log

1

2n

2n∑

i=1

min

{(
ei(o)

ei(x)

)γ/2

,

(
ei(x)

ei(o)

)γ/2
}
, (4.11)

where ei(o) and ei(x) are the distances from a point zi ∈ {{oi}i, {xi}i} ∈ Rd to its nearest

neighbor in {Oi}i and {Xi}i, respectively. Here, as above α = (d− γ)/d.

Likewise, an entropic graph approximation to the α-MI (3.5) between the target and

the reference is:

α̂MI =
1

α− 1
log

1

nα

n∑

i=1

(
ei(o× x)√
ei(o)ei(x)

)2γ

, (4.12)

54

where ei(o× x) is the distance from the point zi = [oi, xi] ∈ R2d to its nearest neighbor in

{Zj}j 6=i and ei(o) (ei(x)) is the distance from the point oi ∈ Rd, (xi ∈ Rd) to its nearest

neighbor in {Oj}j 6=i({Xj}j 6=i). See Figure 4.5.12 for illustration.

The estimators (4.11) and (4.12) can be derived from making a nearest neighbor ap-

proximation to the volume of the Voronoi cells constituting the kNN density estimator

after plug-in to formulas (3.12) and (3.5), respectively. The details are given below. The

theoretical convergence properties of these estimators are at present unknown.

Natural generalizations of (4.11) and (4.12) to multiple (> 2) images exist. The com-

putational complexity of the α-MI estimator (4.12) grows only linearly in the number of

images to be registered while that of the α-GA estimator (4.11) grows as linear log linear.

Therefore, there is a significant complexity advantage to implementing α-MI via (4.12)

for simultaneous registration of a large number of images.

Here we give a derivation of the entropic graph estimators of α-GA (4.11) and α-MI

(4.12) estimators. The derivations are given for equal numbers m and n of features from

the two images but are easily generalized to unequal m,n. The derivation is based on a

heuristic and thus the convergence properties are, at present, unknown.

First consider estimating αDGA(f, g) = (α − 1)−1 log IGA(f, g), where IGA(f, g) is

the integral in (3.12), by α̂DGA = (α− 1)−1 log ÎGA where:

ÎGA =
1

2n

2n∑

i=1

(
f̂ p(zi)ĝ

q(zi)

ĥ(zi)

)1−α

. (4.13)

Here ĥ(z) is an estimate of the common pdf pf(z) + qg(z) of the i.i.d. pooled unordered

sample {Zi}2n
i=1 = {Oi,Xi}ni=1 and f̂ , ĝ are estimates of the common densities f , g of the

i.i.d. samples {Oi}ni=1 and {Xi}ni=1, respectively. We assume that the support set of f , g, h

is contained in a bounded region S of Rd. If f̂ , ĝ, ĥ are consistent, i.e they converge (a.s.)

55

as n→∞ to f , g, h, then by the strong law of large numbers ÎGA converges (a.s) to

E[ÎGA] = E

[(
f p(zi)g

q(zi)

h(zi)

)1−α
]

=

∫

S

(
f p(z)gq(z)

h(z)

)1−α

h(z)dz, (4.14)

Taking the log of expression (4.14) and dividing by α−1, we obtain αDGA(f, g) in (3.12)

so that α̂DGA is asymptotically unbiased and its variance goes to zero.

Next divide the samples {Zi}2n
i=1 into two disjoint sets: training samples Ztrain and test

samplesZtest. Using the training sample construct the Voronoi partition density estimators

ĥ(z) =
µ(Πz(z))

λ(Πz(z))

f̂(z) =
µ(Πo(z))

λ(Πo(z))
(4.15)

ĝ(z) =
µ(Πx(z))

λ(Πx(z))
,

where ΠZ(z), ΠO(z), ΠX (z) are the cells of the Voronoi partition of S ∈ Rd containing the

point z ∈ Rd and constructed from training samples Ztrain ≡ {Otrain,Xtrain}, Otrain and

Xtrain respectively using K-means or other algorithm. Here µ and λ are the (normalized)

counting measure and Lebesgue measure respectively, i.e µ(Π) is the number of points

in the set Π divided by the total number of points and λ(Π) is the volume of the set Π.

Let {Kz, Ko, Kx} be the number of cells in the partitions {Πz,Πo,Πx} respectively and

let ntrain be the number of training samples. The Voronoi partition density estimators are

asymptotically consistent as k, ntrain → ∞ and k/ntrain → 0, for k ∈ {Kz, Ko, Kx}

[100].

Therefore, under these conditions and defining Z̃i = Ztest(i),

α̂DGA =
1

α− 1
log

 1

ntest

ntest∑

i=1

(
f̂ p(z̃i)ĝq(z̃i)

ĥ(z̃i)

)1−α

 (4.16)

is an asymptotically consistent estimator as k, ntrainntest →∞ and k/ntrain → 0

56

Next consider the following plug-in estimator of α-MI: α̂MI = (α−1) log ÎMI , where

ÎMI =
1

n

n∑

i=1

(
f̂o(oi)f̂x(xi)

f̂ox(oi, xi)

)1−α

, (4.17)

and f̂ox is an estimate of the joint density of the 2d dimensional vector (Oi,Xi) ∈ R2d. f̂o

and f̂x are estimates of the density of Oi and Xi, respectively. Again, if f̂o, f̂x and f̂ox are

consistent then it is easily shown that ÎMI converges to the integral in the expression (3.5)

for α-MI:

∫

S×S

∫ (
f̂o(u)f̂x(v)

f̂ox(u, v)

)1−α

fox(u, v)dudv, (4.18)

where S is a bounded set containing the support of densities fo and fx. Similarly, sepa-

rating {(Oi,Xi)}ni=1 into training and test samples, we obtain an asymptotically consistent

estimator:

α̂MI =
1

α− 1
log

 1

ntest

ntest∑

i=1

(
f̂o(õi)f̂x(x̃i)

f̂ox(õi, x̃i)

)1−α

 (4.19)

The entropic graph estimators (4.11) and (4.12) are obtained by specializing to the case

ntrain = 0, in which case µ(ΠZ(z)) = (2n)−1, µ(ΠO(z)) = µ(ΠX (z)) = µ(ΠO×X (z)) =

n−1, and using the Voronoi cell volume approximations

λ(ΠZ(zi)) � ed
i (z) = min{ed

i (o), e
d
i (x)} (4.20)

λ(ΠX (zi)) � ed
i (x) (4.21)

λ(ΠY (zi)) � ed
i (o) (4.22)

λ(ΠO×X (zi)) � e2d
i (o× x) (4.23)

where� denotes “proportional to” and ei(o), ei(x), ei(o×x) are the NN distances defined

in Section 4.2. In Equation 4.23 approximation was involved to represent the volume of a

Voronoi cell by that of the minimum volume cell in O and X , respectively.

57

4.4.1 Implementation Issue

The stable computation of the α-MI estimator (Equation 4.12) requires that ei(o) and

ei(x) be non-zero whenever ei(o × x) is non-zero (Figure 4.5.12). For continuously dis-

tributed features {Oi} and {Xi} the probability of stable computation is one, since the

probability that any two feature components be exactly equal is zero. However, for prac-

tical applications where the feature space is quantized to finite precision arithmetic, the

probability of stable computation is strictly less than one. In fact, it can be shown that it

rapidly goes to zero as the number of feature realizations gets large.

A remedy for this is randomization. To avoid zero values of ei(o) and ei(x), a small

amount of uniform noise may be added to the feature coefficient. This randomization

disperses points uniformly in an area around their discretized value. This process is con-

sistent with the assumption that local distribution of continuously valued feature vectors is

uniform around their discretized values. In simulations with discretized 8-bit pixel inten-

sity features, univariate uniform noise with a variance σ2 = 0.02 was added to each pixel

intensity. This ensured that no two intensities were exactly the same and thus enabling

stable computation of αMI.

4.5 A non-linear correlation measure

The simple form of Equation 4.12 is suggestive of a non-linear correlation measure

between the features {Oi} and {Xi} that eliminates the implementation issue discussed

above. Indeed, if “ei” in Equation 4.12 is redefined as the statistical expectation “E”,

then the α-MI estimator takes the appearance of a linear correlation coefficient between

{Oi} and {Xi}. However, as explained above, the ratio ei(o × x)/
√
ei(o)ei(x) is not

bounded between 0 and 1, rather it can take values that are arbitrarily large. The following

modification of Equation 4.12 can be used to ensure that the non-linear correlation measure

58

lie between 0 and 1. This new measure is called the non-linear correlation coefficient

(NLCC).

Let ei(o × x) be the distance from i-th feature pair (oi, ei) to its nearest neighbor as

before. Instead of ei(o) and ei(x) being the coordinate-wise nearest neighbor distances

along the feature coordinate axes X and O (See Figure 4.5.12) we define ẽi(o) and ẽi(x)

the associated nearest neighbor distances in the plane (see Figure 4.5.13). The quantity

ẽi(o × x)/
√
ẽi(o)ẽi(x) is now bounded between 0 and 1. In particular, it is equal to one

when the nearest neighbor to (oi, xi) is also the coordinate-wise nearest neighbor to (oi, xi)

along the coordinate axes O and X .

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

e
i
(x)

e
i
(o)

e
i
(o × x)

(o
i
,x

i
)

Dimension 1

D
im

en
si

o
n

 2

Figure 4.5.12: Illustration of the distances ei(o × x), ei(o) and ei(x) used in the α-MI
estimator (Equation 4.12)

In particular the quantity

ρ̂ =
1

n

n∑

i=1

(
ẽi(o× x)√
ẽi(o)ẽi(x)

)
(4.24)

is equal to one when the nearest neighbor graph is monotone (increasing or decreasing)

piecewise linear curve in the plane 4.5.14. Thus if the features are realizations of the

random vector (O,X) which obeys the monotone model:

Θ = g(X), (4.25)

59

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

e
i
(o)

e
i
(x) e

i
(o × x)

(o
i
,x

i
)

Dimension 1

D
im

en
si

o
n

 2

Figure 4.5.13: Illustration of modified distances ei(x) and ei(o) used to stabilize the
estimator (Equation 4.12), defining the non-linear correlation coefficient
(NLCC)

where g(·) is a monotonic increasing function, the NLCC ρ̂ will equal 1 with probability

one. This motivates the use of ρ as a measure of information between Θ and X . Unfortu-

nately, if the actual model is

Θ = g(X) + w (4.26)

where w is additive noise, ρ̂ will converge to zero as n → ∞ for any continuous random

variable w. It can be shown that the rate of convergence in this case is n
−γ
2d . This motivates

the modification of the NLCC to:

ρ̂NLCC =
1

n1−γ/2d

n∑

i=1

(
ẽi(o× x)√
ẽi(o)ẽi(x)

)
. (4.27)

This modified correlation now takes values between 0 and ∞. A normalized version

can be defined as:

ρ̂ =
ρ̂NLCC

1 + ρ̂NLCC
(4.28)

that is between zero and one.

60

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Dimension 1 −−−> O

D
im

en
si

on
 2

−−

−>
 X

Figure 4.5.14: The Nearest Neighbor Graph over the realizations {(oi × xi)}Ni=1 of the
paired features describes a monotone function in the plane. For this case,
the NLCC ρ̂ = 1

We illustrate the NLCC by comparing it to the linear correlation coefficient 4.29 for

two simple models. The linear correlation coefficient is defined as:

ρ̂CC =
1
n

∑n
i=1(oi − ō)(xi − x̄)√

1
n

∑n
i=1(oi − ō)2 1

n

∑n
i=1(xi − x̄)2

(4.29)

where ō = 1/n
∑n

i=1 oi and x̄ = 1/n
∑n

i=1 xi are sample means.

4.5.1 Numerical experiments with NLCC

Consider the linear model Θ = aX + w, where a2 = ρ2
CC/(ρ

2
CC + 1). Figure 4.5.15

shows a plot of the linear (Equation 4.29) and nonlinear (Equation 4.27) correlation coef-

ficients, ρ̂CC and ρ̂NLCC for this model as functions of the number of points N for various

values of a. As a increases, the linear correlation increases but does not reach one due

to the presence of additive noise w. In the limit as N → ∞ the non-linear correlation

coefficient converges to a constant.

Now consider the nonlinear model given by Θ = ag(X) + w; g(X) = bX 3. As

shown in Figure 4.5.16, the linear correlation coefficient remains unchanged at the value

61

−1 0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
C

 a
n

d
 N

L
C

C

Number of points N

Linear model, Y = aX + w

CC, a = 0.1 to 0.7071
NLCC a = 0.1 to 0.7071

Figure 4.5.15: Comparison of Linear and non-linear correlation coefficient for a linear
model

corresponding to the relation between Θ and X . The non-linear correlation, however

increases with a, showing that it responds to changes in the non-linear relation between Θ

and X .

Figure 4.5.17 confirms these findings. It illustrates the relation between the linear and

non-linear correlation coefficients for both linear and non-linear models. The values are

plotted for N = 50000 and a increases from 0.1 to 0.7071.

In conclusion this chapter laid out a direct entropy estimation method using graphs

whose lengths converge asymptotically to the entropy of the underlying distributions. Such

direct entropy estimations methods can be readily extended to higher dimensions without

loss of consistency. MST and kNN graphs are used to estimate α-entropy and the αJensen

difference between marginal distributions of feature densities. The MST is also used to

estimate the Friedman-Rafsky statistic and the related Henze-Penrose affinity. Finally,

entropic graph estimators for αMI and αGA and NLCC were presented.

As discussed earlier, this thesis focuses on feature-level representation of images. Un-

like previous entropic matching methods however, features are not limited to scalar pixel

62

−1 0 1 2 3 4 5 6

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
C

 a
nd

 N
LC

C

Number of points N

Non−Linear model, Y = ag(X) + w, g(X) = bX 3

CC a = 0.1 to 0.7071
NLCC a = 0.1 to 0.7071

Figure 4.5.16: Comparison of Linear and non-linear correlation coefficient for a nonlinear
model

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

CC

N
L

C
C

N = 50,000, a = [0.10 0.20 0.29 0.37 0.45 0.51 0.57 0.62 0.67 0.71]

Linear Model Y=aX+w
NonLinear Model Y=a(bX3)+w

Figure 4.5.17: Plot of CC v/s NLCC for N = 50000 and a = 0.1 to 0.7071

63

intensity values. Higher dimensional features in continuum are used for image represen-

tation and registration through a matching process based on the entropic graph estimators

discussed in this chapter.

CHAPTER V

Feature-based Matching

While scalar single pixel intensity level is the most widely used feature for MI reg-

istration, it is not the only possible feature. As pointed out by Leventon and Grimson

[76], single pixel MI does not take into account joint spatial behavior of the coincidences

and this can cause poor registration, especially in multi-modality situations. Alternative

scalar valued features [17] and vector valued features [97, 110] have been investigated for

mutual information based image registration. We will focus on local basis projection fea-

ture vectors which generalize pixel intensity levels. Mutual information based registration

methodology using single pixel features is illustrated in Figure 3.3.1

5.1 Local Tag Features

Tag features were introduced by Amit and Geman [4] and used for shape recognition.

A set of primitive local features, called tags, are selected which provide a coarse descrip-

tion of the topography of the intensity surface in the vicinity of a pixel. Local image

configurations, e.g. 8 × 8 pixel neighborhoods, are captured by coding each pixel with

labels derived from the tags. For gray scale images, the number of different tag types can

be extremely large. For example, if the image intensities are quantized to an 8-bit plane

then there would exist (256)64 different 8 × 8 tag types. Therefore, methods for prun-

64

65

ing the tag types are essential for practical implementation. Randomized feature selection

and adaptive thresholding are methods of pruning which were described by Geman and

Koloydenko [44] and which we adapted [96, 97] to the UL image registration application

described below.

Geman’s adaptive quantization scheme is sensitive to local contrast in Ultrasound im-

ages. The quantized value assigned to a pixel within an 8 × 8 neighborhood depends on

the gray values of its neighbors. Consider an 8 × 8 pixel neighborhood arbitrarily picked

from an Ultrasound image. Let δ be a positive granularity parameter. The darkest pixel(s)

are assigned quantized value 0, the next brightest pixel(s) are assigned 0 if the difference is

less than δ and value 1 otherwise, the next brightest pixel(s) are assigned 2 if the difference

is less than δ, and so on. Using this scheme on our ultrasound breast image database, tags

associated with relatively uniform background areas (dark or bright) are eliminated. Tags

with small spatial variances are classified as speckle and are also eliminated. Such tags are

irrelevant to image matching and pruning achieves a reduction in tag types by almost 75%.

From the remaining tag types, randomized selection is used to pick a set of 256 unique tag

types as explained below.

Randomized selection using Geman’s scheme [4] entails building a tree structure that

is used to build histograms of tags. Figure 5.1.2(a) illustrates the tree based classification

procedure for a 4 × 4 pixel tag. At the root node, the value of the pixel at (a randomly

picked) position (2,2) in the tag is examined. The tag is classified amongst one of four

different branches of the tree. A tree structure evolves when subsequent queries are used

to further split the tag tree. Each node of the tree thus represents a query at a position

in the tag. The tags at the bottom of this feature tree are identified as leaf nodes or bins.

These nodes have been queried at all 16 positions and hence further splitting of the tree at

the node is not possible. A section of the tree at the leaf depth is shown in Figure 5.1.2(b).

66

Root Node

Depth 1

Depth 2

Not examined
 further

(a)

Terminal nodes (Depth 16)

(b) b

Figure 5.1.1: (a) Feature tree structure used to pick tags for registration. (b) Feature tree
at leaf level shows examples of tag types used for registration

67

To build a histogram in tag space an image is ‘dropped’ block-by-block, down the

feature tree. To populate the bins in the feature tree, an image is subdivided into 4 × 4

blocks. The block size is identical to the size of the tags used. Blocks are also discretized

in a manner identical to the discretization used for tags i.e. using adaptive thresholding.

The image blocks are queried at specific positions determined by the feature tree described

above. Based on their responses, the blocks traverse a path down the tree until they reach

a bin at the leaf node. Several image blocks may accumulate in the bins at the leaf depth

in the tree. These bins thus form a histogram of tag types and the histogram serves as an

estimate of the tag pdf of the image. Some image blocks will obviously be discarded if the

underlying tags have been discarded. This ensures that speckle or other structure deemed

irrelevant to registration do not participate in the image registration process.

To illustrate we show in Fig. 5.1.2 tag features at a given pixel location for two US

breast images in the same 2D slice but at two rotation angles. Coincidences of tag types

are calculated by counting joint occurrences of feature types at identical spatial locations

in the two images. The (amplified) tag pattern in the image on the left captures the edge

of the tumor. A similar tag type will be observed in the secondary image on the right if it

nearly aligned. These tags capture the local intensity pattern in the neighborhood of the

pixel. The advantage of tags for matching US breast images is that they can more easily

discriminate between speckle and tissue echos than can single pixel intensity values.

Basis projection features are extracted from an image by projecting local sub-images

onto a basis of linearly independent sub-images of the same size. Such an approach is

widely adopted in image matching applications, in particular with DCT or more general

2D wavelet bases [123, 31, 112, 83, 32]. Others have extracted a basis set adapted to image

databases using principal components (PCA) or independent components analysis (ICA)

[77, 61].

68

(a) (b)

Figure 5.1.2: Local tags features applied to image registration. Each pixel is labeled by a
8 × 8 tag type extracted using Geman’s [44, 4] adaptive thresholding tech-
nique. Occurrences and coincidences of tag labels can be mapped to a coin-
cidence histogram like Fig. 3.3.1

5.2 ICA Basis Projection Features

An ICA basis is especially well suited for registration purposes since it aims to obtain

vector features which have statistically independent elements that can facilitate estimation

of α-MI and other entropic measures. Specifically, in ICA an optimal basis is found which

decomposes the image Xi into a small number of approximately statistically independent

components (sub-images) {Sj}:

Xi =

p∑

j=1

aijSj. (5.1)

Basis elements {Sj} are selected from an over-complete linearly dependent basis using

randomized selection over the database. For image i the feature vectors Zi are defined as

the coefficients {aij} in (5.1) obtained by projecting the image onto the basis (See Figure

5.2.3).

Figure 5.2.4 serves to illustrate the ICA basis selected for the MRI image database.

69

Figure 5.2.3: Subimages are projected onto the basis and the resultant coefficients {Zref}
and {Ztar} are used as features for registration.

ICA was implemented using Hyvarinen and Oja’s [61] FastICA code (available from

[60]) which uses a fixed-point algorithm to iteratively compute the maximum likelihood

estimate of the basis elements in the ICA data model (5.1). An ICA basis of 8 × 8 sub-

images was generated by randomized selection on the image volumes thus yielding a 64

dimensional feature set. Figure 5.2.4 shows a set of 64 16× 16 basis vectors which were

estimated from the 100,000 randomly selected 16 × 16 training sub-images picked from

5 consecutive image slices each of two MRI volume scans of the brain, one of the scans

was T1 weighted whereas the other was T2 weighted. Given this ICA basis and a pair

of to-be-registered M × N images, coefficient vectors were extracted by projecting each

non-overlapping 16× 16 neighborhood in the images onto the basis set. Asymptotic con-

vergence of the entropic graph to the αentropy is under i.i.d condition for the underlying

feature vectors. Non-overlapping blocks are chosen over overlapping blocks in an attempt

to satisfy this constraint. For the 64 dimensional ICA basis shown in Figure 5.2.4 this

yielded a set of MN vectors in a 64 dimensional vector space which will be used to define

features. An ICA basis of 8×8 sub-images was also generated by an identical randomized

selection on breast UL image volumes thus yielding a 64 dimensional feature set (Figure

5.2.5).

70

Figure 5.2.4: 16× 16 ICA basis set obtained from training on randomly selected 16× 16
blocks in 10 T1 and T2 time weighted MRI images. Only 64 of the 256
possible bases are shown. Features extracted from an image are the 64-
dimensional vectors obtained by projecting 16×16 sub-images of the image
on the ICA basis.

Figure 5.2.5: 8×8 ICA basis set obtained from training on randomly selected 8×8 blocks
in 10 Ultrasound image volumes. Features extracted from an image are the
64-dimensional vectors obtained by projecting 8×8 sub-images of the image
on the ICA basis.

71

5.2.1 Discrete vs. Continuous Features

While adaptive thresholding yields tag features that are discrete valued, ICA and other

basis projection features are continuous valued. The potentially high dimension of the ba-

sis projection feature space makes estimation of the divergence measure problematic. A

brute force method would be to discretize the vector of projection coefficients, e.g. using

vector quantization [79] as in Ma’s thesis [82], and generate histograms over the Voronoi

cells. These histograms could then be used in the formula for the divergence to yield

plug-in estimators of these quantities (Chapter IV). This presents difficulties for image

matching applications since the reference and secondary images must both use the same

cell partitioning in order to maintain consistency of bin indexes. For high dimensional

feature space this brute force method also suffers from large bias unless one uses an im-

practically large number of cells. An alternative that can be applied to directly estimating

divergence is through the use of entropic graphs as discussed in Chapter IV.

5.3 Multiresolution Wavelet basis features

As contrasted to ICA and tag features which require a training set of images to deter-

mine the feature mapping, multiresolution wavelet features can be extracted without any

training sample required. Coarse-to-fine hierarchical wavelet basis functions describe a

linear synthesis model for the image. The coarser basis functions have larger support than

the finer basis; together they incorporate global and local spatial frequency information in

the image. The multiresolution properties of the wavelet basis offer an alternative to the

ICA basis, which is restricted to a single window size. Wavelet bases are commonly used

to generate features for image registration [129, 117, 64] and are briefly reviewed here.

A multiresolution analysis of the space of Lebesgue measurable functions, L2(R), is

a set of closed, nested subspaces Vj, j ∈ Z. A wavelet expansion uses translations and

72

dilations of one fixed function, the wavelet ψ ∈ L2(R). ψ is a wavelet if the collection of

functions {ψ(x− l)|l ∈ Z} is a Riesz basis of V0 and its orthogonal complement W0. The

continuous wavelet transform of a function f(x) ∈ L2(R) is given by:

Wf(a, b) =< f, ψa,b >;ψa,b =
1√
|a|
ψ(
x− b
a

), (5.2)

where a, b ∈ R, a 6= 0.

For discrete wavelets, the dilation and translation parameters, b and a, are restricted

to a discrete set, a = 2j, b = k where j and k are integers. The dyadic discrete wavelet

transform is then given as:

Wf(j, k) =< f, ψj,k > ψj,k = 2−j/2ψ(2−jx− k) (5.3)

where j, k ∈ Z. Thus the wavelet coefficient of f at scale j and translation k is the inner

product of f with the appropriate basis vector at scale j and translation k. The 2D discrete

wavelet analysis is obtained by a tensor product of two multiresolution analysis of L2(R).

At each scale, j, we have one scaling function subspace and three wavelet subspaces.

The discrete wavelet transform of an image is the projection of the image onto the scal-

ing function V0 subspaces and the wavelet subspaces W0. The corresponding coefficients

are called the approximation and detail coefficients, implying the low and high pass char-

acteristics of the basis filters. The process of projecting the image onto the successively

coarser spaces continues to achieve the approximation desired. The difference information

sensitive to vertical, horizontal and diagonal edges are treated as the three dimensions of

each feature vector. Several members of the discrete Meyer basis used in this work are

plotted below in Figure (5.3.6). They correspond to the Low-Low, Low-High, High-Low

and High-High wavelet sub-bands respectively. The registration features are the wavelet

coefficients obtained by projecting the images onto the Meyer wavelets. For the case of

satellite images shown in Figure 3.3.3, the resultant coefficients seen in Figure 5.3.7 are

73

arranged in a 2D matrix format to resemble the images that were projected on the basis.

Four wavelet sub-bands are used, each generating a quarter of the coefficient matrix seen in

the figure. Use of wavelet features in registration in indexing has previously been limited

to low dimensional basis representation for MI [64] and other divergence criteria or for

correlation registration criteria. The adoption of entropic graph divergence approximation

methods allows us to extend the use of wavelets to much higher dimensions.

−5
0

5

−5

0

5

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Basis 1

−5
0

5

−5

0

5

−0.5

0

0.5

1

(b) Basis 2

−5
0

5

−5

0

5

−0.5

0

0.5

1

(c) Basis 3

−5
0

5

−5

0

5

−0.5

0

0.5

1

(d) Basis 4

Figure 5.3.6: Wavelet decomposition: Discrete Meyer Wavelet Basis. (a) Scale subspace
and (b-d) three wavelet subspaces at level 1 decomposition.

74

50 100 150 200 250 300

50

100

150

200

250

300

(a)

50 100 150 200 250 300

50

100

150

200

250

300

(b)

Figure 5.3.7: Wavelet coefficients obtained by projecting visible and thermal satellite im-
ages from Figure 3.3.3(a) and (b) onto each of the Meyer wavelet basis
shown in Figure 5.3.6.

5.3.1 Significance of spatial coordinates in feature definition

When a sub-block is extracted from position {xi, yi} in an image, the spatial coordi-

nates {xi, yi} are appended to the corresponding ICA or wavelet feature coefficients. This

ensures that invariance of divergence to shifting and existence of repeated pattern in the

image. As stated before, some of the measures of divergence like αJensen difference,

αGA and Henze-Penrose rely on marginal densities and do not have spatial discrimination

capability. Unless the feature definition itself is very high dimensional, e.g. 8 × 8 ICA

decomposition which is 64 dimensional, appending spatial coordinates is required. In

practical image registration situations, features, like ICA in very high-dimensional spaces,

tend to contain spatial tagging information and spatial coordinates may not provide extra

benefit. However, in cases where repeated patterns exist in the image, spatial coordinates

must be appended to these high-dimensional feature definitions. For measures such as

αMI and NLCC, feature co-occurrences in the joint space provide the spatial information

and do not need additional tagging with spatial coordinate information.

75

5.4 Sample image registration problem

In this simple example we demonstrate the graph-based estimates of α-Jensen differ-

ence and α-MI using basis projection features. Figure 5.4.8 shows two ultrasound images

of the breast Iorig and Idef . Iorig is altered by partially suppressing the fundamental spa-

tial frequency and boosting the first harmonic spatial Fourier frequency to create Idef .

Idef shows degradation similar to that seen in ultrasound scans due to transducer noise and

change in imaging direction relative to the tissue. It is our intention to demonstrate through

this example that such change in frequency components can be captured by a information-

measure like Jensen difference divergence or α-MI, through a wise choice of features. We

shall consider two cases, one in which the severity of the deformation is high and this

image Idef is shown along with the original undeformed image Iorig in Figure 5.4.8. We

shall also consider the case where the severity of the deformation is not sufficient to to

make any noticeable change in the image quality, although it could still affect registration.

Let this other image be Ilow−def . This image is not shown.

Ideally, the prior information about spatial frequency differences would suggest pro-

clivity for Fourier basis as the features of choice. In this example we use a 2D feature

vector composed of the fundamental and first spatial Fourier frequencies acquired through

a 2D discrete cosine transform. Let features extracted from Iorig be {Zorig}. Define

{Zdef} and {Zlow−def} in a similar fashion for images Idef and Ilow−def , respectively.

When {Zorig} and {Zlow−def} are pooled together as explained in Section 4.1, we obtain

{Zorig

⋃
Zlow−def} and the resultant scatter-plot of pooled features is seen in Figure 5.4.9.

On the other hand, when features from Iorig and Idef are pooled together {Zorig

⋃
Zdef},

the resultant scatter-plot of features is seen in Figure 5.4.9. The increased dispersion of

feature samples in the mismatched images, Iorig and Idef , will lead to higher values of

76

the pooled entropy of features. Thus the α-Jensen difference, as implemented by MST or

kNN length, will discriminate matched versus mismatched images during the registration

process.

In Figure 5.4.10 the first harmonic frequency components of the DCT at Iorig and

Ilow−def are shown in the joint histogram (scatter-plot) of co-occurrences. For the closely

matched images, the scatter lies on a diagonal and yields a higher MI value than the case of

the mismatched images. The plot of co-occurrences of fundamental frequency coefficients

also yields similar plots and the resultant MI is higher for the matched image case.

(a) (b)

Figure 5.4.8: (a) Original image, Iorig, is an UL image of the breast (b) Iorig is deformed
by selectively filtering spatial frequencies to give Idef . Ilow−def is not shown
but it has an appearance similar to Iorig.

In conclusion, it is seen that while single-pixel feature representation of images is suf-

ficient in some cases, generalization to higher dimensional features allows a more efficient

and compact representation of images. Higher-dimensional features capture image at-

tributes ignored by single-pixels. A roadblock in using higher dimensional features within

the entropy framework of Shannon MI has been the unavailability of methods to reliably

77

−500 0 500 1000 1500 2000
−300

−200

−100

0

100

200

300

Fundamental Fourier Frequency

F
irs

t F
ou

rie
r

H
ar

m
on

ic

(a)

−500 0 500 1000 1500 2000
−300

−200

−100

0

100

200

300

Fundamental Fourier Frequency

F
irs

t F
ou

rie
r

H
ar

m
on

ic

(b)

Figure 5.4.9: (a) Pooled feature sample of image with itself {Zref

⋃
Zref}. (b) Pooled

feature sample with reference and target images {Zref

⋃
Ztar}

−300 −200 −100 0 100 200 300
−200

−150

−100

−50

0

50

100

150

200

250

First Harmonic from I
1

F
ir

st
 H

ar
m

o
n

ic
 f

ro
m

 I 1

(a)

−300 −200 −100 0 100 200 300
−250

−200

−150

−100

−50

0

50

100

150

200

250

First Harmonic from I
1

F
ir

st
 H

ar
m

o
n

ic
 f

ro
m

 I 2

(b)

Figure 5.4.10: (a) Joint density of first harmonic DCT frequency from features
{Zorig, Zlow−def} when images are matched and (b) Joint density of first
harmonic DCT frequency from features {Zorig, Zdef}when images are mis-
matched.

78

estimate divergence in higher dimensional spaces. Feature-based representation of images

can be adapted to the registration problem. The ICA feature basis are adapted to the UL

and MRI image databases through a training process. Unlike the ICA bases, wavelets and

DCT have no variability based on the image data and thus remain unaffected by noise in

the training data.

Before proceeding to the experimental results, it is vital to examine algorithmic and

computational considerations of entropic graph methods. The next chapter serves as an

overview into the computational methods used for graph construction. It also presents

some interesting insights into developing accelerated graph methods. Lastly, it compares

different divergence measures based on their numerical complexity.

CHAPTER VI

Computational Considerations

A popular sentiment about graph methods, such as the MST and the kNN graph, is that

they could be computationally taxing. However, graph theory algorithms have evolved

and several variants with low time-memory complexity have been found. Henze-Penrose

and the α-GA mean divergence metrics are based directly on the MST and kNNG and first

require the solution of these combinatorial optimization problems. This chapter is devoted

to providing insight into the formulation of these algorithms and the assumptions that lead

to faster, lower complexity variants of these algorithms.

6.1 Complexity of the MST

The MST problem has been studied since 1926 when the Boruvka MST algorithm [99]

was formulated. Interest in the MST problem led to the discovery of two optimal algo-

rithms, by Prim [104] and Kruskal [73]. The MST has several applications in computer

science, pattern recognition and computer vision. Due to its widespread applicability, there

have been and continue to be sporadic reductions in the time-memory complexity of the

MST problem [10, 46, 91]. However, the two principal algorithms by Prim and Kruskal

find wide applicability due to their optimality properties and ease of formulation.

A set of given edges, sorted by their weights, is maintained in a list and Kruskal’s al-

79

80

gorithm grows the tree an edge at a time. Cycles are avoided within the tree by discarding

edges that connect two sub-trees already joined through a prior established path. The time

complexity of the algorithm is of O(ElogE) where E is the initial number of edges in the

graph. Prims algorithm starts with an arbitrary vertex vi and builds a tree by repeatedly

finding the edge with the lowest weight that links a new vertex into the tree. Prim’s al-

gorithm has a running time of the O(ElogNv), where Nv is the initial number of vertices

in the graph. It is widely held that the Kruskal algorithm has lower runtime for sparse

graphs whereas Prim algorithm runs faster than Kruskal’s for dense graphs [10]. Here we

define the graph density parameter, ρ = E/Nv. Graph sparsity is defined as 1 − ρ. The

graph density gives us an estimate of the average number of edges incident on each vertex.

As will be seen shortly, the complexity of most MST algorithms increase with the graph

density. We shall sometimes refer to vertices of a graph vi, as nodes or points, and edge

weights as edge lengths.

Prim and Kruskal algorithms, although optimal, operate under the constraint that the

initial graph is of low or moderate density, i.e. ρ is usually between 10 and 100. Ad-

ditionally the complexity calculations assume that all edge weights are precomputed and

available. In practice, researchers often find themselves starting with a set of random

vertices of size Nv, from which they first construct a fully connected graph consisting

of Nv × (Nv − 1)/2 unique edges (Figure 6.1). Hence if G is the initial graph, then

G ≡ {ei,j; i = 1, . . . , n, j = i, . . . , n} where ei,j is the edge that connects vertex vi with

vj . This implies that a full edge matrix of order N 2
v needs to be maintained in the com-

puter system memory. The computational overhead of calculating edge weights can be

significant especially for large Nv in higher dimensional Euclidean spaces (d >> 2).

Building MST’s from a dense graphs can be especially challenging due to the increased

time-memory complexity that standard MST algorithms face when the sparsity constraint

81

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Dimension1

D
im

en
si

on
 2

(a) 30 clustered points in space

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Dimension1

D
im

en
si

on
 2

(b) Fully connected graph

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Dimension 1

D
im

en
si

on
 2

(c) MST over 30 points

Figure 6.1.1: Complexity of generating fully connected tree

is removed. The runtime of both the algorithms increase with the number of edgesE in the

original graph. Full density graphs have density ρ = Nv/2, since E = Nv × (Nv − 1)/2.

Understandably, this is the worst case scenario for both Prim and Kruskal algorithms. For

full density graphs, Kruskal’s algorithm has a time requirement of O(N 2
v logNv) and a

memory requirement of O(N 2
v). Prims algorithm may perform better than Kruskal for

higher density graphs. However, the runtime is still of the O(Nv
2logNv). Note, that

these complexity terms do not include the O(Nv
2d) computations required to calculate

82

the Nv × (Nv − 1)/2 edge weights. In the 2D image registration application discussed

here, the number of vertices in the graph is of O(105) in a 64 dimensional feature space.

3D registration would increase the number of vertices by over two orders of magnitude.

Desktop processors cannot handle the very high memory requirements of the standard

Kruskal algorithm in this case. Even with larger machines, the algorithm has a forbidding

time requirement for tree construction.

Clearly, the problem here is two-fold. We need O(dN 2
v) operations to build a fully

connected graph. Additionally, fully connected graphs have O(N 2
v) runtime. To address

these issues we have implemented a method for sparsification that allows the MST to be

constructed for several hundred thousand points in a few minutes of desktop computing

time. This section aims to discuss strategies that reduce (1) the density of the initial graph

and (2) to reduce the computational overhead involved in computing Nv
2/2 edges without

sacrificing the minimality or spanning properties of the MST.

6.2 Previous efforts in making MST more efficient

Efficient algorithms for MST have existed since the latter half of the previous century.

Surveys of MST algorithms currently in practice are presented in [10, 46, 91]. Kruskal,

Prim and Boruvka all use the blue rule for greedy implementations of the MST. Good

expositions on the blue rule and related algorithms are in [7, 26, 119]. Renewed interest

in faster MST methods has led researchers to develop asymptotically faster algorithms

[131, 21, 43, 38], however their practical impact has been limited. These algorithms use

advanced data structures and appear to be more complicated to implement thus restricting

their usage to advanced users. Most implementations for MST methods still utilize the

simple Fibonacci heap data structures [38] within classical Prim or Kruskal algorithms.

Karger, Klien and Tarjan [66] have proposed the linear expected-time algorithm that, theo-

83

retically, is the fastest with expected runtimeO(E). However, it was found to be unfeasible

for practical use because it requires solution of the complicated subproblem of verifying

an MST in linear time, which in turn requires the solution of the nearest common ancestor

problem in linear time. Classical algorithms like Prim and Kruskal, which when used with

a conventional binary heap, have fast runtime-low implementation complexity.

6.3 Modified Projection-decomposition algorithm (MPDA)

The algorithm developed and presented here is based on the classical projection-decomposition

search paradigm first introduced by Friedman [40, 41]. Given a set of points Zi in R
d, the

algorithm starts by processing points sequentially in the point set Z . The point set Z is

stored as a collection of d 1D arrays where the ith array contains the ith coordinate of the

points. The point set Z is projected and ordered along any one of its d dimensions. How-

ever, we retain the forward mapping FM that maps the ith point in the unordered set to the

jth point in the ordered set, i.e. FM{Zi} = Oj, where O is the ordered set. Now we have

a set of 1D ordered coordinates for Z . For every point pj in the ordered set, we select mε

neighbors such the projection distance from a neighbor q to p is less than ε (refer to Figure

6.3.2), where ε is the search radius. All such points are gathered in a list labeled as candi-

date list. Effectively this is the first step of the Friedman nearest neighbor algorithm. We

do not continue ordering along all the d dimensions, since the idea here is not to find one

nearest neighbor. The goal is to reduce the distance computation operations and sparsify

the graph such that none of the edges left due to sparsification had a large probability of

occurring in the final MST. This leads to the completion of the first stage of the algorithm,

wherein we have built a list of candidate connections per point in Z . For a large number of

points and high dimensionality the performance of our method is at par with various other

techniques that use ordering along multiple dimensions and complex data structures. The

84

appeal of our algorithm lies in the absence of any special data structure and in its intuitive

simplicity and brevity.

The procedure explained above leads to a reduction in the number of vertices visited.

This reduction is, of course, proportional to the search radius ε. Repeating the procedure

for all the points in Z yields an entire set of potential edges. It should be noted that any of

the data dimensions could be used for the above procedure. We would expect to see that

the greatest reduction in edges visited would result if the dimension selected for ordering

is the one where the data shows maximum variance. It should also be noted that only

integer comparisons and memory lookup operations have been involved. However, there

is an integrity check before the points can be finally accepted. From the point p, we visit

each vertex q in the candidate list for p and compute the full Euclidean weight of the edge.

If the weight of the edge is less than ε, the edge is inserted in the initial graph. Note that

we have to extend our 1D search to ε, to ensure that no point that is within the ε radius is

left out.

The pseudo-code for the algorithm is given below (Algorithm: 6.1). Algorithms 6.2

and 6.3 present pseudo-codes for the Disjoint-Set-Union-Find data structure and the stan-

dard Kruskal algorithm, respectively.

A significant acceleration can be obtained by this process of sparsification of the initial

graph before tree construction. The selection criterion imposed on the edges, ensures that

only those edges likely to occur in the final MST are included in the original graph G. As

seen in Figure 6.3.2, only those edges with weights smaller than disc radius are accepted

into the list. The edge-weight sort algorithm, within Kruskal’s algorithm, now has to sort

O(N) number of edges. The C program for generating MST using the Modified Kruskal

and MPDA is given in the Appendix.

The MPDA builds a candidate list from projections of points in a 1D space and hence

85

1: MSTL = FUNCTION MSTLENGTH(Points)
2: Nv : Number of vertices or features
3: P← {vi} //Read point set in P
4: EC← {} //EC will contain edges of Candidate List
5: LEC← 0 //Length of EC
6: MSTL← 0.0 //Length of MST
7:

8: Q← FM(P,1) //Q ≡ P sorted along its first dimension, FM ≡ forward map
9: for i = 1 to Nv do

10: Pick current point qi ← Q(i)
11: repeat
12: Pick next point qj ← Q(j)
13: Measure eL1 ← (qi − qj)2 //L1 distance
14: Measure eL2 ← ‖qi − qj‖
15: if eL2 ≤ ε then
16: EC← EC

⋃
qj

17: LEC← LEC + 1 //Increment CANDIDATE LIST EC
18: end if
19: until (eL1 > ε2| Reached end of Q)
20: end for
21:

22: E← KRUSKAL(EC,Length(EC))
23: MSTL←∑LEC

j=1,ej∈E e
L2

j

Algorithm 6.1: Modified Projection Decomposition Algorithm

86

1: SETS = FUNCTION DSUF-CREATE(Nv)
2: SETS← Nv disjoint sets
3: SETS.setsize← Nv

4: SETS.parent← {}
5: SETS.rank← {}
6:

7: FUNCTION DSUF-MAKESET(vi)
8: Given vertex vi, Create a new set whose only member is pointed to by vi

9: SETS.parent(i) = i
10: SETS.rank(i) = 0;
11:

12: Found = FUNCTION DSUF-FIND(i)
13: j ← SETS.parent(i)
14: if i == j then
15: Found← i, STOP and RETURN
16: else
17: for until loop broken do
18: k ← SETS.parent(j)
19: if j == k then
20: BREAK
21: else
22: j = k
23: end if
24: end for
25: while i 6= k do
26: j ← SETS.parent(i)
27: SETS.parent(i)← k
28: i← j
29: end while
30: Found← k
31: end if
32:

33: FUNCTION DSUF-UNITE(Set1Index,Set2Index)
34: rank1← SETS.rank(Set1Index)
35: rank2← SETS.rank(Set2Index)
36: if rank1 == rank2 then
37: SETS.parent(Set1Index)← Set2index
38: rank2← rank2 +1
39: else if rank1 > rank2 then
40: SETS.parent(Set2Index)← Set1Index
41: else
42: SETS.parent(Set1Index)← Set2Index
43: end if

Algorithm 6.2: Disjoint Set Union Find Data structure

87

1: MSTL = FUNCTION KRUSKAL(EC)
2: E← {} // E will contain the MST edges
3: SEL← Sort(EC)
4: SETS = DSUF-CREATE(Nv)
5: for i = 1 to Nv do
6: DSUF-MAKESET(vi)
7: end for
8: for each edge e(q1, q2) in EC do
9: root1← DSUF-FIND(q1)

10: root2← DSUF-FIND(q2)
11: if root1 6= root2 then
12: E← ⋃

e(q1, q2)
13: DSUF-UNION(root1,root2)
14: end if
15: end for

Algorithm 6.3: Kruskal MST Algorithm

requires an additional check before the points are admitted in the list. As mentioned before,

one can conduct a full range search to pick candidate points. Obviously this is a modifi-

cation of the k-Nearest neighbor algorithm, where the range search paradigm is used. The

range-search kNN picks all NN within a specified ε of the query. We implemented a Prim

MST algorithm with a Priority Heap data structure. A kNN range-search algorithm, oper-

ating in the full d-dimensions of the data space was used to build a candidate list. Although

the algorithm is not described here, the C program for such an algorithm is included in the

appendix.

6.4 Correctness

Before we proceed to offer a proof of optimality, we would like to provide insight into

the rules of MST algorithms for non-cyclicity. To avoid cyclicity in the graph the Prim

algorithm, examines only fringe edges. Fringe edges are those edges that connect some

vertex in the tree to a vertex not in the tree. Kruskal’s algorithm maintains a list of edges

ordered by their weights. An edge in the list exists in the MST if it does not form cycles

88

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z0

z1

Selection of nearest neighbors for MST using disc

r=0.15

(a)

0 50000 100000
0

50

100

150

200

Number of points, N

E
xe

cu
ti

o
n

 t
im

e
in

 s
ec

o
n

d
s

Linearization of Kruskals MST Algorithm for N2 edges

Standard Kruskal Algorithm O(N2)
Intermediate: Disc imposed, no rank ordering
Modified algorithm: Disc imposed, rank ordered

(b)

Figure 6.3.2: (a) Disc-based acceleration of Kruskal’s MST algorithm from n2 logn to
n logn and (b) comparison of computation time for Kruskal’s standard MST
algorithm with respect to our accelerated algorithm.

by connecting components already connected in the tree. It uses a special Disjoint Set

Union-Find data structure to determine, find and merge sets rapidly. These techniques are

used to avoid cyclicity in the tree.

It is straightforward to prove that if the radius is suitably specified,the disc based tree

construction described above is a minimum spanning tree. Recall that the Kruskal algo-

rithm ensures construction of the exact MST [73].

(1) If point p ∈ T , then

‖ej
p→T,non−cyclic‖ = min

i,i∈Nv

‖ei
p→T,non−cyclic‖ (6.1)

i.e. the edge that connects p to the tree T has the lowest weight amongst all possible non-

cyclic paths. To prove this is trivial. The algorithm exhaustively examines all points within

distance ‖ε‖, hence, if a non-cyclic edge ep→T,non−cyclic is found by imposing the distance

selection criterion such that the equation above is satisfied, then that edge is the smallest

possible non-cyclic path that connects p→ T . The non-cyclicity of the path is ensured in

89

the Kruskal algorithm through the Union-Find dataset.

(2) If a point pi 3 T ,

‖ei
p→T,non−cyclic‖i∈Nv

> ‖ε‖ (6.2)

i.e. all the edges between p and its neighbors considered using the distance criterion have

total edge weight greater than ‖ε‖ or have led to a cyclic path. Increasing ‖ε‖, repeatedly

if necessary, will eventually find the path which is lowest in weight and non-cyclic. Since

we start with fully connected initial graphs, we do not consider forests (where some points

are left out of the tree) as end solutions. If during tree construction the algorithm runs

out of edges, but the MST does not include all the points, it is necessary to consider

more edges. To this end, increasing ‖ε‖ will reap additional edges. If the disc radius is

underestimated the tree cannot be completed without first adding more edges to the list. If

it is overestimated a surplus of edges will result in the edge list, however the final tree will

have the required N − 1 edges only 6.4.3.

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70
Effect of disc radius on MST Length

M
S

T
 L

en
g

th

Radius of disc

Real MST Length
MST Length using Disc

(a)

0 50 100 150 200 250
0

10

20

30

40

50

60

70

Nearest Neighbors along 1st dimension

M
S

T
 L

en
g

th

Automatic disc radius selection using kNN

MST length using kNN
True MST Length

(b)

Figure 6.4.3: (a) Bias of the n logn MST algorithm as a function of radius parameter and
(b) as a function of the number of nearest neighbors for uniform points in the
unit square.

90

6.5 Complexity Analysis

Similar to the complexity analysis performed by [98], this section presents a complex-

ity analysis of our algorithm in terms of storage and time requirements of the MST. We

begin by examining the time complexity of the algorithm. Firstly, sorting the 1D edge

list takes an average of O(NvlogNv) operations via the quick sort algorithm. Secondly,

the number of vertices selected for the L2 edge weight computation depends on ε and

the underlying distribution of points in the hyperspace. Understandably, if ε is selected

poorly, we end up selecting too many points and may start approaching the complexity

of an exhaustive MST algorithm. Hence the analysis is presented for specific standard

distributions. Let Nci
be the number of edges contributed by the ith point in Z toward the

candidate list. Let NC =
∑Nv

i=0Nci
. We are interested in E(NC). Hence,

E(NC) = E(
Nv∑

i=0

Nci
)

=

Nv∑

i=0

E(Nci
). (6.3)

As shown by Nene and Nayar [98], the number of pointsNci
= k contributed by any point

toward the candidate list is a random variable with a binomial distribution given by

P (Nci
= k) = P k

c (1− P k
c)Nv−k

(
Nv

k

)
, (6.4)

where Pc = P (Dc ≤ ε) and Dc is the 1D projection distance of any point from the ith

point in {Zi}. Also, now we can compute

E(Nci
) =

Nv∑

k=0

kP (Nci
= k)

= NvPc. (6.5)

The knowledge of the underlying distribution would enable us to determine Dc and hence

Pc.

91

6.5.1 Uniformly Distributed Point Set

Examining the complexity terms for standard uniform and normal distributions should

yield a better insight about algorithm performance. When {Zi} is a uniformly distributed

and i.i.d. we see that on the hypercube with length `, we have

fZi
=

1/`; if −`/2 ≤ z ≤ `/2

0; otherwise

Now, the 1D projection distance Dc = Zc −Qc, the density of Dc is written as:

fDc|Qc
{z} =

1/`; if −`/2−Qc ≤ z ≤ `/2−Qc;

0; otherwise

and

Pc = P{−ε ≤ Dc ≤ ε}

=

∫ ε

−ε

fDc|Qc
dz

≤
∫ ε

−ε

1/`dz

≤ 2ε

`
(6.6)

Finally, we get an upper bound for

E[Nci
] =

2εNv

`
.

Also

E[NC] =

Nv−1∑

i=0

2εNv

`

=
4εNv

`

= O(
εNv

`
) (6.7)

We see that the algorithm complexity is independent of d.

92

6.5.2 Normally Distributed Point Set

If {Zi} were a normally distributed point set, again under i.i.d. conditions with vari-

ance σ2 mean µ:

fZi
=

1√
2πσ2

exp
−(x− µ)2

2σ2

Hence,

fDc|Qc
=

1√
2πσ2

exp
−(d− µ−Qc)

2

2σ2

and

Pc = P{−ε ≤ Dc ≤ ε}

=

∫ ε

−ε

fDc|Qc
dz

=
1

2
(erf(

ε− µ−Qc

σ
√

2
) + erf(

ε+ µ−Qc

σ
√

2
)) (6.8)

Figure 6.3.2 compares the performance of the standard Kruskal algorithm with our modi-

fied algorithm. The time and memory requirements are significantly reduced.

6.6 Discussion and Future Work: Predicting ε

One of the primary obstacles to automating the MST process is an coming up with

optimal estimate of ε. As seen above, this is the primary parameter that affects the com-

plexity of the algorithm. This section proposes some strategies to estimate ε. However,

lacking verification, these methods are recommended only after rigorous testing.

6.6.1 Heuristic approach

Figure 6.3.2, shows a plot of the relation between ε and estimated length of the MST.

In the event of underestimating ε the MST is not complete. The graph is an acyclic forest

with unconnected trees, a subset of the MST, and hence its length is less than the length

of the MST. If ε were selected small enough such that all but the nearest neighbor of each

93

point were pruned, we would get a k-NN graph (k = 1), which is also a subset of the MST.

The plot emphasizes the importance of a prudent selection of ε. ε plays a significant role in

the complexity of the algorithm. To obtain the optimal trade-off between bias of the MST

length and time-memory complexity, the disc radius should be selected at the knee of the

curve seen in Fig 6.4.3.

For uniform distributions, a constant disc radius is optimal for all areas within the

distribution. However, for non uniform distributions, ε may be forced to adapt according

to the underlying distribution. This can be achieved by selecting the distance of the kthNN

along the dimension of ordering as ε for a given point. Let us call this parameter, εikNN .

Not surprisingly, for uniform distributions, the distance of the kth-NN along the dimension

of ordering, remains roughly the same. The real advantage of the kNN technique lies in

the ability to adapt εikNN on a point-by point basis for non-uniform distributions. We

would like to emphasize here, that these are not the true nearest neighbors of the point.

These points are the nearest neighbors in the dimension of ordering. Indeed, picking the

true nearest neighbors is a valid and legitimate approach, one that we address in the next

section.

It should be noted however, that using the above method we may introduce some error

in the process. Consider 2 points p1 that lives in a densely clustered region, and p2 that

lives in a sparsely clustered region. Now,

εp1

kNN < εp2

kNN .

This implies that p2 will introduce edges in the candidate list, that would not have been

included if

ε = εp1

kNN .

Due to the weakening of the strict hypersphere condition imposed by ε in the previous

94

methods, we could now have spurious edges in the list. This impedes the rapid conver-

gence of the forest to the MST, as seen in Figure 6.6.4.

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

Nearest Neighbors along 1st dimension

M
S

T
 L

en
g

th

Radius selection w/ kNN for Gaussian Dist., 10000 2Dpoints

MST length using kNN
True MST Length

Figure 6.6.4: Constructing the MST based on kNN based disc radius estimate could be
a problem in non-uniform distributions due to the slow convergence of the
length function

6.6.2 MST construction using the kNN graph

Extending on the approach above, we could pick the kNN of a point on the assumption

that the edge connecting nearest neighbors of a point have higher probabilities of partic-

ipating in the final MST. Here, there are several options available to us. These include

the conventional k − d trees method [14, 13] and the list intersection method of Nene and

Nayar [98]. We have implemented a version of the Prim algorithm with priority heap that

uses the kNN algorithm of Bentley to build a candidate list. The program can be found in

the appendix.

The method of list intersection as presented in Nene and Nayar [98] orders data co-

ordinates in every dimension, not just one. Then candidate lists are drawn-up in each

dimension according to some distance criterion ε. Finally, an intersection operation on

the candidate list for the point, which yields points in a hypercube around the query, are

95

exhaustively searched for the kNN. In this technique, the coordinates are ordered in each

dimension, as above. A list of neighbors is selected in the first dimension. Now, this list is

intersected with a list of neighbors in the 2nd dimension. The resultant list is intersected

with the neighbors in the third dimension. Finally after j intersections (note, the complex-

ity of intersection reduces with j), the result is a list of true neighbors of point p (Figure

6.6.5).

0
1

2
3

4
5

0

1

2

3

4

5
0

1

2

3

4

5

Figure 6.6.5: Picking k-Nearest neighbors within a range ε using intersection of lists of
1D ordered coordinates.

6.6.3 Relation to intrinsic dimensionality

An alternate approach to estimate ε is by estimating the intrinsic dimensionality of the

given distribution. Given all inter-point distances for a distribution of random numbers,

one can plot the histogram of such distances. By the central limit theorem, the distribution

is approximately normal as n → ∞. As the intrinsic dimensionality of the distribution

increases, the mean of the distribution µ increases and the variance σ2 decreases [19]. The

96

sharper the peak in this histogram, the lesser the number of points we can safely avoid

visiting. Since we do not have all the inter-point distances, indeed the main idea here is to

avoid calculating all the inter-point distances, we offer an alternative to fast determination

of the intrinsic dimensionality of the distribution.

6.7 Acceleration of the kNN Graph construction

Time memory considerations in the nearest neighbor graph have prompted researchers

to come up with various exact and approximate graph algorithms. With its wide-spread

usage, it is not surprising that several fast methods exist for nearest neighbor graph con-

structions. Most of them are expandable to construct k-NN graphs. One of the first fast

algorithms for constructing NN graphs was proposed by Bentley [14, 13]. In vector spaces

with Bentleys kd trees [14, 13] are effective in selecting kNN for a given query point. A

comprehensive survey of the latest methods for nearest neighbor searches in vector spaces

is presented in [19]. A simple and intuitive method for nearest neighbor search in high

dimensions is presented in [98].

Though compelling, the methods presented above focus on retrieving the exact nearest

neighbors. One could hypothesize that for applications where the accuracy of the nearest

neighbors is not critical, significant speed-up can be achieved by accepting a small bias

in the nearest neighbor search. This is the principal argument presented in [5] and this is

relevant to divergence estimation since only the total edge length of the kNN is important

in entropic graph registration. We conducted our own experiments on the approximate

NN method using the code provided in [92] (Figure 6.7.6). We conducted benchmarks

on uniformly distributed points in 8 dimensional space. If the error incurred in picking

the incorrect k-th nearest neighbor ≤ ε, the cumulative error in the length of the kNNG

is plotted in Figure 6.7.6. Compared to an exact kNN search using k-d trees, a significant

97

reduction (> 85%) in time can be obtained through approximate NN methods, incurring

a 15% cumulative graph length error. The utility of approximate nearest neighbor code

such as [5] for entropic graph registration depends on the sensitivity of graph length to

small amount of registration error. Thus it is conceivable that a 15% error in graph length

be negligible with respect to mean square registration error. This will be explained in the

next chapter.

0 2 4 6 8 10

x 10
4

85

86

87

88

89

90

91

92

93

94

95

Number of points in [0,1]8

 M
ea

n
 %

 d
ec

re
as

e
in

 c
o

m
p

u
ta

ti
o

n
 t

im
e

ε=5
ε=15
ε=25

(a)

0 2 4 6 8 10 12

x 10
4

15

20

25

30

35

40

Number of points in [0,1]8

 %
 E

rr
o

r
in

 le
n

g
th

 o
f

kN
N

 g
ra

p
h

ε=5
ε=15
ε=25

(b)

Figure 6.7.6: Approximate k-NNG: (a) Decrease in computation time to build approxi-
mate kNNG for different ε, expressed as a percentage of time spent comput-
ing the exact kNNG over a uniformly distributed points in [0, 1]8. An 85%
reduction in computation time can be obtained by incurring a 15% error in
cumulative graph length. (b) Corresponding error incurred in cumulative
graph length.

6.8 Computation time

The MPDA and k-d tree algorithms described above are used to construct the MST

and kNN graph respectively. The computation time for all the measures of divergence

introduced here are tabulated below. Two images with dimensions 256× 256 pixels were

projected on to a 64D ICA basis and the resultant coefficients were used for divergence

estimation.

98

Divergence (Graph) Points Dim Trees (Points, Dim) NN Queries Time (s)
α-Jensen (MST) 2 N d 1 (2N, d) - 2.22
α-Jensen (kNNG) 2 N d 1 (2N, d) 2Nk 4.75

Henze-Penrose (MST) 2 N d 1 (2N, d) - 2.54
α-GA (kNNG) 2 N d 2 (N, d) 2N 4.80
α-MI (kNNG) N 2 d 1 (N, 2d) + 2 (N, d) 3N 4.11
NLCC (kNNG) N 2 d 1 (N, 2d) + 2 (N, d) 3N 4.10

Table 6.1: Average divergence computation time on two 256× 256 pixel images, decom-
posed using 8 × 8 (64D) ICA. Computation times were tabulated using MAT-
LAB ©C-mex program running under the Linux OS on a 2.4GHz 32-bit Intel
Xeon Processor machine with 2GB RAM and 533MHz bus speed.

The MST computation time appears to be shorter than the computation time for the

kNN. This is due to the careful selection of the search radius ε for constructing the MST.

In practice, such a careful selection is difficult, if not impossible. The number of feature

vectors from each image is 1024 = (256×256)/(8×8). For larger number of feature vec-

tors, the MPDA shows slower convergence and the MST computation time will increase.

Further, it is seen that α-GA, α-MI and NLCC all show different computation time

even as all of them depend on the kNN graph construction. α-GA required the construction

of 2 k-d trees in 64D space at a computational complexity of NlogN , where N = 1024

for each tree. 2×N queries were executed in O(
√
N × k) time, where k is the number of

nearest neighbors. α-MI requires the construction of a k-d trees in 128D space and 2 k-d

trees in 64D space, but required only N queries to be executed in 64D space.

CHAPTER VII

Applications

This chapter describes three different registration applications and illustrates the en-

tropic graph registration methods presented in this thesis.

7.1 Ultrasonic Breast Image Registration

An important application of the methods presented in this thesis is the co-registration

of a pair of ultrasound (UL) images of the breast. Success in this application should lead

to full 3D and 4D registration: the fourth dimension being time. Accurate registration of

breast UL image volumes could lead to a breakthrough in the use of whole breast imaging.

In particular, accurate UL breast imaging is essential to detect and quantify changes that

can aid discrimination of malignant from benign lesions [16, 113]; can be used to detect

multi-focal secondary masses [47] and can quantify response to chemotherapy or radiation

therapy [67]. Currently,breast lesions are missed by UL community practitioners in up to

45% of women with dense breasts [69].

To understand the long term significance of image registration to breast cancer detec-

tion it should be noted that UL usage has progressed rapidly in diagnostic breast imaging;

it has proven to be a reasonable task to scan a localized region in the breast and make a

judgment regarding the likelihood of malignancy. It is a much more difficult task to assess

99

100

an entire breast volume and whole breast ultrasound imaging has not become standard

practice. On one side, there are too many regions in many breasts that look abnormal,

leading to increased biopsies or threat of legal action if a detected tumor was not biopsied.

On the other side, numerous subtle lesions may be missed in whole breast scanning by all

but the most dedicated, highly trained radiologists. To greatly improve this situation in

breast cancer detection of occult masses new approaches are required. Precise registration

of image volumes to allow rapid, localized comparison of ultrasound studies separated

by months or years should greatly facilitate detection of changes and assessment of their

potential malignant growth patterns. What is needed is a much more accurate and robust

registration method to provide the needed confidence in the registration for studies with

a wider range of image quality. Segmentation of artifacts, such as acoustic shadows and

reverberations is a particularly important task not yet addressed, for the artifacts can be the

dominant ”information” in some cases, and yet are affected strongly by subtle changes in

the UL view. The same general techniques should work equally as well for 3D MRI.

Evaluation of breast tumor change during neoadjuvant chemotherapy using some of

these ultrasound techniques will not only determine the contribution of this modality in

chemotherapy, but may also contribute to the development of whole breast UL as a method

for breast cancer detection in high risk women. As use of neoadjuvant chemotherapy is

being explored for an increasing fraction of breast cancers, the need is apparent for a

readily available surrogate end point to assess whether the treatment should be extended.

UL, with or without contrast agent, shows promise similar to that of radionuclide and MRI

techniques, but at considerably reduced cost (and worldwide availability). The advanced

quantification techniques require a great deal of trained radiologist time to outline the

tumor pre- and post-therapy and the tumor fraction in areas of incomplete tissue invasion

is currently not estimated.

101

Image registration could also improve spatial compounding of UL images. In com-

pounding, partly correlated views of the region of interest (ROI) are generated by scan-

ning the ROI at different transducer tilt angles and then registering pairs of separate views.

Compounding can result in an improvement in the signal-to-speckle ratio of UL images

and lead to better delineation of specular reflectors [71]. The field of view of high resolu-

tion UL images is insufficient for full use of UL in detecting asymptomatic lesions in the

breast and for tracking changes in response to treatment. To create an image of the entire

breast or a large fraction of it, the small volume covered by a single scan can be extended

by repeatedly scanning the breast in parallel, partially overlapping sweeps that can then be

combined using registration [71]. Finally, registration of images collected from different

isonation angles can also be used in Doppler imaging where the color flow acquisitions do

not detect blood flow well when its direction of motion is normal to the direction of the

ultrasound beam and where accurate triangulation can measure flow velocity.

Registration methods based on mutual information (MI), e.g. MIAMI Fuse ©(Mutual

Information for Automatic Multimodality Image fusion) [87, 88], have been shown to

outperform standard correlation and template-matching methods. Mutual information-

based, linear and nonlinear registrations can be performed with a quality that will meet

the needs of many applications in ultrasound, in a reasonable, but as yet undetermined,

fraction of the cases evaluated. However, some cases have proven difficult to register with

expected accuracy. For ultrasonic image volumes of the breast, the low signal-to-speckle

noise ratio and abrupt deformations at tissue boundaries, as well as acoustic shadowing

and refraction artifacts, are particular challenges that reduce the information shared by

the reference and secondary image scans. Current methods leave much to be desired for

ultrasound applications since they are each variously overly sensitive to some combination

of spurious image components such as speckle, low contrast of key structures, anisotropic

102

backscatter, shear/compressive tissue deformation, and shadowing which are ubiquitous

to UL breast imaging.

Accurate registration of breast ultrasound images is essential for whole breast imaging

in order to efficiently detect asymptomatic breast lesions. This is a long-range goal. In

the intermediate time range, the technique can aid discrimination of benign and malignant

masses by facilitating retrieval of similar masses and visual or automatic comparison of a

suspected mass, or even ultrasonically detected calcifications, with structures in the same

region from a previous examination. The immediate contribution of these methods is the

development of new registration techniques and comparisons of the registration accuracy

and robustness with existing methods on a series of ultrasound volume sets of increasing

realism and difficulty.

7.1.1 Feature driven entropic graph registration of ultrasound images

This thesis takes a novel approach to ultrasound image registration that gets around the

disadvantages of single pixel- or voxel-based registration techniques. It deviates from pre-

vious approaches through the inclusion of highly specific independent component image

features and use of a generalized information divergence-matching criterion implemented

with entropic graphs. The matching methods presented here have the following advan-

tages: 1) use of the generalized divergence enables examining and selecting the most

stable objective function having optimal discrimination capability; and 2) use of higher

order features captures non-local spatial information which is ignored in the standard sin-

gle pixel MIAMI Fuse ©algorithm and which can lead to more accurate and robust image

registration.

Local structural features tags and independent component analysis, introduced in Chap-

ter IV are evaluated. The hypothesis that supplementation of single pixel or single voxel

103

matching by the matching of structural features specifically designed for registering ul-

trasound images and image volumes of the breast will significantly reduce the effect of

speckle, shadowing, and non-linear distortions on registration accuracy will be evaluated.

A rationale for supplementing single pixel features for UL image registration is that single

pixel features cannot discriminate between speckle, shadowing and true structural char-

acteristics of the image, leading to lack of robustness. Also, sharp features that might

improve accuracy might not be given appropriate weighting. Prefiltering or precropping

the UL images prior to registration is an ad hoc solution that requires human intervention.

In contrast the multidimensional feature framework includes spatial discriminants directly

into the feature space.

Use of generalized divergence as a registration criterion will improve the fine spatial

resolution of the registration as compared with existing methods and facilitate function

optimization. The validation of the technique is limited to tightly controlled quantitative

comparisons on simulated and test object two-dimensional images. However, given the

results presented here it is believed that more ambitious studies would be justified.

7.1.2 Database of breast UL images

In ultrasound of the breast, the reference and secondary images have genuine differ-

ences from each other due to biological changes and differences in the imaging, such as

positioning of the tissues during compression and angle dependence of UL scattering from

tissue boundaries. The tissues are distorted out of a given image plane as well as within

it. Speckle noise, elastic deformations and shadows further complicate the registration

process thus making Ultrasound breast images notoriously difficult to register. Compari-

son of entropy-based image discriminants such as Shannon MI and Rényi’s α-MI to the

MST-based α-Jensen difference divergence is presented.

104

The database used for this application is a set of 3D ultrasound scans of the left or right

breast of 21 female subjects, aged 21-49 years, going to biopsy for possible breast cancer.

Each volume scan is acquired at 10mm depth resolution yielding about 90 cross-sectional

images at 5mm horizontal resolution. The lower age range was chosen to provide a sample

of more complex breasts, which are also somewhat more difficult to diagnose than typical

breasts of older women. Fig 7.1.1 shows slices of breast ultrasound image volumes repre-

sentative of those found in clinical practice. The women were imaged on their backs with

the transducer placed so as to image through the breast toward the chest wall. Twenty test

cases chosen from the breast database are presented. The images exhibit connective tissue

structure, malignant tumors in echogenic fibroglandular tissues and benign cysts. Tumors

characteristically show discontinuous edges with a darker center and shadows below the

borders. Area of enhancement below the cysts and some solid tissues are not uncommon.

Some images also show uncommon degrees of degradation due to shadowing. The bottom

two-thirds of these images include the chest wall and the dark shadow and reverberations

behind the acoustically impenetrable boundary between the lung and chest wall. Some

edge information is evident, however shadowy streaks are observed due to dense tissue

absorbing the sound beam, refraction and phase correlation at oblique boundary or poor

acoustic impedance match (air bubbles) between the transducer and the skin. For clarity of

presentation and speed of processing we focus on registration of 2D slices. The extension

of our methods to fully 3D voxel registration is straightforward but will not be presented

here. The value of α used for all simulations is 0.5.

A 64D ICA bases was extracted from a training database of 6 volumetric breast ul-

trasound scans of patients. A separate test set of 15 patients also undergoing biopsy was

also created. Each volumetric scan has a field of view of about 4cm3 (voxel dimensions

are 0.1mm2× 0.5mm) and encompasses the tumor, cyst or other structure of interest. Tu-

105

Figure 7.1.1: Ultrasound (UL) breast scans from twenty volume scans of patients under-
going chemotherapy.

106

mor/Cyst dimensions vary and can range from 5 mm3 to 1 cm3 or higher. A slice from

the UL breast image volume is registered to a slice 2mm deeper in the same image vol-

ume over 250 trials. At this separation distance, the speckle noise decorrelates. However

the underlying anatomy remains approximately unchanged. As the aim of this study is to

quantitatively compare different feature selection and registration methods we restricted

our investigation to rotation deformations over ±16◦ .

Two cases were investigated: a reduced dimension feature set consisting of only the 8

most discriminating of the 64 feature dimensions and the full 64 dimensional features. The

FastICA algorithm provides independent components one by one based on the projection

pursuit directions of the training data. Thus, the independent components are ranked ac-

cording to closeness to Gaussian distribution of the coefficients [61]. Using this criterion,

the first 8 of the 64 basis are selected and used for registration.

7.1.3 Experiments

Figure 7.1.2 shows average profiles of the registration objective functions. The panel

on far left of Fig. 7.1.2 indicates that, for single-pixel features, entropic-graph (MST)

estimates of α-Jensen difference and histogram plug-in estimates of MI give similarity

functions with virtually identical profiles having a unique global minimum at the correct

0◦ rotation of the reference image. In the full 64 dimensional ICA feature space the MST-

based Jensen difference criterion maintains a smooth profile (right panel) with a single

global minimum at the correct location. In the 64 dimensional feature space the histogram

plug-in estimates of MI or α-Jensen difference are not implementable.

To investigate the effect of small perturbations on small-angle registration performance

varying amounts of truncated Gaussian noise were added to each pixel. Registration accu-

racy for single-pixels, tags, and discrete and continuous ICA features using the histogram

107

−16 −8 −4 −2 0 2 4 8 16
−0.1

0

0.1

0.2

0.3

0.4

Rotational deformation (in−plane), degrees

N
or

m
al

iz
ed

 A
vg

.
α−

Je
ns

en
 &

 M
I v

al
ue

Norm. Avg. α−Jensen diff. Pixel − MST
Avg. MI Pixel − Histogram

(a)

−16 −8 −4 −2 92 4 8 16
−0.1

0

0.1

0.2

0.3

0.4

Rotational deformation (in−plane), degrees

N
or

m
al

iz
ed

 A
vg

.
α−

Je
ns

en
 v

al
ue

Norm. Avg. α−Jensen diff. 64D ICA − MST

(b)

Figure 7.1.2: Normalized average profiles of image matching criteria for registration of
UL breast images taken from two slices of the image volume database: (a)
MST-based α-Jensen and histogram-basedα-MI for single pixel features and
(b) MST-based α-Jensen for 64D ICA coefficient vector features.

and entropic-graph estimates of MI and α-Jensen difference divergence were compared

under increasing noise conditions. Figure 7.1.3 shows plots of registration root mean

square (RMS) error versus increasing levels of additive (truncated) Gaussian noise in the

images. Shown on the plots are standard error bars. The resultant registration peak shifts

from the perfect alignment position (0◦ relative rotation) by an amount depending on the

SNR, the registration features used and entropy/MI estimation matching criteria adopted.

In the figure a comparison of MI versus α-Jensen (α = 0.5) registration methods

applied to single pixel, tag, and ICA features can be made. The left panel of the figure

illustrates MI implemented with density plug-in estimates. For the single pixel and 8× 8

tag features, the bivariate coincidence density for MI and entropy was estimated using the

standard binned histogram. For single pixel features there were 256× 256 bins and for tag

features there were (25664)×(25664) bins. The tag features were pruned down to 256×256

through adaptive thresholding [44, 4, 97]. For the ICA features the 8 most discriminating

ICA dimensions were computed from training on 10000 breast samples from the 21 breast

108

0 5 10 15 20
0

1

2

3

4

5

6

Standard Deviation (σ) of added noise

R
M

S
 e

rr
or

 (
re

gi
st

ra
tio

n
er

ro
r)

, d
eg

re
es

MI (Pixel−histogram estimate)
MI (Tags−Histogram estimate)
MI (8D ICA binned with Voronoi partitions)

(a)

0 5 10 15 20
0

1

2

3

4

5

6

Standard Deviation (σ) of added noise

R
M

S
 e

rr
o

r
(r

eg
is

tr
at

io
n

 e
rr

o
r)

, d
eg

re
es

α−Jensen divergence (64D ICA−MST estimate)
MI (Pixel−histogram estimate)
α−Jensen divergence (Pixel−MST estimate)
α−Jensen divergence (8D ICA−MST estimate)

(b)

Figure 7.1.3: (a) Effect of additive Gaussian noise on the RMS error of the peak position
of the Shannon-MI estimated using histograms on single-pixel intensity gray
levels, 8 × 8 tag features extracted using Geman’s [44, 4] adaptive thresh-
olding method and histograms on 8D ICA features binned using Voronoi
partitions. (b) RMS error for Shannon MI estimated using histograms on
single-pixel intensity levels, α-Jensen difference divergence estimated di-
rectly with the MST on single-pixels, 8D ICA coefficient vector features and
64D ICA coefficient vector features. These plots are based on 250 repeated
experiments from within the breast UL volumetric database of 21 breast can-
cer patients undergoing therapy. The two slices to be registered are spatially
separated by 2mm. Search was restricted to a maximum rotation angle of
±16◦. The confidence intervals represent unit standard error in the compu-
tation of the mean of the interval.

109

volumes and the joint coincidence density (defined on 8×8 = 64 dimensional joint feature

space) was estimated by partitioning the 8D features space using 256 Voronoi bins on the

same training sample.

The registration MSE, for these three methods, is shown in the left panel of Figure 7.1.3

and the reader will notice a moderate improvement in MSE performance of MI registration

with the tag and discretized ICA feature based density plug-in methods over the standard

single pixel density plug-in method. We postulate that only modest improvement gains

are attainable since histogram estimation becomes unstable in such a high (8) dimensional

feature space.

In the 64 dimensional feature space the histogram plug-in estimates of MI or α-Jensen

difference are not implementable. The right panel of Figure 7.1.3 illustrates how en-

tropic graph based Jensen difference estimates significantly outperforms the MI registra-

tion methods. The α-Jensen difference divergence is calculated for single-pixel intensity

gray levels, 8D ICA coefficient vector features and 64D ICA coefficient vector features

using the MST entropic-graph estimate. It also shows the Shannon MI calculated using

single-pixel intensities via the histogram plug-in estimator.

From Figure 7.1.3(b) observe that the performance of the α-Jensen difference and the

standard Shannon MI are comparable when implemented with single-pixel features. When

computed over a high dimensional feature set, such as the 8D and 64D ICA coefficients,

the α-Jensen difference divergence performance improves. This improvement is derived

from the use of a higher dimensional and more discriminatory feature set, and an entropic

graph estimator of α-Jensen difference.

These preliminary results show that it may be beneficial to extensively investigate other

divergence measures. However, due to the lack of a significant gain in registration MSE,

histograms in higher dimensional spaces perform poorly as compared to entropic graph

110

methods. A second experiment was performed to investigate the entropic methods in more

detail. Two image slices with tumor were extracted from each of the 15 test scans such

that they showed the cross-section of the tumor. A representative example is shown in

Figure 7.1.4. Slices have a separation distance of about 5mm, about twice the separation

distance than the previous study, a situation that further broadens the registration peak in

the matching function. The first cross sectional slice was picked such that it intersected

with the ellipsoidal-shaped tumor through its center. The second slice was picked closer

to the edge of the tumor. The selected slices thus show a natural decline in tumor size, as

would be expected in time sampled scans of tumors responding to therapy.

Since view direction changes from one image scan to the next for the same patient

over time, rotational deformation is often deployed to correct it during registration. We

simulated this effect by registering a rotationally deformed image with its unrotated slice-

separated counterpart, for each patient in the 15 test cases. Rotational deformation was in

steps of 2 degrees such that the sequence of deformations ranged from−16 to +16 degrees.

To remove any residual correlation, the images were offset (relatively translated) by 0.5mm

(5 pixels) laterally since the correlated noise could bias the registration results. Since some

displacement can be expected from the handheld UL imaging process and the relative

tissue motion of the compressible breast tissue, this is not unreasonable deformation. For

each deformation angle, divergence measures were calculated, where the ‘registered state’

is the one with 0 degree of relative deformation.

Figure 7.1.5 shows average objective function plots for the registration experiment dis-

cussed above. Thirty different noise realizations were added to the fifteen test images at

every angle of rotational deformation to give N = 400 different images for calculation of

the matching functions. In the figure, each graph plots the sample mean, µ̂θ, calculated

over the N measurements at each angle, θ. The standard deviation of µ̂θ, also called the

111

(a) (b)

Figure 7.1.4: UL Images of the breast separated and rotationally deformed. (a) Cross-
sectional image through center of tumor. (b) Rotated cross-sectional image
acquired at a distance 5mm away from Image in (a).

standard error of the measurements, is given by σMθ
= σθ/

√
N for θ ∈ {−16◦, . . . ,+16◦},

where σθ is the standard deviation of the N measurements made at each rotational defor-

mation. To normalize the images it is important to discount for the relative scaling be-

tween the matching functions. Hence, µ̂θ of each matching function is normalized such

that max (σMθ
) is unity. This restricts arbitrary scaling and also discounts for any scaling

inherent in the computation of the matching function. In each row, the extent on the search

space is identical. This facilitates comparison of two divergence estimates and also allows

for comparison of a particular divergence as noise increases. It can readily be seen from

the trends that at low levels of noise, all feature based estimates have sharper peaks than

the Shannon MI estimate using pixel features. Further, as noise increases some divergence

estimates, notably α GA and αMI divergence between the ICA features of the images,

maintain sensitivity to rotational deformation.

Not surprisingly, these trends translate into improved MSE performance of the high-

112

−20 0 20

α
J

kN
N

σ = 0

−20 0 20

α
J

M
S

T

−20 0 20

α
G

A

−20 0 20

H
P

−20 0 20S
ha

nn
on

 M
I

−20 0 20

α
M

I

−20 0 20

N
LC

C

Degree Rotation

−20 0 20

α
J

kN
N

σ = 2

−20 0 20
α

J
M

S
T

−20 0 20

α
G

A

−20 0 20

H
P

−20 0 20S
ha

nn
on

 M
I

−20 0 20

α
M

I

−20 0 20

N
LC

C

Degree Rotation

−20 0 20

α
J

kN
N

σ = 8

−20 0 20

α
J

M
S

T

−20 0 20

α
G

A

−20 0 20

H
P

−20 0 20S
ha

nn
on

 M
I

−20 0 20

α
M

I

−20 0 20

N
LC

C

Degree Rotation

−20 0 20

α
J

kN
N

σ = 16

−20 0 20

α
J

M
S

T

−20 0 20

α
G

A

−20 0 20

H
P

−20 0 20S
ha

nn
on

 M
I

−20 0 20

α
M

I

−20 0 20

N
LC

C

Degree Rotation

Figure 7.1.5: Normalized average profiles of image matching criteria for registration of
UL breast images taken from two slices of the image volume database under
decreasing SNR. All plots are normalized with respect to the maximum vari-
ance in the sampled observations.(row 1) kNN-based estimate of α-Jensen
difference divergence between ICA features of the two images, (row 2) MST-
based estimate of α-Jensen difference divergence between ICA features of
the two images, (row 3) NN estimate of α Geometric-Arithmetic mean affin-
ity between ICA features, (row 4) MST based estimate of Henze-Penrose
affinity between ICA features, (row 5) Shannon Mutual Information esti-
mated using pixel feature histogram method, (row 6) α Mutual Information
estimated using NN graphs on ICA features and lastly, (row 7) NN estimate
of the Non-linear correlation coefficient between the ICA feature vectors.
Columns represent objective function under increasing additive noise. Col-
umn 1-4 represent additive truncated Gaussian noise of standard deviation,
σ = 0, 2, 8 and 16. Rotational deformations were confined to ± 16 degrees.

113

dimensional entropic graph based estimates of divergence, as seen in Figure7.1.6. At low

noise, all measures of divergence between ICA feature vectors show superior performance

over the single pixel histogram estimate of Shannon MI.

In conclusion, it should be noted that investigation of UL image registration to aid

detection and management of breast cancer is relatively new in and of itself, and not

widespread. Only recently, with single pixels MI techniques, has such registration ap-

peared to be very promising. The methods proposed here to investigate image registration

have not been previously applied to UL image registration. Based on preliminary results

these methods appear to offer significant improvement on single pixel based methods for

registration of ultrasound breast images. The approach described here combines improve-

ment of registration accuracy and robustness by automated selection of spatial features

derived from independent components analysis and uses image feature matching crite-

ria which extend the mutual information to a more stable criterion. These two ideas are

combined into a computationally tractable registration algorithm. Future studies could ex-

plore 3D registration and further the ability of the new registration technique to improve

discrimination between benign and malignant masses in follow-up studies or to improve

visual or automated detection of cancers via serial studies in a high-risk population. One

could also test the utility of our new registration technique for image volumes under pre

and post chemotherapy conditions. For example, one could: 1) better estimate the final

volume of tumors undergoing chemotherapy; and 2) better outline corresponding regions

to test tumor shrinkage, reduction of vascularity and reduction of signal from targeted and

non-targeted contrast agents as surrogate indicators of complete pathological response.

The registration methods presented above are applicable to other cross modality prob-

lems in image registration and matching. The next section presents applications of entropic

graph based matching methods to image retrieval problems in a multimodal setting.

114

−4 0 2 4 8 16 20
0

2

4

6

8

10

12

14

16

Standard Deviation σ of additve noise

M
ea

n
 S

q
u

ar
e

R
eg

is
tr

at
io

n
 E

rr
o

r
in

 d
eg

re
es

α Jensen difference (ICA−kNN)
α Jensen difference (ICA−MST)
α Geometric−Arithmetic mean (ICA−NN)
Henze−Penrose affinity (ICA−MST)
Shannon Mutual Information (Pixel−Histogram)
α Mutual Information (ICA−NN)
NonLinear Correlation Coefficient (ICA−NN)

Figure 7.1.6: Rotational RMS error obtained from registration of UL imagery using
seven different image similarity/dissimilarity criteria namely αJensen differ-
ence calculated using MST and kNN, Henze-Penrose affinity, αGeometric-
Arithmetic mean divergence, αMutual Information, NLCC and Shannon MI.
Shannon MI was computed using single-pixel intensity histograms with 1 bin
per intensity level. 64D ICA feature vectors were used with MST or kNN
graph to compute the other measures of divergence. These plots are based on
250 repeated experiments from within the breast UL volumetric database of
21 breast cancer patients undergoing therapy. The two slices to be registered
are spatially separated by 5mm. Search was restricted to a maximum rota-
tion angle of ±16◦. The confidence intervals represent unit standard error in
the computation of the mean of the interval.

115

7.2 Multimodal Face Retrieval

Images databases are now commmonplace in large servers and desktops alike. Face

retrieval from a database is a difficult problem due to the high variability of facial expres-

sions, poses, and illuminations. The widespread availability of thermal cameras, such as

those used at airports for detecting fever patients in the SARS outbreak of 2003, provides

an opportunity to couple information from visible-light and infrared sources for face iden-

tification. Thermal face images lack the textural information typically found in visible

images thus complicating the matching procedure and providing us with a challenging

testbed for our methods. Our multisensor face image retrieval example intends to illustrate

the flexibility of the entropic matching methods.

Many different approaches to this problem have been proposed [81, 20, 130]. Our ob-

jective in this paper is not to compete with these many fine tuned approaches. Rather we

simply wish to illustrate the flexibility of the MST entropic matching method that we have

presented in earlier sections. The Equinox visible/IR face database [33] consists of 7GB

image data of 91 individuals photographed under 3 illumination conditions, poses, and

facial expressions using a joint co-registered visible longwave infrared (V/LWIR) camera.

Figure 7.2.7 shows a sampling of faces in this database. Given a V/LWIR image pair for a

person the multimodal face retrieval problem is to extract a corresponding pair of images

of the person from the database. Multimode retrieval using visible and thermal imagery

is difficult due to the prominence of contour information as opposed to the textural details

available in visible imagery. The lack of textural information typically leads investigators

to use facial landmarks for indexing images. However, facial landmarks change positions

and aspects with expressions and movement making them unreliable. This makes entropic

methods of retrieval compelling for this problem due their ability to capture complex rela-

116

tions using high dimensional features and requiring no user intervention.

We implemented MST-based entropic retrieval as follows. We pulled queries at ran-

dom from the database and used this query to test the image matching method between

the query and the remaining images in the database. Two sample queries are illustrated in

Figure 7.2.8. The remainder of the database was compared to the query image and rank-

ordered with respect to their similarity with the query image. It should be noted that the

images are used as seen in Figure 7.2.7, i.e. no segmentation was performed to delineate

the background from the face. A perfect match was declared if the image with highest

rank, as measured by estimated α-Jensen difference, matched the person in the query im-

age. Rather than implement ICA, which has been reported to have deficiencies for face

recognition [80], we used an 8x8-DCT basis set to extract the features. Matching is done

in a 66-dimensional space, using 64 of the DCT coefficients dimensions plus 2 dimensions

corresponding to spatial coordinates. The α-Jensen difference is computed by building the

MST over this high-dimensional space for each image pair. The measured correct retrieval

rate was a respectable 95.5% even using this relatively simple feature set and the simple

MST α-Jensen image matching method.

7.3 Multimodal satellite image registration

Images acquired via geostationary satellites serve in research related to heat dissipa-

tion from urban centers, climactic changes and other ecological projects. In this section,

we shall illustrate entropic graph based image registration for a remote sensing example.

Images of sites on the earth are gathered by a variety of geostationary satellites. A satel-

lite may carry more than one sensor and may acquire images throughout a period of time.

These sensors gather information in distinct frequency bands in the electromagnetic spec-

trum and help predict daily weather patterns, environmental parameters influencing crop

117

Figure 7.2.7: Sampling of faces in the Equinox V/LWIR face database [33]. The database
consists of 100 individual faces at various illumination, pose and facial ex-
pression configurations. Each visible-light image is co-registered to infrared
counterpart by the camera.

118

Figure 7.2.8: Two examples of queries taken from the Equinox face database.

cycles such as soil composition, water and mineral levels deeper in the Earth’s crust, and

may also serve as surveillance sensors meant to monitor activity over hostile regions.

Changing weather conditions interfere with sensor signals. Images captured in a mul-

tisensor satellite imaging environment also show deformations due to the position of the

sensors relative to the object. This deformation is often affine in nature and may mani-

fest itself as relative translational, rotational or scaling between images. This provides a

good setting to observe different divergence measures as a function of the relative defor-

mation between images. Linear rotational deformation is simulated in order to reliably

test the image matching functions. Affine and projective transformations do arise in this

modality, but they are not addressed in this simulation. Thermal and visible light images

captured for the Urban Heat Island [105] project form a part of the database used here.

NASA’s visible earth project [93] also provides images captured via different satellite sen-

sors, and such multi-band images have been used here to provide a rich representative

database of satellite images. Figures 7.3.9 and 7.3.10 show several visible aerial images

and their corresponding thermal counterparts that make up the database of images used

in this experiment. Thermal and visible-light sensors image different bands in the elec-

119

tromagnetic spectrum and thus have different intensity maps, making correlation-based

registration methods difficult to apply. In particular, this situation requires mapping of the

two modalities to a common feature set.

Figure 7.3.9: Visible-light image samples from multisensor satellite image database.

Figure 7.3.11 shows two images of downtown Atlanta, captured with visible and ther-

mal sensors, as a part of the ‘Urban Heat Island’ project [105] that studies the creation of

high heat spots in metropolitan areas across the USA. Pairs of visible light and thermal

120

Figure 7.3.10: Thermal image samples corresponding to visible-light images from multi-
sensor satellite image database shown in Figure 7.3.9.

121

satellite images were also obtained from NASA’s Visible Earth website [93]. The vari-

ability in imagery arises due to the different specialized satellites used for imaging. These

include weather satellites wherein the imagery shows heavy occlusion due to clouds and

other atmospheric disturbances. Other satellites focus on urban areas with roads, bridges

and high rise buildings. Still other images show entire countries or continents, oceans and

large geographic landmarks such as volcanoes and active geologic features. Lastly, images

contain different landscapes such as deserts, mountains and valleys with dense foliage.

(a) (b)

Figure 7.3.11: Images of downtown Atlanta obtained from Urban Heat Island project
[105]. (a) Thermal image (b) Visible-light image under artificial rotational
transformation

7.3.1 Feature definition for registration

Images are rotated through 0◦ to 32◦, with a step size adjusted to allow a finer sampling

of the objective function near 0◦. The images are projected onto a Meyer wavelet basis,

and the coefficients are used as features for registration. A feature sample from an image

I in the database is represented as a 3-tuple consisting of the coefficient vector, and a two

dimensional vector identifying the spatial coordinates of the origin of the image region

122

it represents. For example {W(i,j), x(i,j), y(i,j)} represents the 3-tuple from position {i, j}

in the image. Now, W(i,j) ≡ {wLow−Low
(i,j) , wLow−High

(i,j) , wHigh−Low
(i,j) , wHigh−High

(i,j) }, where the

super-script identifies the frequency band in the wavelet spectrum. Features from both the

images {Z1, Z2} are pooled together to form a joint sample pool {Z1

⋃
Z2}. The MST

and k-NN graph are individually constructed on this sample pool.

Figure 7.3.12 shows the rotational mean-squared registration error for the images in our

database, in the presence of additive noise. Best performance under the presence of noise

can be seen through the use of the α-MI estimated using wavelet features and kNN graph.

Comparable performances are seen through the use of Henze-Penrose and αGeometric-

Arithmetic mean divergences, both estimated using wavelet features. Interestingly, the

single pixel Shannon MI has the poorest performance which may be attributed to its use

of poorly discriminating scalar intensity features. Notice that the α-GA, Henze-Penrose

affinity, and α-MI(Wavelet-kNN estimate), all implemented with wavelet features, have

significantly lower MSE compared to the other methods.

Further insight into the performance of these wavelet-based divergence measures may

be gained by considering the mean objective function over 750 independent trials. Figure

7.3.13.a shows the α-MI, HP affinity and the α-GA affinity and Fig. 7.3.13.b shows the α-

Jensen difference divergence calculated using the kNN graph and the MST. The sensitivity

and robustness of the dissimilarity measures can be evaluated by observing the divergence

function near zero rotational deformation (Figure 7.3.13).

7.4 Local feature matching

This section aims to demonstrate the sensitivity of entropic-graph methods to local

deformation. Local registration of images, of the human brain acquired under simulated

reconstruction of dual modality (T1,T2 weighted) magnetic resonance imaging, is per-

123

Figure 7.3.12: Rotational RMS error obtained from registration of multisensor V/IR
Satellite imagery using six different image similarity/dissimilarity criteria
namely αJensen difference calculated using MST, kNN and kNN ’single-
count’, Henze-Penrose affinity, αGeometric-Arithmetic mean divergence,
αMutual Information, and Shannon MI. Shannon MI was computed using
single-pixel intensity histograms with 1 bin per intensity level. Wavelet
feature vectors were used with MST or kNN graph to compute the other
measures of divergence. These plots are based on 250 repeated experiments
from within the Satellite image database of 20 aerial images. Search was
restricted to a maximum rotation angle of ±16◦. The confidence intervals
represent unit standard error in the computation of the mean of the interval.

124

0 0.6 1 2 4 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotational deformation

N
o

rm
al

iz
ed

 d
iv

er
eg

n
ce

αGA mean affinity
Henze−Penrose affinity
α MI (kNN−wavelet estimate)

(a) Average α-GA affinity, HP affinity and
α-MI (kNN-wavelet estimate. Rotation an-
gle estimated by maximizing noisy versions
of these objective functions.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotational deformation

N
o

rm
al

iz
ed

 α
−J

en
se

n
di

ve
rg

en
ce

αJensen divergence (kNN estimate)
αJensen divergence (MST estimate)

(b) Average α-Jensen divergence (kNN and
MST estimate on wavelet features). Rota-
tion angle estimated by minimizing noisy
versions of these objective functions.

Figure 7.3.13: Average affinity and divergence, over all images, in the vicinity of zero
rotation error: (left) α-Jensen (kNN) and α-Jensen (MST), (right) α-GA
mean affinity, HP affinity and α-MI estimated using wavelet features and
kNN graph.

125

formed. Different areas in the brain (neural tissue, fat and water) have distinct magnetic

resonance properties. Hence, they express different levels of excitation when appropri-

ately time-weighted. This example qualifies as a multisensor fusion example due to the

disparate intensity maps generated by the imaging sequence 2.4.3, commonly referred to

as the T1 and T2 time weighted MRI sequences. An image matching technique for MRI

images sensitive to local perturbations in the image is demonstrated.

The ability to discriminate differences between images with sensitivity to local differ-

ences is pivotal to any image matching algorithm. Previous work in these techniques has

been limited to simple pixel based mutual information (MI) and pixel correlation tech-

niques. In [102], local measures of MI outperform global MI in the context of adaptive

grid refinement for automatic control point placement. However, the sensitivity of local

MI deteriorates rapidly as the size of the image window decreases below 40× 40 pixels in

2D.

The main constraints on these algorithms, when localizing differences, are (1) limited

feature resolution of single pixel intensity based features, and (2) histogram estimators

h(X, Y) of joint probability density f(X, Y) are noisy when computed with a small num-

ber of pixel features and are thus poor estimators of f(X, Y) used by the algorithm to

derive joint entropy H(X, Y). Reliable identification of subtle local differences within

images, is key to improving registration sensitivity and accuracy [95]. Stable unbiased

estimates of local entropy are required to identify sites of local mismatch between images.

These estimates play a vital role in successfully implementing local transformations.

7.4.1 Deformation localization

Iterative registration algorithms apply transformations to a sequence of images while

minimizing some objective function. We demonstrate the sensitivity of our technique by

126

tracking deformations that correspond to small perturbations of the image. These pertur-

bations are recorded by the change in the mismatch metric.

Global deformations reflect a change in imaging geometry and are modeled as global

transformations on the images. However, global similarity metrics are ineffective in cap-

turing local deformations in medical images that occur due to physiological or pathological

changes in the specimen. Typical examples are: change in brain tumor size, appearance

of micro-calcifications in breast, non-linear displacement of soft tissue due to disease and

modality induced inhomogeneities such as in MRI and nonlinear breast compression in

XRay mammograms. Most registration algorithms will not be reliable when the size of

the mismatch site is insufficiently small, typically (m× n) ≤ 40× 40 [102]. With a com-

bination of ICA and α-entropy we match sites having as few as 8 × 8 pixels. Due to the

limited number samples in the feature space, the faster convergence properties of the MST

are better suited to this problem. Although we do not estimate other divergence measures,

α-Jensen calculated using the MST provides a benchmark for their performance.

In Figure 7.4.14, multimodal synthesized scan of T1 and T2 weighted brain MRI each

of size 256×256 pixels [25] are seen. The original target images shall be deformed locally

(see below) to generate a deformed target image.

7.4.1.1 Local deformation using B-Splines

B-spline deformations are cubic mapping functions that have local control and injective

properties [23]. The 2D uniform tensor B-spline function F , is defined with a 4×4 control

lattice φ in R2 as:

F (u, v) =

3∑

i=0

3∑

j=0

Bi(u)Bj(v)φij, (7.1)

where 0 ≤ u, v ≤ 1, φij represents the spatial coordinates of the lattice and the Bi are

the standard B-Spline basis functions. The uniform B-Spline basis functions used here are

127

quite common in computer graphics literature. They may be found in [23] and are defined

as:

B0(u) =
(1− u)3

6
,

B1(u) =
3u3 − 6u2 + 4

6
, (7.2)

B2(u) =
−3u3 + 3u2 + 3u+ 1

6
,

B3(u) =
u3

6
.

Given that the original images have 256× 256 pixels, we impose a grid(Φ) of 10× 10

control points on Itar. Since the aim is to deform Itar locally, not globally, we select a

sub-grid (φ) of 4× 4 control points in the center of Itar. We then diagonally displace, by

` = 10 mm, only one of the control points in φ, to generate deformed grid φdef . Itar is

then reconstructed according to φdef . The induced deformation is measured as ||φdef−φ||.

Figure 7.4.14 shows the resultant warped image and difference image, Itar − T (Itar). For

smaller deformations, Φ is a finer grid of 20×20 points, from which φ is picked. A control

point in φ is then displaced diagonally by ` = 1, 2, . . . 10 to generate φdef . When ` ≤ 3,

noticeable deformation spans only 8× 8 pixels.

7.4.2 Feature discrimination algorithm

We generate a d-dimensional feature set {Zi}m×n
i=1 , m × n ≥ d by sequentially pro-

jecting sub-image block (window) {Γj}M×N
j=1 of size m × n onto a d-dimensional basis

function set {Sk} extracted from the MRI image, as discussed in Section 5.2. Raster scan-

ning through Iref we select sub-image blocks {Γref
i }M×N

i=1 . For this simulation exercise,

we pick only the sub-image block Γtar from T (Itar) corresponding to the particular pixel

location k = (128, 128). Γtar
128,128 corresponds to the area in Itar where the B-Spline defor-

mation has been applied.

128

The size of the ICA basis features is 8× 8, i.e. the feature dimension is, d = 64. The

MST is constructed over the joint feature set {Zref
i , Ztar

j }. When suitably normalized with

1/nα, α = 0.5, the length of the MST becomes an estimate of Hα(Zref
i , Ztar

j). We score

all the sub-image blocks {Γref
i }M×N

i=1 with respect to the sub-image block Γtar
128,128. Let O`

be the resultant M ×N matrix of scores, at deformation `. The objective function surface

O` is a similarity map between {Γref}M×N
i=1 and Γtar. When two sites are compared, the

resulting joint probability distribution depends on the degree of mismatch. The best match

is detected by searching for the region in Iref that corresponds to Γtar as determined by

the MST length. As opposed to the one-to-all block matching approach adopted here, one

could also perform a block-by-block matching, where each block Γref
i is compared with

its corresponding block Γtar
i .

7.4.3 Local Feature matching Results

Figure 7.4.14 shows O10 for m × n = 8× 8, 16× 16 and 32× 32. Similar maps can

be generated for ` = `1, `2, . . . `p. The gradient ∇(O) = O`1 − O`2 reflects the change in

Hα, the objective function, when Itar experiences an incremental change in deformation,

from ` = `1 → `2. This gradient, at various sub-image block size is seen in Figure 7.4.14,

where `1 = 0 and `2 = 10. For demonstration purposes in Figure 7.4.14, we imposed a

large deformation to Itar. Smaller deformations generated using a control grid spanning

only 40 × 40 pixels are used to generate Figure 7.4.15. It shows the ratio of the gradient

of the objective function:

R =

1
(m×n)

∑m×n
i=1 |∇(O(i))|

1
(M×N−m×n)

∑M×N−m×n
i=1 |∇(O(i))|

, (7.3)

over the deformation site v/s background in the presence of additive Gaussian noise.

Figure 7.4.16 shows the similarity map O` when constructed using a histogram es-

timate of joint entropy calculated over sub-image size m × n (3.6). At lower sub-image

129

sizes, the estimate displays bias and several local minima even under noise free conditions.

It is thus unsuitable for detection of local deformation of Itar.

The framework presented here could be extended to (1) enhance registration perfor-

mance by sensitizing it to local mismatch, (2) automatically track features of interest, such

as tumors in brain or micro-calcifications in breast across temporal image sequences, (3)

reliably match or register small images or image regions so as to improve disease diagno-

sis by locating and identifying small pathological changes in medical image volumes and

(4) automate control point placement to initiate registration.

The next section presents the extensions of entropic graph methods to simultaneous

multi-image registration. The aim is to demonstrate the utility of entropic graph meth-

ods for estimation of entropy and divergence such as α-GA, α-MI and NLCC between

several images simultaneously. It is introductory in nature and serves to identify poten-

tially exciting future directions for research in the area of entropic graph based entropy

and divergence estimation.

7.5 Simultaneous multi-image registration

Multi-image registration deals with the problem of registering three or more images si-

multaneously. In breast cancer therapy patient progress is monitored by periodic UL scans

of the breast. Radiologists often register breast images of a patient collected at periodic

intervals to monitor tumor growth or recession. One approach is to sequentially register

pairs of images from time A to time B, time B to time C and so on. Besides being cum-

bersome and expensive, this process may lead to the accumulation of registration errors.

A less expensive solution that may be able to avoid error accumulation is to register all the

sequential scans (A,B,C,...) simultaneously. Image registration methods play an impor-

tant role in atlas construction [126]. Recently, simultaneous multi-image registration was

130

Reference Image, Brain MRI T1−weighted

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Iref

Warped Target Image, Brain MRI T2−weighted

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) T (Itar)

Effect of B−Spline warping on target image

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(c) Difference Image
(Itar − T (Itar))

39.7

39.8

39.9

40

40.1

40.2

40.3

(d) O10 = Hα(X, Y): 32×
32 window

41.5

41.6

41.7

41.8

41.9

42

(e) O10 = Hα(X, Y): 16×
16 window

45

45.2

45.4

45.6

45.8

46

(f) O10 = Hα(X, Y): 8× 8
window

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(g) Local ∇(Hα) = O10 −
O0: 32× 32 window

−1

−0.5

0

0.5

1

1.5

(h) Local ∇(Hα) = O10 −
O0: 16× 16 window

−10

−5

0

5

10

15

20

(i) Local ∇(Hα) = O10 −
O0: 8× 8 window

Figure 7.4.14: B-Spline deformation on MRI images of the brain. (a) Reference image, (b)
Warped target (c) True Deformation, (d) O10 = Hα as seen with a 32× 32
window, (e) 16× 16 window and (f) 8× 8 window. (g) ∇(O) = ∇(Hα) =
O10 − O0 as seen with a 32× 32, (h) 16× 16 and (i) 8× 8 window.

131

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

BSpline grid deformation (mm)

A
vg

(|∇
(H

α)|
)

(a
t

si
te

 /
b

ac
kg

ro
u

n
d

)

Additive Noise, σ = 2
Additive Noise, σ = 8
Additive Noise, σ = 16

Figure 7.4.15: Ratio of ∇(Hα) = ∇O calculated over deformation site v/s background
image for smaller deformation spanning m× n ≥ 8× 8.

−9.9

−9.89

−9.88

−9.87

−9.86

−9.85

−9.84

−9.83

−9.82

−9.81

−9.8

(a) Shannon MI O10 =
MI(X, Y): 32× 32

−8

−7.99

−7.98

−7.97

−7.96

−7.95

−7.94

−7.93

−7.92

−7.91

−7.9

(b) Shannon MI O10 =
MI(X, Y): 16× 16

−6

−5.99

−5.98

−5.97

−5.96

−5.95

−5.94

−5.93

−5.92

−5.91

−5.9

(c) Shannon MI O10 =
MI(X, Y): 8× 8

Figure 7.4.16: Performance of Shannon MI, computed using pixel intensity histograms,
on deformed MRI images: (a) 32×32 window, (b) 16×16 window and (c)
8× 8 window.

132

used to construct an atlas of a small patient database through the use of smart database

techniques [18]. Compared to the complexity of their method, entropic graphs offer a rel-

atively straightforward approach to multi-image divergence estimation, as explained here.

This section demonstrates the utility of entropic graph methods to simultaneously register

three or more images.

7.5.1 Divergence estimation for multi-image registration

Evaluation of divergence for multiple images is straightforward. The α-MI between

d-dimensional features {Xi}Ni=1, {Oi}Ni=1, {Yi}Ni=1 extracted from three images, I1, I2, I3,

respectively is an extension of Equation 4.12 as follows:

α̂MI =
1

α− 1
log

1

nα

n∑

i=1

(
ei(x× o× y)√
ei(x)ei(o)ei(y)

)3γ

, (7.4)

where ei(x × o × y) is the distance from the point zi = [xi, oi, yi] ∈ R3d to its nearest

neighbor in {Zj}j 6=i and ei(x) (ei(o)) (ei(y)) is the distance from the point xi ∈ Rd, (oi ∈

Rd), (yi ∈ Rd) to its nearest neighbor in {Xj}j 6=i({Oj}j 6=i){Yj}j 6=i respectively.

Similarly, building on Equation 4.11 α-GA can be estimated between one reference

and two target images as follows:

α̂DGA =
1

α− 1
log

1

3n

3n∑

i=1

min{rj}3j=1 (7.5)

r1 = min

{(
ei(o)

ei(x)

)γ/2

,

(
ei(x)

ei(o)

)γ/2
}
,

r2 = min

{(
ei(x)

ei(y)

)γ/2

,

(
ei(y)

ei(x)

)γ/2
}
,

r3 = min

{(
ei(y)

ei(o)

)γ/2

,

(
ei(o)

ei(y)

)γ/2
}
,

where ei(x), ei(o) and ei(y) are the distances from a point zi ∈ {{xi}i, {oi}i, {yi}i} ∈ Rd

to its nearest neighbor in {Xi}i, {Oi}i and {Yi}i, respectively. Here, as above α = (d −

γ)/d.

133

Shannon MI can be estimated using pixel features by extending Equation 3.7 to his-

togram estimates of the joint pdf in three dimensional space as follows:

α̂MI
def
=

1

α− 1
log

255∑

x,o,y=0

f̂α
0,1(x, o, y)

(
f̂x(x)f̂o(o)f̂y(y)

)1−α

. (7.6)

In Equation 7.6 we assume 8-bit gray level, f̂x,o,y denotes the joint intensity level “coinci-

dence histogram”

f̂x,o,y(x, o, y) =
1

MN

MN∑

k=1

Ixk,okyk
(x, o, y), (7.7)

and Ixk,okyk
(x, o, y) is the indicator function equal to one when (xk, ok, yk) = (x, o, y) and

equal to zero otherwise.

Equation 7.7 requires building a histogram in the three dimensional joint space of the

three images. Generalizing to N images, it can easily be seen that a N -dimensional his-

togram would be required t estimate Shannon MI using the histogram plug-in method.

As discussed in Section 3.7, the curse of dimensionality restricts the estimation of Shan-

non MI in higher dimensions. On comparison with Equations 7.4 and 7.6 it is seen that

estimation of α-MI and α-GA do not suffer from this curse-of-dimensionality since the

complexity of the kNN graph grows only linearly in the dimension.

In the following section, the performance of entropic graph based divergence estimates

of α-MI and α-GA is compared with traditional histogram estimation techniques of Shan-

non MI.

7.5.2 Quantitative performance evaluation in multi-image registration

The methods used to evaluate performance of divergence estimates for the two-image

case are extended to three images. The database of UL images is divided, as before,

into training and testing sets. 64D ICA are estimated on the training set and used as

features for registration. Test images are extracted from each volumetric scan in the test

134

dataset. A ±5mm depth directional distance separates the reference image Iref from the

two target images Itar1
and Itar2

. ICA basis coefficient features are extracted from the

reference and target images using the standard sub-block projection technique, as before.

Registration performance is evaluated over rotational deformation within the range ±16◦.

Figure 7.5.17 shows an example registration scenario where the reference images is shown

to be sandwiched between two target images that are rotated.

Figure 7.5.17: Multi-image registration example illustrated using three UL images of the
breast where the reference image is sandwiched between two target images
that are rotated ±16◦ respectively.

In Figure 7.5.18 shows the registration performance of the 16 test image sets. Mis-

registration error is measured as the sum of mean-squared mis-registration errors for each

of the target images, and can hence vary from 0◦ to 32◦. The SNR in all the images

is progressively decreased by adding truncated uncorrelated Gaussian noise. Mean mis-

registration error is obtained by Monte-Carlo simulations over 30 different noise realiza-

tions on each of the 16 image. Thus, every point in the graph is the mean error over 480

measurements. Standard error bars are as shown.

135

0 2 4 8 16 20−4
0

4

8

12

16

20

24

28

32

Standard Deviation σ of additive noise

S
u

m
 o

f
R

o
ta

ti
o

n
al

 M
S

E
 (

d
eg

re
es

)

α Geometric−Arithmetic mean (64D ICA−NN)

α Mutual Information (64D ICA−NN)

NonLinear Correlation Coefficient (64D ICA−NN)

Shannon Mutual Information (Pixel−Histogram (128 3 bins))

Shannon Mutual Information (Pixel−Histogram (256 3 bins))

Figure 7.5.18: Quantitative performance comparison of divergence estimates while simul-
taneously registering three UL images of the breast. Plot shows sum of
rotational mean-squared registration errors for each of the target images us-
ing 64D ICA feature vectors and α-GA, α-MI, NLCC matching functions.
Shannon MI calculated using different intensity histogram bin sizes is also
shown. These plots were obtained from Monte Carlo trials consisting of
adding i.i.d. Gaussian distributed noise to the images prior to registration.
480 repeated experiments were conducted from within the breast UL volu-
metric database of 16 breast cancer patients undergoing therapy. The three
slices to be registered are spatially separated by 5mm. Search was restricted
to a maximum rotation angle of ±16◦. The confidence intervals represent
unit standard error in the computation of the mean of the interval.

136

7.6 Discussion and Future Work

This section aims to provide some insight into the performance of different measures of

divergence and features for the various applications studied in this thesis. This section will

also identify some other extensions to this work like the multi-image registration example

studied briefly here.

The first component of this study was to extend histograms to higher dimensions.

There has been limited success in this direction. Besides the increased complexity and

sparsity of the histogram in higher dimensions, it was also difficult to identify reliable

discrete features. Tag features show only modest improvements of standard scalar single-

pixel methods. Tags are designed for binary images and extension to higher dimensions is

not straightforward. Discretization of feature vectors, while viable, has difficulties when

creating a joint space.

The performance of ICA and wavelet basis demonstrate that there is potential benefit in

extending features to higher dimensional spaces. When measured on single-pixel spaces,

graph methods such as αJensen in UL registration example and αMI in satellite image

registration example show performance similar to that of single-pixel Shannon MI. Per-

formance advantage is derived from the use of higher-dimensional descriptive features and

entropic graphs enable use of such features whereas histograms do not. Non-parametric

kernel density estimators may be used for “plug-in” purposes, but their performance is

expected to mimic that of histogram plug-in for higher dimensional spaces. A vital fu-

ture direction of research in image registration would thus be the identification and use of

other features in image registration. A comprehensive study examining various modalities,

registration problems and factors that would influence choice of features is warranted.

Several extensions to previous work on entropy estimation for image registration have

137

been presented here. The new kNN estimators of the αMI and αGA have the advan-

tage of invariance to reparameterization of the feature space. While convergence results

for the kNN divergence estimators were not provided there is circumstantial theoretical

evidence that they do converge. Furthermore, the numerical evaluations show that these

divergence estimators outperform previous approaches to image registration. This thesis

also introduced the Friedman-Rafsky (FR) multivariate run test, which is an estimator of

Henze-Penrose divergence, as a new matching criterion for image registration. Of course,

as compared to our kNNG divergence estimators, the FR method has the advantage of

proven theoretical convergence but has the disadvantage of higher runtime complexity.

The performance of αGA and Henze-Penrose have exceeded those of other divergence

measures. This thesis hypothesizes that the combination of low-dimensional complexity

through the exclusive use of marginal spaces and invariance to transformations has led

to superior noise performance and robustness in these measures as compared to others.

Unlike the other metrics, the αJensen difference is not invariant to reparameterization,

which explains its relatively poor performance for large rms noise.

Several other directions of future work can be identified. From a registration perspec-

tive, a study of the performance of different features is vital. It is also important to extend

this work to 3D volumetric images that would be registered across time or across different

patients. While registering several patients simultaneously to create an atlas, multi-image

registration is required. This another interesting extension to this work. Approximate NN

methods that were briefly studied here, should be extended after developing an understand-

ing of the error-computational complexity trade-offs for different measures of divergence.

The convergence properties of kNN estimators of αMI, αGA and NLCC remain unexam-

ined and should be explored.

CHAPTER VIII

Conclusions

This work was motivated by a desire to initiate development of robust and accurate

image registration systems for medical imaging and other image matching applications. A

natural extension to current information theoretic methods such as single pixel histogram

based estimates of MI was to incorporate higher dimensional features. An attempt to build

histograms in higher dimensional spaces using quantized pixel neighborhoods, however,

yielded only marginal improvements over pixel features.

Based on the work of B. Ma [82], this thesis then explored the use of entropic graph

methods as a means to extend matching to higher dimensions without first estimating den-

sity in the high dimensional space. The key to this work was the use of entropic graphs to

estimate Rényi α-entropy in higher dimensional feature spaces directly. The MST length

functional displays asymptotic convergence to the Rényi α-entropy of the underlying dis-

tribution on which it is built. The MST entropy estimator was used successfully to estimate

the α-Jensen divergence estimator [82]. Here the MST based estimate of α-Jensen differ-

ence was used for ultrasound image registration. Local ICA projection coefficients in 64D

space provided reliable estimates of α-Jensen difference. The kNN graph whose length

functional has similar convergence properties as the MST was then used for entropy es-

timation and image registration purposes. The kNN has a complexity that is an order of

138

139

magnitude lower than that of the MST. Subsequent registration efforts were undertaken

with the kNN graph over ICA feature coefficients. Quantitative comparisons showed that

both the entropic graph-based higher dimensional estimate of α-Jensen difference had ro-

bust performance and lower mis-registration errors in test cases of UL image registration

as compared with the standard Shannon MI computed using pixel histograms.

The initial results of UL breast image registration provided impetus for further re-

search in other divergence measures that could be reliably estimated in higher-dimensions

through the use of entropic graphs. Subsequent research led to the development of Henze-

Penrose affinity which is based on the Friedman-Rafsky higher-order test statistic. The HP

affinity is estimated directly from the MST built in higher dimensional feature spaces. The

α-GA mean affinity, α MI and non-linear correlation coefficient were then developed and

used for image registration. These latter divergence measures were computed by approxi-

mating a local Voronoi-cell density using an NN graph.

A requirement to accomplish high dimensional image matching is a feature space

adapted to the image characteristics. Higher dimensional features used for this work

include those based on independent component analysis, discrete cosine transforms and

multidimensional wavelet image analysis. ICA is a data-driven process of estimating a

statistically independent basis and is used to extract features from ultrasound images. Di-

vergence was estimated in wavelet coefficient spaces using entropic-graph methods for

registration of geo-satellite imagery.

Methods for computing the MST and kNN graph were explored with a view toward

reducing time-memory costs. A disc-based approach is used to pick candidate nodes to

build the MST. Rapid MST construction was achieved for over 100,000 feature samples

residing in 64 dimensional space. This acceleration allowed evaluation of entropic graphs

methods over several hundreds of images with a variety of feature spaces. A kd-tree ap-

140

proach was used to rapidly construct the kNN graph and further accelerate the estimation

process. Computational complexity is certainly less of a hurdle in registration with graph

methods due to contributions made here.

This thesis extended the application of entropic graphs to new applications like Ul-

trasound breast image registration, multisensor satellite image registration, simultaneous

multi-image registration, MRI small volume registration and matching of human face im-

ages. Ultrasound imaging is widely used to detect malignant breast lesions. However,

compressibility of the breast tissue, high specular imaging noise, low resolution and small

field-of-view have complicated past registration efforts. Through the use of graph-based

registration methods and a data-driven features extraction process, lower registration er-

rors in 2D test cases were seen. Numerical performance comparisons among the metrics

and features were aimed at identifying the algorithms that best discriminate between rota-

tionally aligned and misaligned images. The rotational deformations were local in nature

since the thesis did not intend to focus on iterative optimization techniques. The discrimi-

nation ability for local rotational deformations provides a good comparison of the accuracy

of registration for more general image deformations. Sensitivity and robustness to noise

was also evaluated. Multimodal aerial images of the earth taken by geo-stationary satel-

lites were registered using graph methods and higher-dimensional features. In registering

multiple images to form a representative atlas, high dimensional estimation of density is

performed. Applications such as tracking micro-calcifications in the breast and tumor

in the brain were addressed with entropic graph methods which provide remarkable es-

timates of entropy and divergence even with a small number of features. A multimodal

face matching example was performed to demonstrate the versatility of entropic graphs to

perform other image matching tasks.

An exciting extension of this work is in registration of multiple images. Multiple im-

141

ages could be registered simultaneously to form an atlas. Multi-image registration could

also be used to simultaneously register time-sampled imagery such as those acquired dur-

ing periodic UL examination for cancer detection and management.

APPENDIX

142

143

APPENDIX

Computer code for divergence estimation

This appendix to the thesis contains MATLAB ™Mex program code used to construct

the MST and kNN graph and calculate graph based estimates of α-Jensen difference di-

vergence, α-MI, α-GA mean divergence and Henze-Penrose affinity. The programs were

written in standard ANSI C within the mex programming guidelines provided in [2].

A.1 Program to construct MST using Kruskal algorithm
Begining of Kruskal MST program

1
2 /***
3
4 File: mst.c
5 Rev: a-1
6 Date: 09/27/2001
7
8 Copyright (c) 1993, 2001 by David M. Warme
9

10 **
11 Program to construct MST
12 Modified Code Copyright (c) 2001- 2005, by Huzefa Neemuchwala
13 hneemuch@umich.edu
14 Please read this preamble to address memory errors before contacting me.
15 **
16
17 Modification Log:
18
19 a-1: 09/27/2001 warme
20 : Created from pieces of GeoSteiner version 3.1.
21
22 a-2: 10/12/01 Huzefa Neemuchwala
23 Can now read point set from file directly.
24 Changed the sort to a fast qsort using C library function
25 a-3 01/10/02 Huzefa Neemuchwala
26 Reduced search radius allows us to locally relax "curse of dimensionality"
27 Now works extremely fast!
28 Fix a radius within which points are accepted to form edges.
29 So for each point roughly M nearest neighbors are accepted by
30 fixing a suitable radius. So from Nˆ2 edges (for N points) we
31 now have N*M edges (M<<Nˆ2).
32 Time reduced for sorting.
33 Memory requirements fall to a fraction, and so huge point sets
34 are now possible without writing to files.
35 a-4 02/11/02 Huzefa Neemuchwala
36 Linearized the entire algorithm by linearizing time/memory for edge
37 selection also.
38 a-5 07/25/2003 Huzefa Neemuchwala
39 Mex written.
40 Code has ability to give out the edge labels the full MST.
41 You may need to alter the following line if you run into memory problems
42
43 Note: However you should do that in conjunction with reducing your search radius
44 The line: E = mxMalloc (npoints1*10000*sizeof(struct edge)); in function ’principal’
45 allocates memory for the edge matrix.
46 Contact Huzefa Neemuchwala, hneemuch@umich.edu
47
48 **/
49
50 /*Include files*/
51 #include <math.h>
52 #include "mex.h"
53 #include "string.h"
54 #include <stddef.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57

144

58 /*Some preprocessor definitions*/
59 #define NOT !
60 #define AND &&
61 #define OR ||
62 #define EQ ==
63 #define NE !=
64
65 #define NEWA(n, type) ((type *) new ((size_t) ((n) * sizeof (type))))
66
67 /*Define an edge*/
68 struct edge {
69 int p1; /* First endpoint of edge. */
70 int p2; /* Second endpoint of edge. */
71 double len; /* Length of edge. */
72 };
73
74
75 /*
76 * This is the so-called "Disjoint Set Union-Find" data structure.
77 * The operations are "makeset", "find", and "union".
78 *
79 * See chapter 2 of "Data Structures and Network Algorithms", by
80 * Robert Endre Tarjan, SIAM, 1983 for complete details.
81 */
82
83 struct dsuf {
84 int * parent;
85 int * rank;
86 int set_size;
87 };
88
89
90 /*
91 * Local Routines
92 */
93
94 static void principal (double, double, double, double *, double *, double *);
95 static void dsuf_create (struct dsuf *, int);
96 static void dsuf_destroy (struct dsuf *);
97 static int dsuf_find (struct dsuf *, int);
98 static void dsuf_makeset (struct dsuf *, int);
99 static void dsuf_unite (struct dsuf *, int, int);

100 static void fatal (char *);
101 static int mst_edge_list (int, int, struct edge *, struct edge *);
102 static void * new (size_t);
103 static void sort_edge_list (struct edge *, int);
104
105 /*
106 * The main routine. Read in points, compute MST, output it.
107 */
108 void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
109 const mxArray *prhs[])
110 {
111
112 double npoints, dim;
113
114 double* prmstlength;
115 double threshold, threshold2;
116 /*Uncomment next line to include edges in output*/
117 /* double *edges, *edgelabels;*/
118 double *V;
119 double *SL;
120
121 /* Check for proper number of arguments. */
122 if (nrhs != 5) {
123 mexErrMsgTxt("Five inputs required : mstmex(rrw,indexs,N,dim,threshold)");
124 } else if (nlhs > 1) {
125 mexErrMsgTxt("Only one output argument");
126 }
127
128 /* Assign pointers to each input */
129 /* Use mex syntax */
130 /* matrices for each time point */
131 V = (double *)mxGetPr(prhs[0]);
132 SL = (double *)mxGetPr(prhs[1]);
133
134 /* parameters for analysis */
135 npoints = *mxGetPr(prhs[2]);
136 dim = *mxGetPr(prhs[3]);
137 threshold = *mxGetPr(prhs[4]);
138 threshold2 = threshold*threshold;
139
140 /* Create matrix for the return argument. */
141 plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
142 /*the following lines could be modified to output the MST edges also*/
143 /*plhs[3] = mxCreateDoubleMatrix(npoints,2,mxREAL);
144 plhs[4] = mxCreateDoubleMatrix(npoints,2,mxREAL);*/
145
146 /* Assign pointer to the output */
147 prmstlength = (double *)mxGetPr(plhs[0]);
148
149 /*the following lines could be modified to output the MST edges also*/
150 /*edges = (double *)mxGetPr(plhs[3]);
151 edgelabels = (double *)mxGetPr(plhs[4]);*/
152
153 /*the following lines could be modified to output the MST edges also*/
154 principal(npoints,dim,threshold2,V,SL,prmstlength); /*,edges,edgelabels);*/
155 }
156
157 void
158 principal (
159 double npoints, double dim, double threshold2,
160 double *V, double *SL, double *prmstlength)
161 /*the following lines could be modified to output the MST edges also*/
162 /*,
163 double *edges, double *edgelabels
164)*/
165
166 {
167 int i, j, k;
168 int q,qctr,flagt,ind,nind;
169 int nedges;
170 struct edge * E;
171 double * pi;
172 double * pj;
173 struct edge * ep;
174 double dist, length, dist1, delta;
175 struct edge * solution;
176 int ctr1=0;
177 int dim1, npoints1;
178 /* printf("Total points %g; Dimensions %g; Threshold %g\n",npoints,dim, threshold2);*/
179 dim1 = (int) dim;
180 npoints1 = (int) npoints;
181 nedges = npoints1 * (npoints1 - 1) / 2;

145

182
183
184 /*Construct tree using full search if number of edges less than 500...tentative*/
185 if(npoints<3000)
186 {
187 nedges = (int)(npoints * (npoints - 1) / 2);
188
189 /* Read in the points. */
190 E = (struct edge *) mxMalloc((nedges) * sizeof(struct edge));
191
192 /*E = NEWA (nedges, struct edge);*/
193 ep = E;
194 for (i = 0; i < npoints1; i++) {
195 pi = &V [i * dim1];
196 for (j = i+1; j < npoints1; j++) {
197 pj = &V [j * dim1];
198 /* Compute distance between points I and J. */
199 dist = 0.0;
200 for (k = 0; k < dim1; k++) {
201 delta = pi [k] - pj [k];
202 dist += (delta * delta);
203 }
204 /* Store triple (I,J,DISTANCE). */
205 ep -> p1 = i;
206 ep -> p2 = j;
207 ep -> len = sqrt (dist);
208 ++ep;
209 }
210 }
211
212 /* Allocate buffer to hold solution. */
213 /*solution = NEWA (npoints - 1, struct edge);*/
214 solution = (struct edge *)mxMalloc((npoints1-1) * sizeof(struct edge));
215
216 k = mst_edge_list (npoints, nedges, E, solution);
217
218 /*printf ("\nMinimum Spanning Tree (FS):");commented this one*/
219 ep = solution;
220 length = 0.0;
221 for (i = 0; i < k; i++) {
222 length += ep -> len;
223 ep++;
224 }
225 *prmstlength = length;
226 /*printf ("MST length %g\n", *prmstlength);*/
227 }
228
229 else {
230 /**
231 Radius approach
232 Select points for edge computation using radius approach.
233 **/
234 /*The next line is very important. It does the memory allocation for the edge matrix.
235 Reduce allocation if you run into memory problems. Of course you could then run into an incomplete MST!*/
236 E = (struct edge *) mxMalloc((npoints1*3000)*sizeof(struct edge));
237 /*E = NEWA (160000*10000, struct edge);*/
238 ep = E;
239
240
241 for (q=0; q< npoints1-1; q++) {
242 flagt=1;
243 ind = (int) SL[q];
244 qctr=1;
245 do {
246 nind = (int) SL[q+qctr];
247 pi = &V [ind * dim1];
248 pj = &V [nind * dim1];
249 dist1=(pi[0]-pj[0])*(pi[0]-pj[0]);
250 dist = 0.0;
251 for (k = 0; k < dim1; k++) {
252 delta = pi [k] - pj [k];
253 dist += (delta * delta);
254 if (dist > threshold2)
255 break;
256 }
257 if (dist <= threshold2){
258 ep -> p1 = ind;
259 ep -> p2 = nind;
260 ep -> len = sqrt(dist);
261 ++ep;
262 ctr1++;
263 }
264 if (dist1 > threshold2) {flagt=0;}
265 if ((q+qctr) == (npoints-1)) {flagt=0;}
266 qctr++;
267 }
268 while (flagt==1);
269 }
270
271 /**/
272
273
274 nedges=ctr1;
275 /*printf("ctr1 is %d\n",ctr1);*/
276
277 /* Allocate buffer to hold solution. */
278 solution = (struct edge *)mxMalloc((npoints1-1)*sizeof(struct edge));
279 /*solution = NEWA (npoints1 - 1, struct edge);*/
280 k = mst_edge_list (npoints1, nedges, E, solution);
281 ep = solution;
282 length = 0.0;
283 for (i = 0; i < k; i++) {
284 /*edges[i] = (double)(ep -> p1);
285 edges[i+npoints] = (double)(ep -> p2);
286
287 edgelabels[i] = (double)(ep -> startdensity);
288 edgelabels[i+npoints] = (double)(ep -> enddensity);*/
289
290 length += ep -> len;
291 ep++;
292 }
293 *prmstlength = length;
294
295 printf("Minimum Spanning Tree LENGTH = %g\n", length);
296 /*printf("FR metric = %d,%g\n",FRmetric,*prfrmetric);
297 printf("Hero-Costa FR length = %g\n",FRlength);*/
298 /*free(solution);
299 free(E);
300 free(ep);*/
301 }
302 }
303
304 /*
305 * This routine computes the MST of a given list of edges.

146

306 */
307
308 static
309 int
310 mst_edge_list (
311
312 int n, /* IN - number of vertices */
313 int nedges, /* IN - number of edges */
314 struct edge * edge_list, /* IN - list of edges */
315 struct edge * edges /* OUT - MST edge list */
316)
317 {
318 int i;
319 int mst_edge_count;
320 int components;
321 int max_vert;
322 struct edge * ep;
323 struct edge *pp;
324 struct edge * ep_endp;
325 int root1;
326 int root2;
327 struct dsuf sets;
328 int ctr =0;
329 double perc;
330
331 sort_edge_list (edge_list, nedges);
332
333 /* Don’t assume that the vertex numbers are well-behaved, */
334 /* except that they must be non-negative. We do a quick scan */
335 /* to determine the largest vertex number and then allocate */
336 /* a union-find data structure large enough to handle it. Note */
337 /* that we then use this union-find data structure in a */
338 /* completely sparse way -- we only ever access set items for */
339 /* vertices that are named by an edge. */
340
341 max_vert = 1; /* avoid zero-size union-find... */
342 ep = edge_list;
343 for (i = 0; i < nedges; i++, ep++) {
344 if (ep -> p1 > max_vert) {
345 max_vert = ep -> p1;
346 }
347 if (ep -> p2 > max_vert) {
348 max_vert = ep -> p2;
349 }
350 }
351
352 dsuf_create (&sets, max_vert + 1);
353
354 /* Note that it is not a problem to "makeset" a vertex more */
355 /* than once... */
356 ep = edge_list;
357 for (i = 0; i < nedges; i++, ep++) {
358 dsuf_makeset (&sets, ep -> p1);
359 dsuf_makeset (&sets, ep -> p2);
360 }
361
362 components = n;
363 mst_edge_count = 0;
364 ep = edge_list;
365 ep_endp = (ep + nedges);
366
367 while (components > 1) {
368 ctr++;
369 if (ep >= ep_endp) {
370 /* Ran out of edges before MST complete! */
371 /*printf("Ran our of edges before tree complete!");commented this one
372 printf("\nHowever, I have managed to get you almost all edges");*/
373 perc=(mst_edge_count*100.0)/(n-1);
374 printf("\nthe number of edges is %d which is %g percent of all edges \n",mst_edge_count,perc);/*commented this one*/
375 /*if (mst_edge_count > (n-(0.2*n)))
376 {*/
377 pp=edge_list+ctr-1;
378 /*printf("\nctr is %d and msx dist is %g\n",ctr,pp->len);*/
379 /*dsuf_destroy (&sets);*/
380 return (mst_edge_count);
381 /*}*/
382 /*else{fatal ("mst_edge_list: Bug 1 Ran out of edges before tree complete Less than 90percent of all edges gleaned.");}*/
383 }
384 root1 = dsuf_find (&sets, ep -> p1);
385 root2 = dsuf_find (&sets, ep -> p2);
386 if (root1 NE root2) {
387 dsuf_unite (&sets, root1, root2);
388 *edges = *ep;
389 ++edges;
390 ++mst_edge_count;
391 --components;
392 }
393 ++ep;
394 }
395 pp=edge_list+ctr;
396 perc=100;
397
398 /*printf("Longest Edge was %g\t",pp->len); commented this one
399 printf("Use this distance instead of threshold!"); commented this one*/
400 /*dsuf_destroy (&sets);*/
401
402 return (mst_edge_count);
403 }
404
405 /*
406 * This routine sorts the given edge list in INCREASING order by edge length.
407 */
408
409 static
410 void
411 sort_edge_list (
412
413 struct edge * a, /* IN/OUT - array of edges to be sorted. */
414 int n /* IN - number of elements in array. */
415)
416 {
417 int h;
418 struct edge tmp;
419 double key;
420 struct edge * p1;
421 struct edge * p2;
422 struct edge * p3;
423 struct edge * p4;
424 struct edge * endp;
425
426 endp = &a [n];
427
428 for (h = 1; h <= n; h = 3*h+1) {
429 }

147

430
431 do {
432 h = h / 3;
433 p4 = &a [h];
434 p1 = p4;
435 while (p1 < endp) {
436 tmp = *p1;
437 key = tmp.len;
438 p2 = p1;
439 for (;;) {
440 p3 = (p2 - h);
441 if (p3 -> len <= key) break;
442 *p2 = *p3;
443 p2 = p3;
444 if (p2 < p4) break;
445 }
446 *p2 = tmp;
447 ++p1;
448 }
449 } while (h > 1);
450 }
451
452 /*
453 * This routine creates a collection of N disjoint sets. They are left
454 * uninitialized so that a sparse collection can be accessed quickly.
455 */
456
457 static
458 void
459 dsuf_create (
460
461 struct dsuf * dsp, /* IN/OUT - sets to create */
462 int n /* IN - number of disjoint sets */
463)
464 {
465 if (n <= 0) {
466 fatal ("dsuf_create: Bug 1.");
467 }
468
469 dsp -> set_size = n;
470 dsp -> parent = (int *)mxMalloc (n*sizeof(int));
471 dsp -> rank = (int *)mxMalloc (n*sizeof(int));
472 }
473
474
475 /*
476 * Destroy the given collection of disjoint sets.
477 */
478
479 static
480 void
481 dsuf_destroy (
482
483 struct dsuf * dsp /* IN - sets to destroy */
484)
485 {
486 /*free ((char *) (dsp -> rank));
487 free ((char *) (dsp -> parent));*/
488
489 dsp -> set_size = 0;
490 dsp -> parent = NULL;
491 dsp -> rank = NULL;
492 }
493
494 /*
495 * This routine makes a single disjoint set for item "i".
496 */
497
498 static
499 void
500 dsuf_makeset (
501
502 struct dsuf * dsp, /* IN - collection of sets */
503 int i /* IN - item to make into a disjoint set */
504)
505 {
506 if ((i < 0) OR (i >= dsp -> set_size)) {
507 /* Item out of bounds. */
508 fatal ("dsuf_makeset: Bug 1.");
509 }
510 dsp -> parent [i] = i;
511 dsp -> rank [i] = 0;
512 }
513
514 /*
515 * This routine "unites" two sets that were previously disjoint. I and J
516 * must be the "canonical" member of each disjoint set (i.e. they must
517 * each be the output of a "find" operation), and must be distinct.
518 *
519 * We perform the "union by rank" heuristic here.
520 */
521
522 static
523 void
524 dsuf_unite (
525
526 struct dsuf * dsp, /* IN - collection of sets */
527 int i, /* IN - first set to unite */
528 int j /* IN - second set to unite */
529)
530 {
531 int ri;
532 int rj;
533
534 if ((i < 0) OR (i >= dsp -> set_size)) {
535 /* Item I is out of range. */
536 fatal ("dsuf_unite: Bug 1.");
537 }
538 if ((j < 0) OR (j >= dsp -> set_size)) {
539 /* Item J is out of range. */
540 fatal ("dsuf_unite: Bug 2.");
541 }
542 if (i EQ j) {
543 /* Attempt to unite I with I. */
544 fatal ("dsuf_unite: Bug 3.");
545 }
546
547 ri = dsp -> rank [i];
548 rj = dsp -> rank [j];
549
550 if (ri EQ rj) {
551 /* Both subtrees have the same maximum depth. We */
552 /* arbitrarily choose I to be underneath J. The rank */
553 /* of J must then increase. */

148

554 dsp -> parent [i] = j;
555 dsp -> rank [j] = rj + 1;
556 }
557 else if (ri > rj) {
558 /* Tree I is (probably) deeper. Putting J underneath */
559 /* will not increase I’s rank. */
560 dsp -> parent [j] = i;
561 }
562 else {
563 /* Tree J is (probably) deeper... */
564 dsp -> parent [i] = j;
565 }
566 }
567
568 /*
569 * This routine, given a member I of one of the disjoint sets A, will
570 * choose a cannonical member J of set A and return it. Until set A gets
571 * united with some other set, find (I) will always return the same J.
572 *
573 * This routine performs the "path compression" heuristic.
574 */
575
576 static
577 int
578 dsuf_find (
579
580 struct dsuf * dsp, /* IN - collection of sets */
581 int i /* IN - item to find cannonical item for */
582)
583 {
584 int j;
585 int k;
586
587 /* Yes, I know this routine is very elegent when coded */
588 /* recursively... Here’s the iterative version. */
589
590 j = dsp -> parent [i];
591 if (i EQ j) {
592 /* A cannonical element has itself as parent. */
593 return (i);
594 }
595
596 /* We must search up the tree -- and compress when done... */
597 for (;;) {
598 k = dsp -> parent [j];
599 if (j EQ k) break;
600 j = k;
601 }
602
603 /* Now compress the path (make all items in chain point directly */
604 /* at the root K) -- we never have to do this search again! */
605 while (i NE k) {
606 j = dsp -> parent [i];
607 dsp -> parent [i] = k;
608 i = j;
609 }
610
611 return (k);
612 }
613
614 /*
615 * This routine displays a fatal message and then dies!
616 */
617
618 static
619 void
620 fatal (
621
622 char * msg /* IN - message to display. */
623)
624 {
625 (void) fprintf (stderr, "%s\n", msg);
626 (void) fflush (stderr);
627 abort ();
628 }
629
630 /*
631 * This routine performs all dynamic memory allocation for the program.
632 * We test for out of memory condition here.
633 */
634
635 static
636 void *
637 new (
638
639 size_t size /* IN - size of chunk in bytes. */
640)
641 {
642 void * p;
643
644 if (size EQ 0) {
645 /* Avoid implementation-defined bahavior of malloc! */
646 size = 1;
647 }
648
649 p = mxMalloc (size);
650 if (p EQ NULL) {
651 (void) fprintf (stderr, "Out of memory!\n");
652 exit (1);
653 }
654
655 return (p);
656 }
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

149

678
679
680
681
682
683

End of Kruskal MST program

150

A.2 Program to construct MST using Prim algorithm
Begining of Prim MST program

1
2 /***
3 Program to construct MST using Prim’s algorithm
4 File: mstprimmex.c
5 Rev: a-1
6 Date: 06/01/2004
7 Copyright (c) 2004 by Huzefa Neemuchwala, All Rights Reserved
8 hneemuch@umich.edu
9 This code uses kd tree algorithm of Bentley.

10 Thank you Anonymous for part of kd tree code
11 See MX_mstprim.m for usage
12 **/
13 #include <math.h>
14 #include "mex.h"
15 #include "string.h"
16 #include <stddef.h>
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <assert.h>
20 #include "matrix.h"
21 #include "optkd.h"
22 #include "nn.h"
23
24 #define sgn(x) (x>0 ? 1 : (x < 0 ? -1 : 0))
25 #define TESTTREE(PP) ((PP) = (optkdNode *)mxMalloc(sizeof(optkdNode)))
26 #define NEWTREE(PP) if (TESTTREE(PP)==NULL) \
27 {printf("memory error\n");return;}
28 struct Heap
29 {
30 double key;
31 int idx;
32 int elt;
33 };
34
35
36 #define heap_key(p) (_heap[p].key)
37 #define heap_idx(p) (_heap[p].idx)
38 #define heap_elt(k) (_heap[k].elt)
39
40 #define in_heap(p) (heap_idx(p) > 0)
41 #define never_seen(p) (heap_idx(p) == 0)
42 /*
43 * Local Routines
44 */
45
46 static void principal (double, double, double *, double *, double*, double);
47 void allocate_heap(int);
48 void heap_init(int);
49 void heap_insert(int, double);
50 void heap_decrease_key(int, double);
51 int heap_delete_min();
52 double dist (double**, int, int, int);
53
54 /**************** kNN functions ***/
55 void Selection(double **, int, int, int, int,int*);
56 int findmaxspread(int, int, int, double **,int*);
57 optkdNode *BuildkdTree(double**, int, int, int,int*);
58 optkdNode *BuildOptTree(double **, int, int,int*);
59 void rnnEuclidean(optkdNode *, double *, double **, int, int, int*,double *, int *);
60 int *kdOptNNQuery(double **, int, double *, int, int, optkdNode *, int, int*,double*,int*);
61 void PQupheap(double *, int *, int);
62 void PQInsert(double, int, double *, int *);
63 void PQdownheap(double *, int *, int, int);
64 void PQreplace(double, double *, int *, int);
65 void optInRegion(optkdNode*,int,double **,double **,int*, double*,int*);
66 void optAddRegion(optkdNode*,int,double **,double **,int*, double*,int*);
67 int optBoundsIntersectRegion(double*,double**,int);
68 int optBoundsContainsRegion(double*,double**,int);
69 void optRangeSearch(optkdNode*,double**,int,double**,double*,int*, double*,int*);
70 int *kdOptRectQuery(optkdNode*,double**,int,double**,int *, double*,int*);
71 int Count=0;
72 /***/
73 struct Heap* _heap;
74
75 int _max_heap_size = 0;
76 int _heap_size = 0;
77
78 void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
79 const mxArray *prhs[])
80 {
81
82 double npoints, dim, threshold;
83 double* edgelengths, *mstedges;
84 double *V;
85
86 /* Check for proper number of arguments. */
87 if (nrhs != 4) {
88 mexErrMsgTxt("Four inputs required : mstprimmex(rrw,N,dim,threshold)");
89 } else if (nlhs > 2) {
90 mexErrMsgTxt("Only two output arguments");
91 }
92
93 /* Assign pointers to each input */
94 /* Use mex syntax */
95 /* matrices for each time point */
96 V = (double *)mxGetPr(prhs[0]);
97
98 /* parameters for analysis */
99 npoints = *mxGetPr(prhs[1]);

100 dim = *mxGetPr(prhs[2]);
101 threshold = *mxGetPr(prhs[3]);
102 /* Create matrix for the return argument. */
103 plhs[0] = mxCreateDoubleMatrix((int) npoints,1,mxREAL);
104 /*the following lines could be modified to output the MST edges also*/
105 plhs[1] = mxCreateDoubleMatrix((int)(npoints*2),1,mxREAL);
106 /* plhs[4] = mxCreateDoubleMatrix(npoints,2,mxREAL);*/
107
108 /* Assign pointer to the output */
109 edgelengths = (double *)mxGetPr(plhs[0]);
110 mstedges = (double *) mxGetPr(plhs[1]);
111 /*the following lines could be modified to output the MST edges also*/
112 /*edges = (double *)mxGetPr(plhs[3]);
113 edgelabels = (double *)mxGetPr(plhs[4]);*/
114
115 /*the following lines could be modified to output the MST edges also*/
116 principal(npoints,dim,V,edgelengths,mstedges,threshold); /*,edges,edgelabels);*/
117
118 }
119
120 void

151

121 principal (double npoints, double dim, double *V, double *edgelengths, double *mstedges, double threshold)
122 {
123 int i,n, nn1, k, j, kk, oct,jj, pp,p;
124 int root = 0, kneighbors, dimension /*, posn*/;
125 int *Found, *optfound, *perm, *parent;
126 double **Points, /* *querpoint,*/ *nndist, **RectQuery;
127 double /*boxside = 5.0,*/ d;
128 optkdNode *OptkdRoot;
129
130 n = (int) npoints;
131 dimension = (int) dim;
132 parent = (int*)mxMalloc(n *sizeof(int));
133 RectQuery = (double **)mxMalloc(dimension*sizeof(double *));
134 for (k = 0; k < dimension; k++) {
135 RectQuery[k] = (double *)mxMalloc(2*sizeof(double));
136 }
137
138
139 _heap = (struct Heap*)mxMalloc((n+1)*sizeof(struct Heap));
140 _max_heap_size = n;
141
142 kneighbors = n+2;
143 optfound = (int *) mxMalloc((kneighbors)*sizeof(int));
144 nndist = (double *)mxMalloc((kneighbors)*sizeof(double));
145 perm = (int *) mxMalloc(n*sizeof(int));
146 Points = (double **)mxMalloc((n)*sizeof(double *));
147 for (k = 0; k < n; k++) {
148 Points[k] = (double *)mxMalloc(dimension*sizeof(double));
149 }
150
151 for (k = 0, i = 0; k < n; k++) {
152 for (j = 0; j < dimension; j++, i++) {
153 Points[k][j] = V[i];
154 }
155 }
156 OptkdRoot = BuildOptTree(Points, n, dimension, perm);
157 _heap_size = 0;
158 for(p = 0; p < n; p++) {
159 heap_idx(p) = 0;
160 }
161 heap_insert(root, 0);
162 parent[root] = root;
163 for(k = 0, pp = 0; k < n; k++) {
164 i = heap_delete_min();
165 if(i>=0 && i < n){
166 edgelengths[pp] = heap_key(i);
167 pp++;
168 Count = 0;
169 for (kk = 0; kk < dimension; kk++) {
170 RectQuery[kk][0] = Points[i][kk] - threshold;
171 RectQuery[kk][1] = Points[i][kk] + threshold;
172 }
173 Found = kdOptRectQuery (OptkdRoot, Points, dimension, RectQuery, optfound, nndist,perm);
174 if (Count == 1) {
175 printf("Empty NN array! MST will not be complete. Increase threshold.\n");
176 parent[i] = -1;
177 }
178 else {
179 for(oct = 1; oct < Count; oct++) {
180 nn1 = Found[oct]; /*oct;*/
181 if(nn1 >= 0 && nn1 < n) {
182 d = 0.0;
183 for (jj = 0; jj < dimension; jj++)
184 d += pow(Points[nn1][jj] - Points[i][jj],2);
185 d = sqrt(d);
186 if(in_heap(nn1) && (d < heap_key(nn1))) {
187 heap_decrease_key(nn1, d);
188 parent[nn1] = i;
189 }
190 else if(never_seen(nn1)) {
191 heap_insert(nn1, d);
192 parent[nn1] = i;
193 }
194 }
195 }
196 }
197 }
198 }
199 for(i = 0, j =0; i < n; i++) {
200 if (parent[i] <= n && parent[i] >= 0) {
201 mstedges[2*j] = (double) parent[i];
202 mstedges[2*j + 1] = (double) i;
203 j++;
204 }
205 }
206
207 }
208
209
210 /**/
211 /**/
212
213
214
215
216 /**/
217 /*
218 */
219
220 void allocate_heap(int n) {
221
222 if(_max_heap_size < n) {
223 _heap = (struct Heap*)mxRealloc((void*)_heap, (size_t)(n+1)*sizeof(struct Heap));
224
225 if(! _heap) {
226 printf("Cannot reallocate memory in allocate_heap!\n");
227 }
228 _max_heap_size = n;
229 }
230 }
231
232
233 void heap_init(int n) {
234 int p /*register*/;
235
236 /*allocate_heap(n);*/
237 _heap_size = 0;
238 for(p = 0; p < n; p++) {
239 heap_idx(p) = 0;
240 }
241
242 } /* END heap_init() */
243
244 /**/

152

245
246 void heap_insert(
247 int p,
248 double key
249)
250 {
251 int k; /* hole in the heap register*/
252 int j; /* parent of the hole register*/
253 int q; /* heap_elt(j) register */
254
255 heap_key(p) = key;
256
257 if(_heap_size == 0)
258 {
259 _heap_size = 1;
260 heap_elt(1) = p;
261 heap_idx(p) = 1;
262 return;
263 }
264
265 k = ++ _heap_size;
266 j = k/2; /*k >> 1;*/ /* k/2 */
267
268 while((j > 0) && (heap_key(q=heap_elt(j)) > key)) {
269
270 heap_elt(k) = q;
271 heap_idx(q) = k;
272 k = j;
273 j = k/2; /*k>>1;*/ /* k/2 */
274
275 }
276
277 /* store p in the position of the hole */
278 heap_elt(k) = p;
279 heap_idx(p) = k;
280
281 } /* END heap_insert() */
282
283
284 /**/
285
286 void heap_decrease_key
287 (
288 int p,
289 double new_key
290)
291 {
292 int k; /* hole in the heap register */
293 int j; /* parent of the hole register*/
294 int q; /* heap_elt(j) register*/
295
296 heap_key(p) = new_key;
297 k = heap_idx(p);
298 j = k/2; /*k >> 1;*/ /* k/2 */
299
300 if((j > 0) && (heap_key(q=heap_elt(j)) > new_key)) { /* change is needed */
301 do {
302
303 heap_elt(k) = q;
304 heap_idx(q) = k;
305 k = j;
306 j = k/2; /*k>>1;*/ /* k/2 */
307
308 } while((j > 0) && (heap_key(q=heap_elt(j)) > new_key));
309
310 /* store p in the position of the hole */
311 heap_elt(k) = p;
312 heap_idx(p) = k;
313 }
314
315 } /* END heap_decrease_key() */
316
317
318 /**/
319
320 int heap_delete_min()
321 {
322 int min, last;
323 int k; /* hole in the heap register*/
324 int j; /* child of the hole register*/
325 double l_key; /* key of last point register*/
326
327 if(_heap_size == 0) /* heap is empty */
328 return(-1);
329
330 min = heap_elt(1);
331 last = heap_elt(_heap_size --);
332 l_key = heap_key(last);
333
334 k = 1; j = 2;
335 while(j <= _heap_size) {
336
337 if(heap_key(heap_elt(j)) > heap_key(heap_elt(j+1)))
338 j++;
339
340 if(heap_key(heap_elt(j)) >= l_key)
341 break; /* found a position to insert ’last’ */
342
343 /* else, sift hole down */
344 heap_elt(k) = heap_elt(j); /* Note that j <= _heap_size */
345 heap_idx(heap_elt(k)) = k;
346 k = j;
347 j = k*2; /*k << 1;*/
348 }
349
350 heap_elt(k) = last;
351 heap_idx(last) = k;
352
353 heap_idx(min) = -1; /* mark the point visited */
354 return(min);
355
356 } /* END heap_delete_min() */
357
358
359 /**/
360
361
362
363 /****************************** kNN functions *******************************/
364 /**/
365 /**/
366 /**/
367
368 /***/

153

369
370 void Selection(a, l,N, k,discrim,perm)
371
372 /***/
373 /* Makes the perm partition the array Values aint the element k. */
374 /* Adapted from Sedgewick’s Algorithms in C (p. 128) */
375 /***/
376
377 double **a;
378 int l,N,k,discrim;
379 int * perm;
380 {
381 double v;
382 int t,i,j,r;
383 r=N;
384 while(r>l) {
385 v=a[perm[r]][discrim]; i=l-1; j=r;
386 for (;;) {
387 while (a[perm[++i]][discrim] < v);
388 while (a[perm[--j]][discrim] > v && j>l);
389 if (i >= j) break;
390 t=perm[i]; perm[i] = perm[j]; perm[j]=t;
391 }
392 t=perm[i]; perm[i] = perm[r]; perm[r]=t;
393 if (i>=k) r=i-1;
394 if (i<=k) l=i+1;
395 }
396 }
397
398 /*************Need***/
399
400 int findmaxspread(l,u,dimension,points,perm)
401
402 /**/
403
404 int l,u,dimension;
405 double **points;
406 int * perm;
407 {
408 int i,j,maxdim;
409 double max =-99e99,
410 min = 99e99,
411 maxspread =-99e99;
412 for (i=0; i < dimension; i++) {
413 max =-99e99;
414 min = 99e99;
415 for (j=l; j <= u; j++) {
416 if (max < points[perm[j]][i]) {
417 max = points[perm[j]][i];
418 }
419 if (min > points[perm[j]][i]) {
420 min = points[perm[j]][i];
421 }
422 if (maxspread < fabs(max-min)) {
423 maxspread = fabs(max-min);
424 maxdim = i;
425 }
426 }
427 }
428 return(maxdim);
429 }
430
431 /********Need***/
432
433 optkdNode *BuildkdTree(points,l,u,dimension,perm)
434
435 /***/
436
437 int l,u;
438 double **points;
439 int * perm;
440 {
441 optkdNode *p;
442 int m;
443 /* printf("allocating 8\n");*/
444 NEWTREE(p);
445 if (u-l+1 <= BUCKETSIZE) {
446 p->bucket = 1;
447 p->lopt = l;
448 p->hipt = u;
449 p->loson = NULL;
450 p->hison = NULL;
451 } else {
452 p->bucket =0;
453 p->discrim = findmaxspread(l,u,dimension,points,perm);
454 m=(l+u)/2;
455 Selection(points,l,u,m,p->discrim,perm);
456 p->cutval = points[perm[m]][p->discrim];
457 p->loson = BuildkdTree(points,l,m,dimension,perm);
458 p->hison = BuildkdTree(points,m+1,u,dimension,perm);
459 }
460 return(p);
461 }
462
463 /***Need**/
464
465 optkdNode *BuildOptTree(points,numPoints,dimension,perm)
466
467 /***/
468 int dimension,numPoints;
469 double **points;
470 int * perm;
471 {
472
473 int j;
474 /* initialize perm array */
475 /* printf("allocating 1\n");*/
476
477 for (j=0; j < numPoints; j++) {
478 perm[j]=j;
479 }
480 return(BuildkdTree(points,0,numPoints-1,dimension,perm));
481 }
482
483
484 /***********Need**/
485
486 void rnnEuclidean(p,querpoint,points,dimension,numpoints,optfound,nndist,perm)
487
488 /***/
489
490 /* special searching algorithm to take advantage of the fact that square roots
491 do not need to be evaulated */
492

154

493 optkdNode *p;
494 double *querpoint;
495 double **points;
496 int dimension,numpoints;
497 int * optfound;
498 double *nndist;
499 int * perm;
500 {
501 int i,j,k;
502 double d,thisdist,val,thisx;
503 /*printf("in here 2 alroght\n");*/
504 if (p->bucket) {
505 for (i=p->lopt; i <= p->hipt; i++) {
506 thisdist=0.0;
507 for (j=0; j<dimension; j++) {
508 d=(querpoint[j]-points[perm[i]][j]);
509 thisdist=thisdist+d*d;
510 }
511 if (optfound[0] < numpoints && thisdist > 0.0) {
512 PQInsert(thisdist,perm[i],nndist,optfound);
513 } else if (thisdist > 0.0) {
514 PQreplace(thisdist,nndist,optfound,perm[i]);
515 }
516 }
517 } else {
518 val = querpoint[p->discrim] - p->cutval;
519 if (val < 0) {
520 rnnEuclidean(p->loson,querpoint,points,dimension,numpoints,optfound,nndist,perm);
521 if (nndist[1] >= val*val) {
522 rnnEuclidean(p->hison,querpoint,points,dimension,numpoints,optfound,nndist,perm);
523 }
524 } else {
525 rnnEuclidean(p->hison,querpoint,points,dimension,numpoints,optfound,nndist,perm);
526 if (nndist[1] >= val*val) {
527 rnnEuclidean(p->loson,querpoint,points,dimension,numpoints,optfound,nndist,perm);
528 }
529 }
530 }
531 }
532
533
534 /*****************Need**/
535
536 int *kdOptNNQuery(points,dimension, querpoint,numNN,Metric,root,MinkP,optfound,nndist,perm)
537
538 /***/
539
540 optkdNode *root;
541 double *querpoint, **points;
542 int dimension,numNN,MinkP;
543 int * optfound;
544 double * nndist;
545 int * perm;
546 {
547 int j;
548 /*int *optfound;*/
549 /* set up found array */
550 /* printf("allocating 2\n");*/
551 /*optfound = (int *) mxMalloc((numNN+1)*sizeof(int));*/
552 optfound[0]=1; /* for now */
553 /* nndist is a priority queue of the distances of the nearest neighbors found */
554 /* printf("allocating 3\n");*/
555 /* nndist = (double *)mxMalloc((numNN+1)*sizeof(double));*/
556 for (j=0; j < numNN+1; j++) {
557 nndist[j] = 99e99;
558 }
559 /*printf("in here alright\n");*/
560 switch(Metric) {
561 case EUCLIDEAN : rnnEuclidean(root,querpoint,points,dimension,numNN,optfound,nndist,perm);
562 break;
563 /*case MANHATTAN : Distance=ManhattDist;
564 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
565 break;
566 case L_INFINITY: Distance=LInfinityDist;
567 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
568 break;
569 case L_P : Distance=LGeneralDist;
570 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
571 break;*/
572 }
573 /*for (j=0;j<numNN;j++)
574 printf("%g\n",nndist[j]);
575 free(nndist);*/
576 return(optfound);
577 /*free(optfound);*/
578 }
579
580
581 /***/
582 /* Code to implement the abstract data type priority queue for use in j nearest */
583 /* neighbor searching. Actual implementation is done using heaps. */
584 /* */
585 /* Adapted from Sedgewick’s: Algorithms in C p. 148-160. */
586 /***/
587
588 /*
589 The heap data structure consists of two priority queues. One for the j-smallest
590 distances encountered, one to keep the indexes into the points array of the
591 points corresponding to the j-smallest distances.
592 */
593
594
595
596 /*********Need**/
597
598 void PQupheap(DistArr,FoundArr,k)
599
600 /***/
601
602 double *DistArr; /* j-smallest distances encountered */
603
604 int *FoundArr,k;
605
606 {
607 double v;
608 int j;
609
610 v=DistArr[k]; DistArr[0] = 99e99;
611 j=FoundArr[k];
612
613 while(DistArr[k/2] <= v) {
614 DistArr[k] = DistArr[k/2];
615 FoundArr[k] = FoundArr[k/2];
616 k=k/2;

155

617 }
618 DistArr[k] = v;
619 FoundArr[k] = j;
620 }
621
622 /***********Need**/
623
624 void PQInsert(distance,index,DistArr,FoundArr)
625
626 /***/
627
628 double distance,*DistArr;
629 int index, *FoundArr;
630
631 {
632 FoundArr[0]=FoundArr[0]+1;
633 DistArr[FoundArr[0]] = distance;
634 FoundArr[FoundArr[0]] = index;
635 PQupheap(DistArr,FoundArr,FoundArr[0]);
636 }
637
638
639
640 /************Need***/
641
642 void PQdownheap(DistArr,FoundArr,k,index)
643
644 /***/
645
646 double *DistArr; /* j-smallest distances encountered */
647
648 int *FoundArr,k,index;
649
650 {
651
652 int j,l,N;
653 double v;
654
655 v=DistArr[k];
656 N = FoundArr[0]; /* tricky patch to maintain the data structure */
657 FoundArr[0]=index;
658
659 while (k <= N/2) {
660 j=k+k;
661 if (j < N && DistArr[j] <DistArr[j+1]) j++;
662 if (v>=DistArr[j]) break;
663 DistArr[k]=DistArr[j];
664 FoundArr[k]=FoundArr[j];
665 k=j;
666 }
667
668 DistArr[k] = v;
669 FoundArr[k]= index;
670 FoundArr[0]=N; /* restore data struct */
671
672
673 }
674
675 /*************Need**/
676
677 void PQreplace(distance,DistArr,FoundArr,index)
678
679 /***/
680
681 double *DistArr,distance;
682 int *FoundArr;
683
684 {
685 DistArr[0]=distance;
686 PQdownheap(DistArr,FoundArr,0,index);
687 }
688
689
690
691
692 /***/
693
694 void optInRegion(P,Dimension,Points,RectQuery,optfound, nndist,perm)
695
696 /***/
697 /* Determines if the treenode P falls inside the rectangular query */
698 /* RectQuery. If so, adds the array index of the point to the found */
699 /* array. */
700 /***/
701
702 optkdNode *P;
703 int Dimension;
704 double **Points, **RectQuery;
705 double* nndist;
706 int* perm;
707 int * optfound;
708 {
709 int index,dc,InsideRange;
710
711
712 for (index=P->lopt;index<=P->hipt;index++) {
713 InsideRange=1;
714 /* circle(Points[perm[index]][0],Points[perm[index]][1],pradius); */
715
716 for (dc=0; dc < Dimension; dc ++) {
717 if ((Points[perm[index]][dc] < RectQuery[dc][0] || Points[perm[index]][dc] >
718 RectQuery[dc][1])) { /* P is in the region */
719 InsideRange=0;
720 break;
721 }
722 }
723 if (InsideRange) {
724 Count++;
725 /*if ((Count % 4000) == 0) {
726 mxRealloc(optfound,(4000+Count)*sizeof(int));
727 }
728 if (optfound == NULL) {
729 printf("we have a memory problem\n");
730 }*/
731 optfound[Count] = perm[index];
732 }
733 }
734 }
735
736 /***/
737
738 void optAddRegion(P,Dimension,Points,RectQuery,optfound, nndist,perm)
739
740 /***/

156

741 /* Adds the array index of each point in the bucket the point to the found */
742 /* array. There is no need to check if the points are in it because we */
743 /* have proven so already. */
744 /***/
745
746 optkdNode *P;
747 int Dimension;
748 double **Points, **RectQuery;
749 double* nndist;
750 int* perm;
751 int * optfound;
752 {
753 int index,dc;
754
755 for (index=P->lopt;index<=P->hipt;index++) {
756 Count++;
757 /*if ((Count % 4000) == 0) {
758 mxRealloc(optfound,(4000+Count)*sizeof(int));
759 }
760 if (optfound == NULL) {
761 printf("we have a memory problem\n");
762 }*/
763 optfound[Count] = perm[index];
764 }
765 }
766
767 /***/
768
769 int optBoundsIntersectRegion(B,RectQuery,Dimension)
770
771 /***/
772 /* Returns true iff the hyper-rectangle defined by bounds array B */
773 /* intersects the rectangular query RectQuery. */
774 /***/
775
776 double *B,**RectQuery;
777 int Dimension;
778
779 {
780 int dc;
781
782 for (dc=0; dc < Dimension; dc++) {
783 if (B[2*dc] > RectQuery[dc][1] || B[2*dc+1] < RectQuery[dc][0]) {
784 return(0);
785 }
786 }
787 return(1);
788 }
789
790 /***/
791
792 int optBoundsContainsRegion(B,RectQuery,Dimension)
793
794 /***/
795 /* Returns true iff the hyper-rectangle defined by bounds array B */
796 /* is completely contained inside the rectangular query RectQuery. */
797 /***/
798
799 double *B,**RectQuery;
800 int Dimension;
801
802 {
803 int dc;
804
805 for (dc=0; dc < Dimension; dc++) {
806 if (!(B[2*dc] >= RectQuery[dc][0] &&
807 B[2*dc+1] <= RectQuery[dc][1])) {
808 return(0);
809 }
810 }
811 return(1);
812 }
813
814
815 /***/
816
817 void optRangeSearch(P,Points,Dimension,RectQuery,B,optfound, nndist,perm)
818
819 /***/
820
821 optkdNode *P;
822 double **RectQuery, **Points, *B;
823 int Dimension;
824 double* nndist;
825 int* perm;
826 int * optfound;
827 {
828 int dc, disc;
829 double *BHigh,*BLow;
830
831
832 if (P==NULL) {printf("somehow a null pointer got sent here\n");}
833
834 if (P->bucket) {
835 /*printf("yes, bucket exists\n");*/
836 if (optBoundsContainsRegion(B,RectQuery,Dimension)) {
837 /*printf("yes, bounds contain region\n");*/
838 optAddRegion(P,Dimension,Points,RectQuery,optfound, nndist,perm);
839 } else {
840 optInRegion(P,Dimension,Points,RectQuery,optfound, nndist,perm);
841 }
842 return;
843 }
844
845 /* Claim: P is not a bucket node */
846 disc=P->discrim; /*printf("disc: %d\n",disc);*/
847 BLow = (double *)(mxMalloc(2*Dimension*sizeof(double)));
848 BHigh = (double *)(mxMalloc(2*Dimension*sizeof(double)));
849
850 if (BLow == NULL || BHigh == NULL) {
851 printf("we have a memory error\n");
852 }
853
854 /* copy the region B into BLow, BHigh */
855 for (dc=0; dc < 2*Dimension; dc++) {
856 BLow[dc] = B[dc];
857 BHigh[dc] = B[dc];
858 }
859
860 /* Improve the Bounds for the subtrees */
861 BLow[2*disc+1] = P->cutval;
862 BHigh[2*disc] = P->cutval;
863 /*printf("%g %g\n",BLow[2*disc+1],BHigh[2*disc]);*/
864 if (optBoundsIntersectRegion(BLow,RectQuery,Dimension)) {

157

865 optRangeSearch(P->loson,Points,Dimension,RectQuery,BLow,optfound, nndist,perm);
866 }
867 /*mxFree(BLow);*/
868 if (optBoundsIntersectRegion(BHigh,RectQuery,Dimension)) {
869 optRangeSearch(P->hison,Points,Dimension,RectQuery,BHigh,optfound, nndist,perm);
870 }
871 /*mxFree(BHigh);*/
872 }
873
874
875 /***/
876
877 int *kdOptRectQuery(root,Points,Dimension,RectQuery,optfound,nndist,perm)
878
879 /***/
880
881 optkdNode *root;
882 double **RectQuery, **Points;
883 int Dimension;
884 double* nndist;
885 int* perm;
886 int * optfound;
887 {
888 double *B;
889 int dc;
890
891 B = (double *)(mxMalloc(2*Dimension*sizeof(double)));
892
893 for (dc =0; dc < Dimension; dc++) {
894 B[2*dc] = RectQuery[dc][0];
895 B[2*dc+1] = RectQuery[dc][1];
896 }
897
898 Count=0;
899 /*optfound = (int *)(malloc(4000*sizeof(int)));
900 if (optfound == NULL) {
901 printf("We have a memory problem\n");
902 }*/
903
904 optRangeSearch(root,Points,Dimension,RectQuery,B, optfound, nndist,perm);
905 /*mxFree(B);*/
906 optfound[0] = Count;
907 return(optfound);
908 }
909
910 double dist (Points, index1, index2, dimension)
911 double ** Points;
912 int index1, index2;
913 int dimension;
914 {
915 int j;
916 double d;
917 for (j = 0; j < dimension; j++)
918 d += pow(Points[index1][j] - Points[index2][j],2);
919 }

End of Prim MST program

158

A.3 Program to estimate Henze-Penrose affinity using MST
Begining of Henze-Penrose affinity estimation program

1
2 /***
3
4 File: mst.c
5 Rev: a-1
6 Date: 09/27/2001
7
8 Copyright (c) 1993, 2001 by David M. Warme
9

10 **
11 Program to construct MST and derive Henze-Penrose affinity
12 Modified Code Copyright (c) 2001- 2005, by Huzefa Neemuchwala
13 hneemuch@umich.edu
14 Please read this preamble to address memory errors before contacting me.
15 **
16
17 Modification Log:
18
19 a-1: 09/27/2001 warme
20 : Created from pieces of GeoSteiner version 3.1.
21
22 Modified by Huzefa Neemuchwala
23 10/12/01
24 Can now read point set from file directly.
25 Changed the sort to a fast qsort using C library function
26 01/10/02
27 Now works extremely fast for huge datasets.
28 Fix a radius within which points are accepted to form edges.
29 So for each point roughly 10 nearest neighbors are accepted by
30 fixing a suitable radius. So from Nˆ2 edges (for N points) we
31 now have N*10 edges!!
32 Time reduced for sorting is enormous.
33 Memory requirements fall to a fraction, and so huge point sets
34 are now possible.
35 Basically linearized the performance of the sort program
36 by reducing the number of egdes that require sorting
37 02/11/02
38 Linearized the entire algorithm by linearizing time/memory for edge
39 selection also.
40 Contact Huzefa Neemuchwala, hneemuch@umich.edu
41 for details
42
43 Note: However you should do that in conjunction with reducing your search radius
44 The line: E = mxMalloc (npoints1*10000*sizeof(struct edge)); in function ’principal’
45 allocates memory for the edge matrix.
46
47 **/
48 #include <math.h>
49 #include "mex.h"
50 #include "string.h"
51 #include <stddef.h>
52 #include <stdio.h>
53 #include <stdlib.h>
54
55 #define NOT !
56 #define AND &&
57 #define OR ||
58 #define EQ ==
59 #define NE !=
60
61 #define NEWA(n, type) ((type *) new ((size_t) ((n) * sizeof (type))))
62
63 struct edge {
64 int p1; /* First endpoint of edge. */
65 int p2; /* Second endpoint of edge. */
66 double len; /* Length of edge. */
67 int startdensity;
68 int enddensity;
69 };
70
71
72 /*
73 * This is the so-called "Disjoint Set Union-Find" data structure.
74 * The operations are "makeset", "find", and "union".
75 *
76 * See chapter 2 of "Data Structures and Network Algorithms", by
77 * Robert Endre Tarjan, SIAM, 1983 for complete details.
78 */
79
80 struct dsuf {
81 int * parent;
82 int * rank;
83 int set_size;
84 };
85
86
87 /*
88 * Local Routines
89 */
90
91 static void principal (double, double, double, double *, double *, double *, double *, double *, double *, double *);
92 static void dsuf_create (struct dsuf *, int);
93 static void dsuf_destroy (struct dsuf *);
94 static int dsuf_find (struct dsuf *, int);
95 static void dsuf_makeset (struct dsuf *, int);
96 static void dsuf_unite (struct dsuf *, int, int);
97 static void fatal (char *);
98 static int mst_edge_list (int, int, struct edge *, struct edge *);
99 static void * new (size_t);

100 static void sort_edge_list (struct edge *, int);
101
102 /*
103 * The main routine. Read in points, compute MST, output it.
104 */
105
106 void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
107 const mxArray *prhs[])
108 {
109
110 double npoints, dim;
111 double* prfrmetric;
112
113 double* prmstlength, *prcostaherolength;
114 double threshold, threshold2;
115
116 double *edges, *edgelabels;
117 double *V;
118 double *SL, *densitylabel;
119 double *edge_count;
120

159

121 /* Check for proper number of arguments. */
122 if (nrhs != 6) {
123 mexErrMsgTxt("Six inputs required : FRmstmex(rrw,indexs,densitylabels,N1+N2,dim,threshold)");
124 } else if (nlhs > 4) {
125 mexErrMsgTxt("Only four output arguments");
126 }
127
128 /* Assign pointers to each input */
129 /* Use mex syntax */
130 /* matrices for each time point */
131 V = (double *)mxGetPr(prhs[0]);
132 SL = (double *)mxGetPr(prhs[1]);
133 densitylabel = (double *)mxGetPr(prhs[2]);
134
135 /* parameters for analysis */
136 npoints = *mxGetPr(prhs[3]);
137 dim = *mxGetPr(prhs[4]);
138 threshold = *mxGetPr(prhs[5]);
139 threshold2 = threshold*threshold;
140
141 /* Create matrix for the return argument. */
142 /* this is basically useless */
143 plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
144 plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
145 plhs[2] = mxCreateDoubleMatrix(1,1,mxREAL);
146 plhs[3] = mxCreateDoubleMatrix(1,1,mxREAL);
147
148 /* Assign pointer to the output */
149 prmstlength = (double *)mxGetPr(plhs[0]);
150 prfrmetric = (double *)mxGetPr(plhs[1]);
151 prcostaherolength = (double *)mxGetPr(plhs[2]);
152 edge_count = (double *)mxGetPr(plhs[3]);
153
154 principal(npoints,dim,threshold2,V,SL,densitylabel,prmstlength,prfrmetric,prcostaherolength,edge_count);
155
156 }
157
158 void
159 principal (
160 double npoints, double dim, double threshold2,
161 double *V, double *SL, double *densitylabel,
162 double *prmstlength, double *prfrmetric, double *prcostaherolength, double * edge_count
163)
164
165 {
166 int i, j, k;
167 int q,qctr,flagt,ind,nind;
168 int nedges;
169 struct edge * E;
170 double * pi;
171 double * pj;
172 struct edge * ep;
173 double dist, length, dist1, delta;
174 struct edge * solution;
175 int ctr1=0;
176 int FRmetric;
177 double FRlength;
178 int dim1, npoints1;
179 printf("Total points %g; Dimensions %g; Threshold %g\n",npoints,dim, threshold2);
180 dim1 = (int) dim;
181 npoints1 = (int) npoints;
182 nedges = npoints1 * (npoints1 - 1) / 2;
183
184
185 /**
186 Radius approach
187 Select points for edge computation using radius approach.
188 **/
189
190 /*E = NEWA (160000*200, struct edge);*/
191 E = (struct edge *) mxMalloc(160000*400*sizeof(struct edge)); /*(npoints1*2000) * sizeof(struct edge));*/
192 ep = E;
193
194
195 for (q=0; q< npoints1-1; q++) {
196 flagt=1;
197 ind = (int) SL[q];
198 qctr=1;
199 do {
200 nind = (int) SL[q+qctr];
201 pi = &V [ind * dim1];
202 pj = &V [nind * dim1];
203 dist1=(pi[0]-pj[0])*(pi[0]-pj[0]);
204 dist = 0.0;
205 for (k = 0; k < dim1; k++) {
206 delta = pi [k] - pj [k];
207 dist += (delta * delta);
208 if (dist > threshold2)
209 break;
210 }
211 if (dist <= threshold2){
212 ep -> p1 = ind;
213 ep -> p2 = nind;
214 ep -> len = sqrt(dist);
215 ep -> startdensity = (int) densitylabel[ind];
216 ep -> enddensity = (int) densitylabel[nind];
217 ++ep;
218 ctr1++;
219 }
220 if (dist1 > threshold2) {flagt=0;}
221 if ((q+qctr) == (npoints-1)) {flagt=0;}
222 qctr++;
223 }
224 while (flagt==1);
225 }
226
227 /**/
228
229
230 nedges=ctr1;
231 /*printf("ctr1 is %d\n",ctr1);*/
232
233 /* Allocate buffer to hold solution. */
234 solution = (struct edge *)mxMalloc((npoints1-1)*sizeof(struct edge));
235 /*solution = NEWA (npoints1 - 1, struct edge);*/
236 k = mst_edge_list (npoints1, nedges, E, solution);
237 ep = solution;
238 length = 0.0;
239 FRmetric=0;
240 FRlength=0.0;
241 for (i = 0; i < k; i++) {
242
243 length += ep -> len;
244 if (ep->startdensity != ep->enddensity)

160

245 {
246 FRmetric++;
247 FRlength += ep->len;
248 }
249 ep++;
250 }
251 *prmstlength = length;
252 *prfrmetric = (double)FRmetric;
253 *prcostaherolength = FRlength;
254 *edge_count = k;
255 }
256
257
258 /*
259 * This routine computes the MST of a given list of edges.
260 */
261
262 static
263 int
264 mst_edge_list (
265
266 int n, /* IN - number of vertices */
267 int nedges, /* IN - number of edges */
268 struct edge * edge_list, /* IN - list of edges */
269 struct edge * edges /* OUT - MST edge list */
270)
271 {
272 int i;
273 int mst_edge_count;
274 int components;
275 int max_vert;
276 struct edge * ep;
277 struct edge *pp;
278 struct edge * ep_endp;
279 int root1;
280 int root2;
281 struct dsuf sets;
282 int ctr =0;
283 double perc;
284
285 sort_edge_list (edge_list, nedges);
286
287 /* Don’t assume that the vertex numbers are well-behaved, */
288 /* except that they must be non-negative. We do a quick scan */
289 /* to determine the largest vertex number and then allocate */
290 /* a union-find data structure large enough to handle it. Note */
291 /* that we then use this union-find data structure in a */
292 /* completely sparse way -- we only ever access set items for */
293 /* vertices that are named by an edge. */
294
295 max_vert = 1; /* avoid zero-size union-find... */
296 ep = edge_list;
297 for (i = 0; i < nedges; i++, ep++) {
298 if (ep -> p1 > max_vert) {
299 max_vert = ep -> p1;
300 }
301 if (ep -> p2 > max_vert) {
302 max_vert = ep -> p2;
303 }
304 }
305
306 dsuf_create (&sets, max_vert + 1);
307
308 /* Note that it is not a problem to "makeset" a vertex more */
309 /* than once... */
310 ep = edge_list;
311 for (i = 0; i < nedges; i++, ep++) {
312 dsuf_makeset (&sets, ep -> p1);
313 dsuf_makeset (&sets, ep -> p2);
314 }
315
316 components = n;
317 mst_edge_count = 0;
318 ep = edge_list;
319 ep_endp = (ep + nedges);
320
321 while (components > 1) {
322 ctr++;
323 if (ep >= ep_endp) {
324 /* Ran out of edges before MST complete! */
325 /*printf("Ran our of edges before tree complete!");
326 perc=(mst_edge_count*100.0)/(n-1);
327 printf("\nthe number of edges is %d which is %g percent of all edges \n",mst_edge_count,perc);
328 pp=edge_list+ctr-1;
329 /* dsuf_destroy (&sets);*/
330 return (mst_edge_count);
331 }
332 root1 = dsuf_find (&sets, ep -> p1);
333 root2 = dsuf_find (&sets, ep -> p2);
334 if (root1 NE root2) {
335 dsuf_unite (&sets, root1, root2);
336 *edges = *ep;
337 ++edges;
338 ++mst_edge_count;
339 --components;
340 }
341 ++ep;
342 }
343 pp=edge_list+ctr;
344 perc=100;
345
346 /*printf("Longest Edge was %g\t",pp->len);
347 printf("Use this distance instead of threshold!");
348 /*dsuf_destroy (&sets);*/
349
350 return (mst_edge_count);
351 }
352
353 /*
354 * This routine sorts the given edge list in INCREASING order by edge length.
355 */
356
357 static
358 void
359 sort_edge_list (
360
361 struct edge * a, /* IN/OUT - array of edges to be sorted. */
362 int n /* IN - number of elements in array. */
363)
364 {
365 int h;
366 struct edge tmp;
367 double key;
368 struct edge * p1;

161

369 struct edge * p2;
370 struct edge * p3;
371 struct edge * p4;
372 struct edge * endp;
373
374 endp = &a [n];
375
376 for (h = 1; h <= n; h = 3*h+1) {
377 }
378
379 do {
380 h = h / 3;
381 p4 = &a [h];
382 p1 = p4;
383 while (p1 < endp) {
384 tmp = *p1;
385 key = tmp.len;
386 p2 = p1;
387 for (;;) {
388 p3 = (p2 - h);
389 if (p3 -> len <= key) break;
390 *p2 = *p3;
391 p2 = p3;
392 if (p2 < p4) break;
393 }
394 *p2 = tmp;
395 ++p1;
396 }
397 } while (h > 1);
398 }
399
400 /*
401 * This routine creates a collection of N disjoint sets. They are left
402 * uninitialized so that a sparse collection can be accessed quickly.
403 */
404
405 static
406 void
407 dsuf_create (
408
409 struct dsuf * dsp, /* IN/OUT - sets to create */
410 int n /* IN - number of disjoint sets */
411)
412 {
413 if (n <= 0) {
414 fatal ("dsuf_create: Bug 1.");
415 }
416
417 dsp -> set_size = n;
418 /*dsp -> parent = NEWA (n, int);*/
419 dsp -> parent =(int *)mxMalloc (n*sizeof(int));
420 /*dsp -> rank = NEWA (n, int);*/
421 dsp -> rank =(int *)mxMalloc (n*sizeof(int));
422 }
423
424
425 /*
426 * Destroy the given collection of disjoint sets.
427 */
428
429 static
430 void
431 dsuf_destroy (
432
433 struct dsuf * dsp /* IN - sets to destroy */
434)
435 {
436 /*free ((char *) (dsp -> rank));
437 free ((char *) (dsp -> parent));*/
438
439 dsp -> set_size = 0;
440 dsp -> parent = NULL;
441 dsp -> rank = NULL;
442 }
443
444 /*
445 * This routine makes a single disjoint set for item "i".
446 */
447
448 static
449 void
450 dsuf_makeset (
451
452 struct dsuf * dsp, /* IN - collection of sets */
453 int i /* IN - item to make into a disjoint set */
454)
455 {
456 if ((i < 0) OR (i >= dsp -> set_size)) {
457 /* Item out of bounds. */
458 fatal ("dsuf_makeset: Bug 1.");
459 }
460 dsp -> parent [i] = i;
461 dsp -> rank [i] = 0;
462 }
463
464 /*
465 * This routine "unites" two sets that were previously disjoint. I and J
466 * must be the "canonical" member of each disjoint set (i.e. they must
467 * each be the output of a "find" operation), and must be distinct.
468 *
469 * We perform the "union by rank" heuristic here.
470 */
471
472 static
473 void
474 dsuf_unite (
475
476 struct dsuf * dsp, /* IN - collection of sets */
477 int i, /* IN - first set to unite */
478 int j /* IN - second set to unite */
479)
480 {
481 int ri;
482 int rj;
483
484 if ((i < 0) OR (i >= dsp -> set_size)) {
485 /* Item I is out of range. */
486 fatal ("dsuf_unite: Bug 1.");
487 }
488 if ((j < 0) OR (j >= dsp -> set_size)) {
489 /* Item J is out of range. */
490 fatal ("dsuf_unite: Bug 2.");
491 }
492 if (i EQ j) {

162

493 /* Attempt to unite I with I. */
494 fatal ("dsuf_unite: Bug 3.");
495 }
496
497 ri = dsp -> rank [i];
498 rj = dsp -> rank [j];
499
500 if (ri EQ rj) {
501 /* Both subtrees have the same maximum depth. We */
502 /* arbitrarily choose I to be underneath J. The rank */
503 /* of J must then increase. */
504 dsp -> parent [i] = j;
505 dsp -> rank [j] = rj + 1;
506 }
507 else if (ri > rj) {
508 /* Tree I is (probably) deeper. Putting J underneath */
509 /* will not increase I’s rank. */
510 dsp -> parent [j] = i;
511 }
512 else {
513 /* Tree J is (probably) deeper... */
514 dsp -> parent [i] = j;
515 }
516 }
517
518 /*
519 * This routine, given a member I of one of the disjoint sets A, will
520 * choose a cannonical member J of set A and return it. Until set A gets
521 * united with some other set, find (I) will always return the same J.
522 *
523 * This routine performs the "path compression" heuristic.
524 */
525
526 static
527 int
528 dsuf_find (
529
530 struct dsuf * dsp, /* IN - collection of sets */
531 int i /* IN - item to find cannonical item for */
532)
533 {
534 int j;
535 int k;
536
537 /* Yes, I know this routine is very elegent when coded */
538 /* recursively... Here’s the iterative version. */
539
540 j = dsp -> parent [i];
541 if (i EQ j) {
542 /* A cannonical element has itself as parent. */
543 return (i);
544 }
545
546 /* We must search up the tree -- and compress when done... */
547 for (;;) {
548 k = dsp -> parent [j];
549 if (j EQ k) break;
550 j = k;
551 }
552
553 /* Now compress the path (make all items in chain point directly */
554 /* at the root K) -- we never have to do this search again! */
555 while (i NE k) {
556 j = dsp -> parent [i];
557 dsp -> parent [i] = k;
558 i = j;
559 }
560
561 return (k);
562 }
563
564 /*
565 * This routine displays a fatal message and then dies!
566 */
567
568 static
569 void
570 fatal (
571
572 char * msg /* IN - message to display. */
573)
574 {
575 (void) fprintf (stderr, "%s\n", msg);
576 (void) fflush (stderr);
577 abort ();
578 }
579 /*
580 * This routine performs all dynamic memory allocation for the program.
581 * We test for out of memory condition here.
582 */
583
584 static
585 void *
586 new (
587
588 size_t size /* IN - size of chunk in bytes. */
589)
590 {
591 void * p;
592
593 if (size EQ 0) {
594 /* Avoid implementation-defined bahavior of malloc! */
595 size = 1;
596 }
597
598 p = malloc (size);
599 if (p EQ NULL) {
600 (void) fprintf (stderr, "Out of memory!\n");
601 exit (1);
602 }
603
604 return (p);
605 }
606
607
608
609
610
611
612
613
614
615
616

163

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

End of Henze-Penrose affinity estimation program

164

A.4 Program to construct kNN graph using kd tree algorithm
Begining of kNN program

1 /***
2 kNNgraphmex.c is a mex program to build a kNN graph and give out only
3 the cumulative graph length.
4 For usage see: MX_kNNlength.m
5 Copyright (c) by Huzefa Neemuchwala (hneemuch@umich.edu), December 2004
6
7 ***/
8
9 /**/

10 /* Program to perform orthogonal range searches and nearest neighbor */
11 /* querys in a more sophisticated k-d tree. In this implementation the, */
12 /* nodes on any given level of the tree do not have the same */
13 /* discriminating dimension as the discrimiator is chosen based on the */
14 /* dimension with the "maxspead." */
15 /* */
16 /* References: J.H. Friedman, J.L. Bentley, R.A. Finkel "An Algorithm */
17 /* for Finding Best Matches in Logarithmic Expected Time." */
18 /* ACM Transactions on Mathematical Software, Vol 3 No. 3 Sept. 1977 */
19 /* pp. 209-226. */
20 /**/
21
22 #include <stdio.h>
23 #include <math.h>
24 #include "mex.h"
25 #include "optkd.h"
26 #include "nn.h"
27
28
29 /* Used to create a new tree in the k-d tree */
30 #define TESTTREE(PP) ((PP) = (optkdNode *)mxMalloc(sizeof(optkdNode)))
31 #define NEWTREE(PP) if (TESTTREE(PP)==NULL) \
32 {printf("memory error\n");return;}
33 #define min(X, Y) ((X) < (Y) ? (X) : (Y))
34 static void principal (double, double, double *, double, double * , /*double *,*/ double);
35 void Selection(double **, int, int, int, int);
36 int findmaxspread(int, int, int, double **);
37 optkdNode *BuildkdTree(double**, int, int, int);
38 optkdNode *BuildOptTree(double **, int, int);
39 void rnnEuclidean(optkdNode *, double *, double **, int, int, int*);
40 int *kdOptNNQuery(double **, int, double *, int, int, optkdNode *, int);
41 void KillOptTree(optkdNode *);
42 void PQupheap(double *, int *, int);
43 void PQInsert(double, int, double *, int *);
44 void PQdownheap(double *, int *, int, int);
45 void PQreplace(double, double *, int *, int);
46 /*double EuclidDist2(double **, int, double *, int);*/
47
48 int *perm; /* permutation array */
49 /*int *optfound; /*This one will be killed by KillOptTree()*/
50 static int Count=0;
51 double *nndist;
52
53 /*double (*Distance)();
54 extern double fabs();*/
55
56
57
58 void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
59 const mxArray *prhs[])
60 {
61
62 double numpoints, dimension, kneighbors;
63 double* prLxo;
64 double *rrw;
65 /*double *Graph;*/
66 double gamma;
67
68
69 /* Check for proper number of arguments. */
70 if (nrhs != 5) {
71 mexErrMsgTxt("Five inputs required : kNNgraphmex (rrw, N, dimension, k_as_in_kNN, gamma)");
72 } else if (nlhs > 1) {
73 mexErrMsgTxt("Only one output argument");
74 }
75
76 /* Assign pointers to each input */
77 /* Use mex syntax */
78 /* matrices for each time point */
79 rrw = (double *)mxGetPr(prhs[0]);
80
81 /* parameters for analysis */
82 numpoints = *mxGetPr(prhs[1]);
83 dimension = *mxGetPr(prhs[2]);
84 kneighbors= *mxGetPr(prhs[3]);
85 kneighbors = kneighbors + 1; /* Because first neighbor is the point itself */
86 gamma = *mxGetPr(prhs[4]);
87 if (kneighbors > numpoints)
88 mexErrMsgTxt("Input Error 1: Number of NN cant be larger than total number of points ");
89 /* Create matrix for the return argument. */
90 /* this is basically useless */
91 plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
92 /*plhs[1] = mxCreateDoubleMatrix(numpoints*kneighbors, 1, mxREAL);*/
93
94 /* Assign pointer to the output */
95 prLxo = (double *)mxGetPr(plhs[0]);
96 /*Graph = (double *)mxGetPr(plhs[1]);*/
97 /*printf("%g %g %g\n",numpoints, dimension,kneighbors);*/
98 principal (numpoints, dimension, rrw, kneighbors, prLxo , /*Graph,*/ gamma);
99 /*free(nndist);

100 free(perm);*/
101 }
102
103
104 /************Need***/
105
106 void Selection(a, l,N, k,discrim)
107
108 /***/
109 /* Makes the perm partition the array Values along the element k. */
110 /* Adapted from Sedgewick’s Algorithms in C (p. 128) */
111 /***/
112
113 double **a;
114 int l,N,k,discrim;
115
116 {
117 double v;
118 int t,i,j,r;
119
120 r=N;

165

121
122 while(r>l) {
123 v=a[perm[r]][discrim]; i=l-1; j=r;
124 for (;;) {
125 while (a[perm[++i]][discrim] < v);
126 while (a[perm[--j]][discrim] > v && j>l);
127 if (i >= j) break;
128 t=perm[i]; perm[i] = perm[j]; perm[j]=t;
129 }
130 t=perm[i]; perm[i] = perm[r]; perm[r]=t;
131 if (i>=k) r=i-1;
132 if (i<=k) l=i+1;
133 }
134 }
135
136 /*************Need***/
137
138 int findmaxspread(l,u,dimension,points)
139
140 /**/
141
142 int l,u,dimension;
143 double **points;
144
145 {
146 int i,j,maxdim;
147 double max =-999999999.0,
148 min = 999999999.0,
149 maxspread =-999999999.0;
150 for (i=0; i < dimension; i++) {
151 max =-999999999.0;
152 min = 999999999.0;
153 for (j=l; j <= u; j++) {
154 if (max < points[perm[j]][i]) {
155 max = points[perm[j]][i];
156 }
157 if (min > points[perm[j]][i]) {
158 min = points[perm[j]][i];
159 }
160 if (maxspread < fabs(max-min)) {
161 maxspread = fabs(max-min);
162 maxdim = i;
163 }
164 }
165 }
166 return(maxdim);
167 }
168
169 /********Need***/
170
171 optkdNode *BuildkdTree(points,l,u,dimension)
172
173 /***/
174
175 int l,u;
176 double **points;
177
178 {
179 optkdNode *p;
180 int m;
181
182 NEWTREE(p);
183 if (u-l+1 <= BUCKETSIZE) {
184 p->bucket = 1;
185 p->lopt = l;
186 p->hipt = u;
187 p->loson = NULL;
188 p->hison = NULL;
189 } else {
190 p->bucket =0;
191 p->discrim = findmaxspread(l,u,dimension,points);
192 m=(l+u)/2;
193 Selection(points,l,u,m,p->discrim);
194 p->cutval = points[perm[m]][p->discrim];
195 p->loson = BuildkdTree(points,l,m,dimension);
196 p->hison = BuildkdTree(points,m+1,u,dimension);
197 }
198 return(p);
199 }
200
201 /***Need**/
202
203 optkdNode *BuildOptTree(points,numPoints,dimension)
204
205 /***/
206 int dimension,numPoints;
207 double **points;
208 {
209
210 int j;
211
212 /* initialize perm array */
213 perm = (int *) mxMalloc(numPoints*sizeof(int));
214 for (j=0; j < numPoints; j++) {
215 perm[j]=j;
216 }
217 return(BuildkdTree(points,0,numPoints-1,dimension));
218 }
219
220
221 /***********Need**/
222
223 void rnnEuclidean(p,querpoint,points,dimension,numpoints,optfound)
224
225 /***/
226
227 /* special searching algorithm to take advantage of the fact that square roots
228 do not need to be evaulated */
229
230 optkdNode *p;
231 double *querpoint;
232 double **points;
233 int dimension,numpoints;
234 int * optfound;
235
236 {
237 int i,j,k;
238 double d,thisdist,val,thisx;
239
240 if (p->bucket) {
241 for (i=p->lopt; i <= p->hipt; i++) {
242 thisdist=0.0;
243 for (j=0; j<dimension; j++) {
244 d=(querpoint[j]-points[perm[i]][j]);

166

245 thisdist=thisdist+d*d;
246 }
247
248 if (optfound[0] < numpoints) {
249 PQInsert(thisdist,perm[i],nndist,optfound);
250 } else {
251 PQreplace(thisdist,nndist,optfound,perm[i]);
252 }
253 }
254 } else {
255 val = querpoint[p->discrim] - p->cutval;
256 if (val < 0) {
257 rnnEuclidean(p->loson,querpoint,points,dimension,numpoints,optfound);
258 if (nndist[1] >= val*val) {
259 rnnEuclidean(p->hison,querpoint,points,dimension,numpoints,optfound);
260 }
261 } else {
262 rnnEuclidean(p->hison,querpoint,points,dimension,numpoints,optfound);
263 if (nndist[1] >= val*val) {
264 rnnEuclidean(p->loson,querpoint,points,dimension,numpoints,optfound);
265 }
266 }
267 }
268 }
269
270
271 /*****************Need**/
272
273 int *kdOptNNQuery(points,dimension, querpoint,numNN,Metric,root,MinkP)
274
275 /***/
276
277 optkdNode *root;
278 double *querpoint, **points;
279 int dimension,numNN,MinkP;
280
281 {
282 int j;
283 int *optfound;
284 /* set up found array */
285 optfound = (int *) mxMalloc((numNN+1)*sizeof(int));
286 optfound[0]=1; /* for now */
287
288 /* nndist is a priority queue of the distances of the nearest neighbors found */
289 nndist = (double *)mxMalloc((numNN+1)*sizeof(double));
290 for (j=0; j < numNN+1; j++) {
291 nndist[j] = 99999999999.0;
292 }
293
294 switch(Metric) {
295 case EUCLIDEAN : rnnEuclidean(root,querpoint,points,dimension,numNN,optfound);
296 break;
297 /*case MANHATTAN : Distance=ManhattDist;
298 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
299 break;
300 case L_INFINITY: Distance=LInfinityDist;
301 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
302 break;
303 case L_P : Distance=LGeneralDist;
304 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
305 break;*/
306 }
307 /*for (j=0;j<numNN;j++)
308 printf("%g\n",nndist[j]);
309 free(nndist);*/
310 return(optfound);
311 /*free(optfound);*/
312 }
313
314
315 /******Need***/
316
317 void KillOptTree(P)
318
319 /***/
320
321 /* Kills a kd-tree to avoid memory holes. */
322
323
324 optkdNode *P;
325
326 {
327 /*if (perm != NULL) {
328 free(perm);
329 } /* free permutation array */
330
331 if (P==NULL) {
332 return;
333 } /* just to be sure */
334 if (P->loson != NULL) {
335 KillOptTree(P->loson);
336 }
337
338 if (P->hison != NULL) {
339 KillOptTree(P->hison);
340 }
341
342 free(P);
343
344 }
345
346
347
348 /***/
349 /* Code to implement the abstract data type priority queue for use in j nearest */
350 /* neighbor searching. Actual implementation is done using heaps. */
351 /* */
352 /* Adapted from Sedgewick’s: Algorithms in C p. 148-160. */
353 /***/
354
355 /*
356 The heap data structure consists of two priority queues. One for the j-smallest
357 distances encountered, one to keep the indexes into the points array of the
358 points corresponding to the j-smallest distances.
359 */
360
361
362
363 /*********Need**/
364
365 void PQupheap(DistArr,FoundArr,k)
366
367 /***/
368

167

369 double *DistArr; /* j-smallest distances encountered */
370
371 int *FoundArr,k;
372
373 {
374 double v;
375 int j;
376
377 v=DistArr[k]; DistArr[0] = 999999999999999.0;
378 j=FoundArr[k];
379
380 while(DistArr[k/2] <= v) {
381 DistArr[k] = DistArr[k/2];
382 FoundArr[k] = FoundArr[k/2];
383 k=k/2;
384 }
385 DistArr[k] = v;
386 FoundArr[k] = j;
387 }
388
389 /***********Need**/
390
391 void PQInsert(distance,index,DistArr,FoundArr)
392
393 /***/
394
395 double distance,*DistArr;
396 int index, *FoundArr;
397
398 {
399 FoundArr[0]=FoundArr[0]+1;
400 DistArr[FoundArr[0]] = distance;
401 FoundArr[FoundArr[0]] = index;
402 PQupheap(DistArr,FoundArr,FoundArr[0]);
403 }
404
405
406
407 /************Need***/
408
409 void PQdownheap(DistArr,FoundArr,k,index)
410
411 /***/
412
413 double *DistArr; /* j-smallest distances encountered */
414
415 int *FoundArr,k,index;
416
417 {
418
419 int j,l,N;
420 double v;
421
422 v=DistArr[k];
423
424 N = FoundArr[0]; /* tricky patch to maintain the data structure */
425 FoundArr[0]=index;
426
427 while (k <= N/2) {
428 j=k+k;
429 if (j < N && DistArr[j] <DistArr[j+1]) j++;
430 if (v>=DistArr[j]) break;
431 DistArr[k]=DistArr[j];
432 FoundArr[k]=FoundArr[j];
433 k=j;
434 }
435
436 DistArr[k] = v;
437 FoundArr[k]= index;
438 FoundArr[0]=N; /* restore data struct */
439
440
441 }
442
443 /*************Need**/
444
445 void PQreplace(distance,DistArr,FoundArr,index)
446
447 /***/
448
449 double *DistArr,distance;
450 int *FoundArr;
451
452 {
453 DistArr[0]=distance;
454 PQdownheap(DistArr,FoundArr,0,index);
455 }
456
457
458 /**/
459
460 void principal (double numpoints, double dimension, double *rrw, double kneighbors, double *prLxo /*, double *Graph*/, double gamma)
461
462 /**/
463 {
464 double **Points;
465 double * querpoint;
466 optkdNode *OptkdRoot;
467 int *Found, MinkP;
468 int Metric;
469 int i, j, k;
470 Metric = EUCLIDEAN;
471 MinkP = 0;
472 numpoints = (int) numpoints;
473 dimension = (int) dimension;
474 kneighbors = (int) kneighbors;
475 querpoint=(double *) mxMalloc(sizeof(double)*(dimension));
476
477 Points = (double **)mxMalloc((numpoints)*sizeof(double *));
478
479 for (k = 0; k < numpoints; k++) {
480 Points[k] = (double *)mxMalloc((dimension)*sizeof(double));
481 }
482 for (k = 0, i = 0; k < numpoints; k++) {
483 for (j = 0; j < dimension; j++, i++) {
484 Points[k][j] = rrw[i];
485 }
486 }
487 *prLxo = 0.0;
488 /*Here we are going points first, then dimension
489 for (j = 0, i = 0; j < dimension; j++) {
490 for (k = 0; k < numpoints; k++, i++) {
491 Points[k][j] = rrw[i];
492 }

168

493 }*/
494
495 OptkdRoot = BuildOptTree(Points, numpoints, dimension);
496
497 for (i = 0, k = 0; i < numpoints; i++) {
498
499 for (j = 0; j < dimension; j++)
500 querpoint[j]=Points[i][j];
501
502 Found = kdOptNNQuery (Points, dimension, querpoint, kneighbors, Metric, OptkdRoot, MinkP);
503
504 for (j = kneighbors; j >= 1; j--, k++) /*Found[0] is a dummy. */
505 {
506 *prLxo += pow(sqrt(nndist[j]),gamma);
507 /* Graph[k] = Found[j] + 1;*/
508 }
509 }
510 /*KillOptTree(OptkdRoot);
511 OptkdRoot=NULL;*/
512 /*free(Found);*/
513 /*for (k=0;k<numpoints;k++)
514 free(Points[k]);
515 free(querpoint);*/
516 }

End of kNN code

169

A.5 Program to construct estimates of α-MI using kNN graph
Begining of kNN-based α-MI estimation program

1 /**
2 Mex program to calculate:
3 alpha Mutual information for multiple images (>=2) for multiple feature dimensions (>=2)
4 Copyright (c) Huzefa Neemuchwala, All Rights Reserved
5 hneemuch@umich.edu
6 Known Problems:
7 For single pixel intensity (scalar) features: Code assumes that denominator is 1.
8 **/
9

10
11
12
13 /**/
14 /* Program to perform orthogonal range searches and nearest neighbor */
15 /* querys in a more sophisticated k-d tree. In this implementation the, */
16 /* nodes on any given level of the tree do not have the same */
17 /* discriminating dimension as the discrimiator is chosen based on the */
18 /* dimension with the "maxspead." */
19 /* */
20 /* References: J.H. Friedman, J.L. Bentley, R.A. Finkel "An Algorithm */
21 /* for Finding Best Matches in Logarithmic Expected Time." */
22 /* ACM Transactions on Mathematical Software, Vol 3 No. 3 Sept. 1977 */
23 /* pp. 209-226. */
24 /**/
25
26 #include <stdio.h>
27 #include <math.h>
28 #include "mex.h"
29 #include "optkd.h"
30 #include "nn.h"
31
32
33 /* Used to create a new tree in the k-d tree */
34 #define TESTTREE(PP) ((PP) = (optkdNode *)mxMalloc(sizeof(optkdNode)))
35 #define NEWTREE(PP) if (TESTTREE(PP)==NULL) \
36 {printf("memory error\n");return;}
37 #define min(X, Y) ((X) < (Y) ? (X) : (Y))
38 static void principal (double, double, double, double, double *, double *, double);
39 void Selection(double **, int, int, int, int,int*);
40 int findmaxspread(int, int, int, double **,int*);
41 optkdNode *BuildkdTree(double**, int, int, int,int*);
42 optkdNode *BuildOptTree(double **, int, int,int*);
43 void rnnEuclidean(optkdNode *, double *, double **, int, int, int*,double *, int *);
44 int *kdOptNNQuery(double **, int, double *, int, int, optkdNode *, int, int*,double*,int*);
45 void KillOptTree(optkdNode *);
46 void PQupheap(double *, int *, int);
47 void PQInsert(double, int, double *, int *);
48 void PQdownheap(double *, int *, int, int);
49 void PQreplace(double, double *, int *, int);
50 static int Count=0;
51
52 void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
53 {
54
55 double numpoints, dimension, kneighbors, num_images;
56 double* praMI;
57 double *rrw;
58 double gamma;
59
60
61 /* Check for proper number of arguments. */
62 if (nrhs != 6)
63 mexErrMsgTxt("Six inputs required : kNNgraphmex (rrw, num_images, N, dimension, kneighbors, gamma)");
64 else if (nlhs > 1)
65 mexErrMsgTxt("Only one output argument");
66
67 /* Assign pointers to each input */
68 /* Use mex syntax */
69 /* matrices for each time point */
70 rrw = (double *)mxGetPr(prhs[0]);
71 num_images = *mxGetPr(prhs[1]);
72 numpoints = *mxGetPr(prhs[2]);
73 dimension = *mxGetPr(prhs[3]);
74 kneighbors = *mxGetPr(prhs[4]);
75 /*kneighbors = kneighbors + 1;*/
76 gamma = *mxGetPr(prhs[5]);
77 /* Create matrix for the return argument. */
78 /* this is basically useless */
79 plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
80
81 /* Assign pointer to the output */
82 praMI = (double *) mxGetPr(plhs[0]);
83 principal (numpoints, num_images, dimension, kneighbors, rrw, praMI, gamma);
84 }
85
86
87 /************Need***/
88
89 void Selection(a, l,N, k,discrim,perm)
90
91 /***/
92 /* Makes the perm partition the array Values along the element k. */
93 /* Adapted from Sedgewick’s Algorithms in C (p. 128) */
94 /***/
95
96 double **a;
97 int l,N,k,discrim;
98 int * perm;
99 {

100 double v;
101 int t,i,j,r;
102 r=N;
103 while(r>l) {
104 v=a[perm[r]][discrim]; i=l-1; j=r;
105 for (;;) {
106 while (a[perm[++i]][discrim] < v);
107 while (a[perm[--j]][discrim] > v && j>l);
108 if (i >= j) break;
109 t=perm[i]; perm[i] = perm[j]; perm[j]=t;
110 }
111 t=perm[i]; perm[i] = perm[r]; perm[r]=t;
112 if (i>=k) r=i-1;
113 if (i<=k) l=i+1;
114 }
115 }
116
117 /*************Need***/
118
119 int findmaxspread(l,u,dimension,points,perm)
120

170

121 /**/
122
123 int l,u,dimension;
124 double **points;
125 int * perm;
126 {
127 int i,j,maxdim;
128 double max =-99e99,
129 min = 99e99,
130 maxspread =-99e99;
131 for (i=0; i < dimension; i++) {
132 max =-99e99;
133 min = 99e99;
134 for (j=l; j <= u; j++) {
135 if (max < points[perm[j]][i]) {
136 max = points[perm[j]][i];
137 }
138 if (min > points[perm[j]][i]) {
139 min = points[perm[j]][i];
140 }
141 if (maxspread < fabs(max-min)) {
142 maxspread = fabs(max-min);
143 maxdim = i;
144 }
145 }
146 }
147 return(maxdim);
148 }
149
150 /********Need***/
151
152 optkdNode *BuildkdTree(points,l,u,dimension,perm)
153
154 /***/
155
156 int l,u;
157 double **points;
158 int * perm;
159 {
160 optkdNode *p;
161 int m;
162 /* printf("allocating 8\n");*/
163 NEWTREE(p);
164 if (u-l+1 <= BUCKETSIZE) {
165 p->bucket = 1;
166 p->lopt = l;
167 p->hipt = u;
168 p->loson = NULL;
169 p->hison = NULL;
170 } else {
171 p->bucket =0;
172 p->discrim = findmaxspread(l,u,dimension,points,perm);
173 m=(l+u)/2;
174 Selection(points,l,u,m,p->discrim,perm);
175 p->cutval = points[perm[m]][p->discrim];
176 p->loson = BuildkdTree(points,l,m,dimension,perm);
177 p->hison = BuildkdTree(points,m+1,u,dimension,perm);
178 }
179 return(p);
180 }
181
182 /***Need**/
183
184 optkdNode *BuildOptTree(points,numPoints,dimension,perm)
185
186 /***/
187 int dimension,numPoints;
188 double **points;
189 int * perm;
190 {
191
192 int j;
193 /* initialize perm array */
194 /* printf("allocating 1\n");*/
195
196 for (j=0; j < numPoints; j++) {
197 perm[j]=j;
198 }
199 return(BuildkdTree(points,0,numPoints-1,dimension,perm));
200 }
201
202
203 /***********Need**/
204
205 void rnnEuclidean(p,querpoint,points,dimension,numpoints,optfound,nndist,perm)
206
207 /***/
208
209 /* special searching algorithm to take advantage of the fact that square roots
210 do not need to be evaulated */
211
212 optkdNode *p;
213 double *querpoint;
214 double **points;
215 int dimension,numpoints;
216 int * optfound;
217 double *nndist;
218 int * perm;
219 {
220 int i,j,k;
221 double d,thisdist,val,thisx;
222 /*printf("in here 2 alroght\n");*/
223 if (p->bucket) {
224 for (i=p->lopt; i <= p->hipt; i++) {
225 thisdist=0.0;
226 for (j=0; j<dimension; j++) {
227 d=(querpoint[j]-points[perm[i]][j]);
228 thisdist=thisdist+d*d;
229 }
230 if (optfound[0] < numpoints && thisdist > 0.0) {
231 PQInsert(thisdist,perm[i],nndist,optfound);
232 } else if (thisdist > 0.0) {
233 PQreplace(thisdist,nndist,optfound,perm[i]);
234 }
235 }
236 } else {
237 val = querpoint[p->discrim] - p->cutval;
238 if (val < 0) {
239 rnnEuclidean(p->loson,querpoint,points,dimension,numpoints,optfound,nndist,perm);
240 if (nndist[1] >= val*val) {
241 rnnEuclidean(p->hison,querpoint,points,dimension,numpoints,optfound,nndist,perm);
242 }
243 } else {
244 rnnEuclidean(p->hison,querpoint,points,dimension,numpoints,optfound,nndist,perm);

171

245 if (nndist[1] >= val*val) {
246 rnnEuclidean(p->loson,querpoint,points,dimension,numpoints,optfound,nndist,perm);
247 }
248 }
249 }
250 }
251
252
253 /*****************Need**/
254
255 int *kdOptNNQuery(points,dimension, querpoint,numNN,Metric,root,MinkP,optfound,nndist,perm)
256
257 /***/
258
259 optkdNode *root;
260 double *querpoint, **points;
261 int dimension,numNN,MinkP;
262 int * optfound;
263 double * nndist;
264 int * perm;
265 {
266 int j;
267 /*int *optfound;*/
268 /* set up found array */
269 /* printf("allocating 2\n");*/
270 /*optfound = (int *) mxMalloc((numNN+1)*sizeof(int));*/
271 optfound[0]=1; /* for now */
272 /* nndist is a priority queue of the distances of the nearest neighbors found */
273 /* printf("allocating 3\n");*/
274 /* nndist = (double *)mxMalloc((numNN+1)*sizeof(double));*/
275 for (j=0; j < numNN+1; j++) {
276 nndist[j] = 99e99;
277 }
278 /*printf("in here alright\n");*/
279 switch(Metric) {
280 case EUCLIDEAN : rnnEuclidean(root,querpoint,points,dimension,numNN,optfound,nndist,perm);
281 break;
282 /*case MANHATTAN : Distance=ManhattDist;
283 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
284 break;
285 case L_INFINITY: Distance=LInfinityDist;
286 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
287 break;
288 case L_P : Distance=LGeneralDist;
289 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
290 break;*/
291 }
292 /*for (j=0;j<numNN;j++)
293 printf("%g\n",nndist[j]);
294 free(nndist);*/
295 return(optfound);
296 /*free(optfound);*/
297 }
298
299
300 /******Need***/
301
302 void KillOptTree(P)
303
304 /***/
305
306 /* Kills a kd-tree to avoid memory holes. */
307
308
309 optkdNode *P;
310
311 {
312 /*if (perm != NULL) {
313 free(perm);
314 } /* free permutation array */
315
316 if (P==NULL) {
317 return;
318 } /* just to be sure */
319 if (P->loson != NULL) {
320 KillOptTree(P->loson);
321 }
322
323 if (P->hison != NULL) {
324 KillOptTree(P->hison);
325 }
326
327 free(P);
328
329 }
330
331
332
333 /***/
334 /* Code to implement the abstract data type priority queue for use in j nearest */
335 /* neighbor searching. Actual implementation is done using heaps. */
336 /* */
337 /* Adapted from Sedgewick’s: Algorithms in C p. 148-160. */
338 /***/
339
340 /*
341 The heap data structure consists of two priority queues. One for the j-smallest
342 distances encountered, one to keep the indexes into the points array of the
343 points corresponding to the j-smallest distances.
344 */
345
346
347
348 /*********Need**/
349
350 void PQupheap(DistArr,FoundArr,k)
351
352 /***/
353
354 double *DistArr; /* j-smallest distances encountered */
355
356 int *FoundArr,k;
357
358 {
359 double v;
360 int j;
361
362 v=DistArr[k]; DistArr[0] = 99e99;
363 j=FoundArr[k];
364
365 while(DistArr[k/2] <= v) {
366 DistArr[k] = DistArr[k/2];
367 FoundArr[k] = FoundArr[k/2];
368 k=k/2;

172

369 }
370 DistArr[k] = v;
371 FoundArr[k] = j;
372 }
373
374 /***********Need**/
375
376 void PQInsert(distance,index,DistArr,FoundArr)
377
378 /***/
379
380 double distance,*DistArr;
381 int index, *FoundArr;
382
383 {
384 FoundArr[0]=FoundArr[0]+1;
385 DistArr[FoundArr[0]] = distance;
386 FoundArr[FoundArr[0]] = index;
387 PQupheap(DistArr,FoundArr,FoundArr[0]);
388 }
389
390
391
392 /************Need***/
393
394 void PQdownheap(DistArr,FoundArr,k,index)
395
396 /***/
397
398 double *DistArr; /* j-smallest distances encountered */
399
400 int *FoundArr,k,index;
401
402 {
403
404 int j,l,N;
405 double v;
406
407 v=DistArr[k];
408 N = FoundArr[0]; /* tricky patch to maintain the data structure */
409 FoundArr[0]=index;
410
411 while (k <= N/2) {
412 j=k+k;
413 if (j < N && DistArr[j] <DistArr[j+1]) j++;
414 if (v>=DistArr[j]) break;
415 DistArr[k]=DistArr[j];
416 FoundArr[k]=FoundArr[j];
417 k=j;
418 }
419
420 DistArr[k] = v;
421 FoundArr[k]= index;
422 FoundArr[0]=N; /* restore data struct */
423
424
425 }
426
427 /*************Need**/
428
429 void PQreplace(distance,DistArr,FoundArr,index)
430
431 /***/
432
433 double *DistArr,distance;
434 int *FoundArr;
435
436 {
437 DistArr[0]=distance;
438 PQdownheap(DistArr,FoundArr,0,index);
439 }
440
441
442 /**/
443
444 void principal (double numpoints, double num_images, double dimension, double kneighbors, double *rrw, double *praMI, double gamma)
445
446 /**/
447 {
448 double **Points, **Points1, *distx;
449 double *querpoint, *querpoint1;
450 optkdNode *OptkdRoot, *OptkdRoot1, *OptkdRoot2;
451 int *Found, MinkP;
452 int Metric;
453 int i, j, k, j1, n, ii;
454 double * nndist, distx1;
455 int *optfound,*optfound1;
456 int *perm, *perm1, *perm2;
457 Metric = EUCLIDEAN;
458 MinkP = 0;
459 numpoints = (int) numpoints;
460 dimension = (int) dimension;
461 kneighbors = (int) kneighbors;
462 /*printf("allocating 4\n");*/
463 /*if (dimension/num_images != 1)*/
464 querpoint=(double *) mxMalloc(sizeof(double)*(dimension/num_images));
465 querpoint1=(double *) mxMalloc(sizeof(double)*(dimension));
466 /*printf("allocating 5\n");*/
467 Points = (double **)mxMalloc((numpoints)*sizeof(double *));
468 /*hist2 = (double **)mxMalloc((255)*sizeof(double *));
469 linear_hist2 = (double *)mxMalloc((numpoints)*sizeof(double));*/
470 /*printf("allocating 6\n");*/
471
472 for (k = 0; k < numpoints; k++) {
473 Points[k] = (double *)mxMalloc((dimension)*sizeof(double));
474 }
475 for (k = 0, i = 0; k < numpoints; k++) {
476 for (j = 0; j < dimension; j++, i++) {
477 Points[k][j] = rrw[i];
478 /*printf("Points: %g\n",Points[k][j]);*/
479 }
480 }
481
482
483 /* printf("allocating 7\n");*/
484 /*if (dimension/num_images != 1) {*/
485 Points1 = (double **)mxMalloc((numpoints)*sizeof(double *));
486 for (k = 0; k < numpoints; k++) {
487 Points1[k] = (double *)mxMalloc((dimension/num_images)*sizeof(double));
488 }
489 /*}*/
490
491 /*printf("%d\n",i);*/
492 /*printf("%g numpoints, %g dimension",numpoints,dimension);*/

173

493 *praMI = 0.0;
494
495
496 optfound1 = (int *) mxMalloc((kneighbors + 2)*sizeof(int));
497 nndist = (double *)mxMalloc((kneighbors + 2)*sizeof(double));
498 perm = (int *) mxMalloc(numpoints*sizeof(int));
499 OptkdRoot = BuildOptTree(Points, numpoints, dimension, perm);
500 /*if (dimension/num_images != 1) {*/
501 perm1 = (int *) mxMalloc(numpoints*sizeof(int));
502 optfound = (int *) mxMalloc((kneighbors + 2)*sizeof(int));
503 /* }*/
504
505 distx = (double *) mxMalloc(numpoints * sizeof(double));
506 for (i=0; i<numpoints; i++) {
507 distx[i] = 0.0;
508 for (j = 0; j < dimension; j++)
509 querpoint1[j]=Points[i][j];
510 Found = kdOptNNQuery (Points, dimension, querpoint1, kneighbors, Metric, OptkdRoot, MinkP, optfound1, nndist,perm);
511 for (j = kneighbors; j >= 1; j--) {
512 if (Found[j]!=i) distx[i] += sqrt(nndist[j]);
513 }
514 /*printf("nndist: %g\n",nndist[1]);*/
515 distx[i] = distx[i]/kneighbors;
516 /*printf("distx i: %g %d\n",distx[i],i);*/
517 }
518
519 /* if (dimension/num_images != 1) {*/
520 for (n = 0; n < num_images; n++) {
521 for (k = 0; k < numpoints; k++)
522 for (i = 0, j = n*(dimension/num_images); j < (n+1)*(dimension/num_images); j++, i++)
523 Points1[k][i] = Points[k][j];
524 OptkdRoot1 = BuildOptTree(Points1, numpoints, dimension/num_images, perm1);
525 for (i=0; i<numpoints; i++) {
526 distx1 = 0.0;
527 for (ii = 0, j = n*(dimension/num_images); j < (n+1)*(dimension/num_images); j++, ii++)
528 querpoint[ii]=Points[i][j];
529 Found = kdOptNNQuery(Points1,dimension/num_images,querpoint,kneighbors,Metric,OptkdRoot1,MinkP,optfound,nndist,perm1);
530 for (j = kneighbors; j>=1; j--) {
531 if (Found[j]!=i) distx1 += sqrt(nndist[j]);
532 }
533 /*printf("nndist in loop: %g\n",nndist[1]);*/
534 distx1 = distx1/kneighbors; /*printf("distx1 in loop, i: %g %d\n",distx1,i);*/
535 /*printf("distx %g distx1 %g distx2 %g linear_hist2 %g\n",distx,distx1,distx2,linear_hist2[i]);*/
536 /*printf("distx b4 divn, i: %g %d\n",distx[i],i); */
537 distx[i] = distx[i]/(pow(distx1,(1/num_images))); /*printf("distx after divn, i: %g %d\n",distx[i],i); */
538 /*else { *praMI = linear_hist2[i]*pow(distx[i], (num_images)*gamma);}*/
539 /*printf("prami %g nowadded %g",*praMI,pow(distx/(pow(distx1*distx2,0.5)), 2*gamma));}*/
540 }
541 }
542 /*}*/
543
544 for (i = 0; i < numpoints; i++) {
545 *praMI += pow(distx[i], num_images*gamma);
546 /*printf("final distx: %g\n",distx[i]);*/
547 }
548 /**praMI = log(*praMI);*/
549 /*printf("aMI is %g\n",*praMI);*/
550 /*printf("distx1 = %g, distx2 = %g, distx = %g\n",distx1,distx2,distx);*/
551 }

End of kNN-based α-MI estimation program

174

A.6 Program to construct estimates of α-GA mean divergence using
kNN graph

Begining of kNN-based α-GA mean divergence estimation program
1 /**
2 Mex program to calculate:
3 Arithmetic-Geometric mean divergence for multidensity (>2) case
4 Copyright (c) Huzefa Neemuchwala, All Rights Reserved
5 hneemuch@umich.edu
6
7 Known Problems: For bivariate (2 image) case, please use kNNlengthGAmex_eff.c
8 **/
9

10
11
12 /**/
13 /* Program to perform orthogonal range searches and nearest neighbor */
14 /* querys in a more sophisticated k-d tree. In this implementation the, */
15 /* nodes on any given level of the tree do not have the same */
16 /* discriminating dimension as the discrimiator is chosen based on the */
17 /* dimension with the "maxspead." */
18 /* */
19 /* References: J.H. Friedman, J.L. Bentley, R.A. Finkel "An Algorithm */
20 /* for Finding Best Matches in Logarithmic Expected Time." */
21 /* ACM Transactions on Mathematical Software, Vol 3 No. 3 Sept. 1977 */
22 /* pp. 209-226. */
23 /**/
24
25 #include <stdio.h>
26 #include <math.h>
27 #include "mex.h"
28 #include "optkd.h"
29 #include "nn.h"
30
31
32 /* Used to create a new tree in the k-d tree */
33 #define TESTTREE(PP) ((PP) = (optkdNode *)mxMalloc(sizeof(optkdNode)))
34 #define NEWTREE(PP) if (TESTTREE(PP)==NULL) \
35 {printf("memory error\n");return;}
36 #define min(X, Y) ((X) < (Y) ? (X) : (Y))
37 static void principal (double, double, double, double *, double, double *, double);
38 void Selection(double **, int, int, int, int,int*);
39 int findmaxspread(int, int, int, double **,int*);
40 optkdNode *BuildkdTree(double**, int, int, int,int*);
41 optkdNode *BuildOptTree(double **, int, int,int*);
42 void rnnEuclidean(optkdNode *, double *, double **, int, int, int*,double *, int *);
43 int *kdOptNNQuery(double **, int, double *, int, int, optkdNode *, int, int*,double*,int*);
44 void KillOptTree(optkdNode *);
45 void PQupheap(double *, int *, int);
46 void PQInsert(double, int, double *, int *);
47 void PQdownheap(double *, int *, int, int);
48 void PQreplace(double, double *, int *, int);
49 /*double EuclidDist2(double **, int, double *, int);*/
50
51 /*int *perm;*/ /* permutation array */
52 /*int *optfound; /*This one will be killed by KillOptTree()*/
53 static int Count=0;
54 /*double *nndist;*/
55 /*double (*Distance)();
56 extern double fabs();*/
57
58
59
60 void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
61 const mxArray *prhs[])
62 {
63
64 double numpoints, dimension, kneighbors, num_images;
65 double* prLxo;
66 /* double *prkNNL;
67 double *prLSC;*/
68 double *rrw;
69 /*double *Graph;*/
70 double gamma;
71
72
73 /* Check for proper number of arguments. */
74 if (nrhs != 6) {
75 mexErrMsgTxt("Five inputs required : kNNgraphmex (rrw, num_images, N, dimension, k_as_in_kNN, gamma)");
76 } else if (nlhs > 1) {
77 mexErrMsgTxt("Only one output argument");
78 }
79
80 /* Assign pointers to each input */
81 /* Use mex syntax */
82 /* matrices for each time point */
83 rrw = (double *)mxGetPr(prhs[0]);
84 num_images = *mxGetPr(prhs[1]);
85 /* parameters for analysis */
86 numpoints = *mxGetPr(prhs[2]);
87 dimension = *mxGetPr(prhs[3]);
88 kneighbors= *mxGetPr(prhs[4]);
89 /*kneighbors = kneighbors + 1;*/ /* Because first neighbor is the point itself */
90 gamma = *mxGetPr(prhs[5]);
91 if (kneighbors > numpoints)
92 mexErrMsgTxt("Input Error 1: Number of NN cant be larger than total number of points ");
93 /* Create matrix for the return argument. */
94 /* this is basically useless */
95 plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
96 /*plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
97 plhs[2] = mxCreateDoubleMatrix(1,1,mxREAL);*/
98 /*plhs[1] = mxCreateDoubleMatrix(numpoints*kneighbors, 1, mxREAL);*/
99

100 /* Assign pointer to the output */
101 /*prkNNL = (double *) mxGetPr(plhs[0]);*/
102 prLxo = (double *)mxGetPr(plhs[0]);
103 /* prLSC = (double *)mxGetPr(plhs[2]); */
104 /*Graph = (double *)mxGetPr(plhs[1]);*/
105 /*printf("%g %g %g\n",numpoints, dimension,kneighbors);*/
106 principal (numpoints, num_images, dimension, rrw, kneighbors, prLxo, gamma);
107 /*free(nndist);
108 free(perm);*/
109 }
110
111
112 /************Need***/
113
114 void Selection(a, l,N, k,discrim,perm)
115
116 /***/

175

117 /* Makes the perm partition the array Values along the element k. */
118 /* Adapted from Sedgewick’s Algorithms in C (p. 128) */
119 /***/
120
121 double **a;
122 int l,N,k,discrim;
123 int * perm;
124 {
125 double v;
126 int t,i,j,r;
127
128 r=N;
129
130 while(r>l) {
131 v=a[perm[r]][discrim]; i=l-1; j=r;
132 for (;;) {
133 while (a[perm[++i]][discrim] < v);
134 while (a[perm[--j]][discrim] > v && j>l);
135 if (i >= j) break;
136 t=perm[i]; perm[i] = perm[j]; perm[j]=t;
137 }
138 t=perm[i]; perm[i] = perm[r]; perm[r]=t;
139 if (i>=k) r=i-1;
140 if (i<=k) l=i+1;
141 }
142 }
143
144 /*************Need***/
145
146 int findmaxspread(l,u,dimension,points,perm)
147
148 /**/
149
150 int l,u,dimension;
151 double **points;
152 int * perm;
153 {
154 int i,j,maxdim;
155 double max =-99e99,
156 min = 99e99,
157 maxspread =-99e99;
158 for (i=0; i < dimension; i++) {
159 max =-99e99;
160 min = 99e99;
161 for (j=l; j <= u; j++) {
162 if (max < points[perm[j]][i]) {
163 max = points[perm[j]][i];
164 }
165 if (min > points[perm[j]][i]) {
166 min = points[perm[j]][i];
167 }
168 if (maxspread < fabs(max-min)) {
169 maxspread = fabs(max-min);
170 maxdim = i;
171 }
172 }
173 }
174 return(maxdim);
175 }
176
177 /********Need***/
178
179 optkdNode *BuildkdTree(points,l,u,dimension,perm)
180
181 /***/
182
183 int l,u;
184 double **points;
185 int * perm;
186 {
187 optkdNode *p;
188 int m;
189 /* printf("allocating 8\n");*/
190 NEWTREE(p);
191 if (u-l+1 <= BUCKETSIZE) {
192 p->bucket = 1;
193 p->lopt = l;
194 p->hipt = u;
195 p->loson = NULL;
196 p->hison = NULL;
197 } else {
198 p->bucket =0;
199 p->discrim = findmaxspread(l,u,dimension,points,perm);
200 m=(l+u)/2;
201 Selection(points,l,u,m,p->discrim,perm);
202 p->cutval = points[perm[m]][p->discrim];
203 p->loson = BuildkdTree(points,l,m,dimension,perm);
204 p->hison = BuildkdTree(points,m+1,u,dimension,perm);
205 }
206 return(p);
207 }
208
209 /***Need**/
210
211 optkdNode *BuildOptTree(points,numPoints,dimension,perm)
212
213 /***/
214 int dimension,numPoints;
215 double **points;
216 int * perm;
217 {
218
219 int j;
220 /* initialize perm array */
221 /* printf("allocating 1\n");*/
222
223 for (j=0; j < numPoints; j++) {
224 perm[j]=j;
225 }
226 return(BuildkdTree(points,0,numPoints-1,dimension,perm));
227 }
228
229
230 /***********Need**/
231
232 void rnnEuclidean(p,querpoint,points,dimension,numpoints,optfound,nndist,perm)
233
234 /***/
235
236 /* special searching algorithm to take advantage of the fact that square roots
237 do not need to be evaulated */
238
239 optkdNode *p;
240 double *querpoint;

176

241 double **points;
242 int dimension,numpoints;
243 int * optfound;
244 double *nndist;
245 int * perm;
246 {
247 int i,j,k;
248 double d,thisdist,val,thisx;
249 /*printf("in here 2 alroght\n");*/
250 if (p->bucket) {
251 for (i=p->lopt; i <= p->hipt; i++) {
252 thisdist=0.0;
253 for (j=0; j<dimension; j++) {
254 d=(querpoint[j]-points[perm[i]][j]);
255 thisdist=thisdist+d*d;
256 }
257
258 if (optfound[0] < numpoints && thisdist > 0.0) {
259 PQInsert(thisdist,perm[i],nndist,optfound);
260 } else if (thisdist > 0.0){
261 PQreplace(thisdist,nndist,optfound,perm[i]);
262 }
263 }
264 } else {
265 val = querpoint[p->discrim] - p->cutval;
266 if (val < 0) {
267 rnnEuclidean(p->loson,querpoint,points,dimension,numpoints,optfound,nndist,perm);
268 if (nndist[1] >= val*val) {
269 rnnEuclidean(p->hison,querpoint,points,dimension,numpoints,optfound,nndist,perm);
270 }
271 } else {
272 rnnEuclidean(p->hison,querpoint,points,dimension,numpoints,optfound,nndist,perm);
273 if (nndist[1] >= val*val) {
274 rnnEuclidean(p->loson,querpoint,points,dimension,numpoints,optfound,nndist,perm);
275 }
276 }
277 }
278 }
279
280
281 /*****************Need**/
282
283 int *kdOptNNQuery(points,dimension, querpoint,numNN,Metric,root,MinkP,optfound,nndist,perm)
284
285 /***/
286
287 optkdNode *root;
288 double *querpoint, **points;
289 int dimension,numNN,MinkP;
290 int * optfound;
291 double * nndist;
292 int * perm;
293 {
294 int j;
295 /*int *optfound;*/
296 /* set up found array */
297 /* printf("allocating 2\n");*/
298 /*optfound = (int *) mxMalloc((numNN+1)*sizeof(int));*/
299 optfound[0]=1; /* for now */
300
301 /* nndist is a priority queue of the distances of the nearest neighbors found */
302 /* printf("allocating 3\n");*/
303 /* nndist = (double *)mxMalloc((numNN+1)*sizeof(double));*/
304 for (j=0; j < numNN+1; j++) {
305 nndist[j] = 99999999999.0;
306 }
307 /*printf("in here alright\n");*/
308 switch(Metric) {
309 case EUCLIDEAN : rnnEuclidean(root,querpoint,points,dimension,numNN,optfound,nndist,perm);
310 break;
311 /*case MANHATTAN : Distance=ManhattDist;
312 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
313 break;
314 case L_INFINITY: Distance=LInfinityDist;
315 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
316 break;
317 case L_P : Distance=LGeneralDist;
318 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
319 break;*/
320 }
321 /*for (j=0;j<numNN;j++)
322 printf("%g\n",nndist[j]);
323 free(nndist);*/
324 return(optfound);
325 /*free(optfound);*/
326 }
327
328
329 /******Need***/
330
331 void KillOptTree(P)
332
333 /***/
334
335 /* Kills a kd-tree to avoid memory holes. */
336
337
338 optkdNode *P;
339
340 {
341 /*if (perm != NULL) {
342 free(perm);
343 } /* free permutation array */
344
345 if (P==NULL) {
346 return;
347 } /* just to be sure */
348 if (P->loson != NULL) {
349 KillOptTree(P->loson);
350 }
351
352 if (P->hison != NULL) {
353 KillOptTree(P->hison);
354 }
355
356 free(P);
357
358 }
359
360
361
362 /***/
363 /* Code to implement the abstract data type priority queue for use in j nearest */
364 /* neighbor searching. Actual implementation is done using heaps. */

177

365 /* */
366 /* Adapted from Sedgewick’s: Algorithms in C p. 148-160. */
367 /***/
368
369 /*
370 The heap data structure consists of two priority queues. One for the j-smallest
371 distances encountered, one to keep the indexes into the points array of the
372 points corresponding to the j-smallest distances.
373 */
374
375
376
377 /*********Need**/
378
379 void PQupheap(DistArr,FoundArr,k)
380
381 /***/
382
383 double *DistArr; /* j-smallest distances encountered */
384
385 int *FoundArr,k;
386
387 {
388 double v;
389 int j;
390
391 v=DistArr[k]; DistArr[0] = 99e99;
392 j=FoundArr[k];
393
394 while(DistArr[k/2] <= v) {
395 DistArr[k] = DistArr[k/2];
396 FoundArr[k] = FoundArr[k/2];
397 k=k/2;
398 }
399 DistArr[k] = v;
400 FoundArr[k] = j;
401 }
402
403 /***********Need**/
404
405 void PQInsert(distance,index,DistArr,FoundArr)
406
407 /***/
408
409 double distance,*DistArr;
410 int index, *FoundArr;
411
412 {
413 FoundArr[0]=FoundArr[0]+1;
414 DistArr[FoundArr[0]] = distance;
415 FoundArr[FoundArr[0]] = index;
416 PQupheap(DistArr,FoundArr,FoundArr[0]);
417 }
418
419
420
421 /************Need***/
422
423 void PQdownheap(DistArr,FoundArr,k,index)
424
425 /***/
426
427 double *DistArr; /* j-smallest distances encountered */
428
429 int *FoundArr,k,index;
430
431 {
432
433 int j,l,N;
434 double v;
435
436 v=DistArr[k];
437
438 N = FoundArr[0]; /* tricky patch to maintain the data structure */
439 FoundArr[0]=index;
440
441 while (k <= N/2) {
442 j=k+k;
443 if (j < N && DistArr[j] <DistArr[j+1]) j++;
444 if (v>=DistArr[j]) break;
445 DistArr[k]=DistArr[j];
446 FoundArr[k]=FoundArr[j];
447 k=j;
448 }
449
450 DistArr[k] = v;
451 FoundArr[k]= index;
452 FoundArr[0]=N; /* restore data struct */
453
454
455 }
456
457 /*************Need**/
458
459 void PQreplace(distance,DistArr,FoundArr,index)
460
461 /***/
462
463 double *DistArr,distance;
464 int *FoundArr;
465
466 {
467 DistArr[0]=distance;
468 PQdownheap(DistArr,FoundArr,0,index);
469 }
470
471
472 /**/
473
474 void principal (double numpoints, double num_images, double dimension, double *rrw, double kneighbors, double *prLxo, double gamma)
475
476 /**/
477 {
478 double **Points, **Points1, **distx, * querpoint, * nndist;
479 optkdNode *OptkdRoot1;
480 int *Found, MinkP, *optfound, *perm;
481 int i, ii, j, k, j1, n, m;
482 double r1, r2, currmin;
483 int midpoint, NumNN, Metric;
484
485 Metric = EUCLIDEAN;
486 MinkP = 0;
487 numpoints = (int) numpoints;
488 dimension = (int) dimension;

178

489 kneighbors = (int) kneighbors;
490 querpoint=(double *) mxMalloc(sizeof(double)*(dimension));
491 Points = (double **)mxMalloc((numpoints)*sizeof(double *));
492 distx = (double **) mxMalloc(num_images * sizeof(double *));
493 for (k = 0; k < numpoints; k++) {
494 Points[k] = (double *)mxMalloc((dimension)*sizeof(double));
495 }
496
497 for (k = 0, i = 0; k < numpoints; k++)
498 for (j = 0; j < dimension; j++, i++)
499 Points[k][j] = rrw[i];
500
501 Points1 = (double **)mxMalloc((numpoints/num_images)*sizeof(double *));
502 for (k = 0; k < numpoints/num_images; k++)
503 Points1[k] = (double *)mxMalloc((dimension)*sizeof(double));
504
505 *prLxo = 0.0;
506
507 optfound = (int *) mxMalloc((3)*sizeof(int));
508 nndist = (double *)mxMalloc((kneighbors+2)*sizeof(double));
509 perm = (int *) mxMalloc(numpoints/num_images*sizeof(int));
510
511 for (i = 0; i < num_images; i++)
512 distx[i] = (double *) mxMalloc(numpoints * sizeof(double));
513
514
515 for (n = 0; n < num_images; n++) {
516 for (j = n*(numpoints/num_images), k = 0; j < (n+1)*(numpoints/num_images); j++, k++)
517 for (i = 0; i < dimension; i++)
518 Points1[k][i] = Points[j][i];
519 OptkdRoot1 = BuildOptTree(Points1, numpoints/num_images, dimension,perm);
520 for (i=0; i < numpoints; i++) {
521 distx[n][i] = 0.0;
522 for (ii = 0; ii < dimension; ii++)
523 querpoint[ii]=Points[i][ii];
524 Found = kdOptNNQuery(Points1,dimension,querpoint,kneighbors,Metric,OptkdRoot1,MinkP,optfound,nndist,perm);
525 for (j = kneighbors; j>=1; j--) {
526 if (Found[j]!=i) distx[n][i] += sqrt(nndist[j]);
527 }
528 }
529 distx[n][i] = pow(distx[n][i]/(kneighbors),(1/num_images)*gamma);
530 /*printf("distx %g distx1 %g distx2 %g linear_hist2 %g\n",distx,distx1,distx2,linear_hist2[i]);*/
531 /*distx[i] = (distx[i]/(pow(distx1,(1/num_images)));*/
532 /*printf("prami %g nowadded %g",*praMI,pow(distx/(pow(distx1*distx2,0.5)), 2*gamma));}*/
533 }
534
535
536 for (i = 0; i < numpoints; i++) {
537 currmin = 99e+99;
538 for (n = 0; n <= num_images - 2; n++) {
539 for (m = n + 1; m <= num_images - 1; m++) {
540 r1 = distx[n][i]/distx[m][i];
541 r2 = 1/r1;
542 if (distx[n][i] != 0 && distx[m][i] != 0) {
543 currmin = min(currmin, min(r1,r2));
544 }
545 }
546 }
547 *prLxo += currmin;
548 }
549 /*printf("GA is %g\n",*prLxo);*/
550 }

End of kNN-based α-GA divergence estimation program

179

A.7 Program to construct estimates of Non-Linear Correlation Coef-
ficient using kNN graph

Begining of kNN-based NLCC estimation program
1 /**
2 Mex program to calculate:
3 kNN graph length
4 Arithmetic-Geometric mean divergence
5 kNN graph length, Single Counting edges
6 Copyright (c) Huzefa Neemuchwala, All Rights Reserved
7 hneemuch@umich.edu
8 **/
9

10
11
12 /**/
13 /* Program to perform orthogonal range searches and nearest neighbor */
14 /* querys in a more sophisticated k-d tree. In this implementation the, */
15 /* nodes on any given level of the tree do not have the same */
16 /* discriminating dimension as the discrimiator is chosen based on the */
17 /* dimension with the "maxspead." */
18 /* */
19 /* References: J.H. Friedman, J.L. Bentley, R.A. Finkel "An Algorithm */
20 /* for Finding Best Matches in Logarithmic Expected Time." */
21 /* ACM Transactions on Mathematical Software, Vol 3 No. 3 Sept. 1977 */
22 /* pp. 209-226. */
23 /**/
24
25 #include <stdio.h>
26 #include <math.h>
27 #include "mex.h"
28 #include "optkd.h"
29 #include "nn.h"
30
31
32 /* Used to create a new tree in the k-d tree */
33 #define TESTTREE(PP) ((PP) = (optkdNode *)mxMalloc(sizeof(optkdNode)))
34 #define NEWTREE(PP) if (TESTTREE(PP)==NULL) \
35 {printf("memory error\n");return;}
36 #define min(X, Y) ((X) < (Y) ? (X) : (Y))
37 static void principal (double, double, double, double, double *, double *, double);
38 void Selection(double **, int, int, int, int,int*);
39 int findmaxspread(int, int, int, double **,int*);
40 optkdNode *BuildkdTree(double**, int, int, int,int*);
41 optkdNode *BuildOptTree(double **, int, int,int*);
42 void rnnEuclidean(optkdNode *, double *, double **, int, int, int*,double *, int *);
43 int *kdOptNNQuery(double **, int, double *, int, int, optkdNode *, int, int*,double*,int*);
44 void KillOptTree(optkdNode *);
45 void PQupheap(double *, int *, int);
46 void PQInsert(double, int, double *, int *);
47 void PQdownheap(double *, int *, int, int);
48 void PQreplace(double, double *, int *, int);
49 static int Count=0;
50
51 void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
52 {
53
54 double numpoints, dimension, kneighbors, num_images;
55 double* praMI;
56 double *rrw;
57 double gamma;
58
59
60 /* Check for proper number of arguments. */
61 if (nrhs != 6)
62 mexErrMsgTxt("Six inputs required : kNNnonlincorrmex (rrw, num_images, N, dimension, kneighbors, gamma)");
63 else if (nlhs > 1)
64 mexErrMsgTxt("Only one output argument");
65
66 /* Assign pointers to each input */
67 /* Use mex syntax */
68 /* matrices for each time point */
69 rrw = (double *)mxGetPr(prhs[0]);
70 num_images = *mxGetPr(prhs[1]);
71 numpoints = *mxGetPr(prhs[2]);
72 dimension = *mxGetPr(prhs[3]);
73 kneighbors = *mxGetPr(prhs[4]);
74 /*kneighbors = kneighbors + 1;*/
75 gamma = *mxGetPr(prhs[5]);
76 /* Create matrix for the return argument. */
77 /* this is basically useless */
78 plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
79
80 /* Assign pointer to the output */
81 praMI = (double *) mxGetPr(plhs[0]);
82 principal (numpoints, num_images, dimension, kneighbors, rrw, praMI, gamma);
83 }
84
85
86 /************Need***/
87
88 void Selection(a, l,N, k,discrim,perm)
89
90 /***/
91 /* Makes the perm partition the array Values along the element k. */
92 /* Adapted from Sedgewick’s Algorithms in C (p. 128) */
93 /***/
94
95 double **a;
96 int l,N,k,discrim;
97 int * perm;
98 {
99 double v;

100 int t,i,j,r;
101 r=N;
102 while(r>l) {
103 v=a[perm[r]][discrim]; i=l-1; j=r;
104 for (;;) {
105 while (a[perm[++i]][discrim] < v);
106 while (a[perm[--j]][discrim] > v && j>l);
107 if (i >= j) break;
108 t=perm[i]; perm[i] = perm[j]; perm[j]=t;
109 }
110 t=perm[i]; perm[i] = perm[r]; perm[r]=t;
111 if (i>=k) r=i-1;
112 if (i<=k) l=i+1;
113 }
114 }
115
116 /*************Need***/

180

117
118 int findmaxspread(l,u,dimension,points,perm)
119
120 /**/
121
122 int l,u,dimension;
123 double **points;
124 int * perm;
125 {
126 int i,j,maxdim;
127 double max =-99e99,
128 min = 99e99,
129 maxspread =-99e99;
130 for (i=0; i < dimension; i++) {
131 max =-99e99;
132 min = 99e99;
133 for (j=l; j <= u; j++) {
134 if (max < points[perm[j]][i]) {
135 max = points[perm[j]][i];
136 }
137 if (min > points[perm[j]][i]) {
138 min = points[perm[j]][i];
139 }
140 if (maxspread < fabs(max-min)) {
141 maxspread = fabs(max-min);
142 maxdim = i;
143 }
144 }
145 }
146 return(maxdim);
147 }
148
149 /********Need***/
150
151 optkdNode *BuildkdTree(points,l,u,dimension,perm)
152
153 /***/
154
155 int l,u;
156 double **points;
157 int * perm;
158 {
159 optkdNode *p;
160 int m;
161 /* printf("allocating 8\n");*/
162 NEWTREE(p);
163 if (u-l+1 <= BUCKETSIZE) {
164 p->bucket = 1;
165 p->lopt = l;
166 p->hipt = u;
167 p->loson = NULL;
168 p->hison = NULL;
169 } else {
170 p->bucket =0;
171 p->discrim = findmaxspread(l,u,dimension,points,perm);
172 m=(l+u)/2;
173 Selection(points,l,u,m,p->discrim,perm);
174 p->cutval = points[perm[m]][p->discrim];
175 p->loson = BuildkdTree(points,l,m,dimension,perm);
176 p->hison = BuildkdTree(points,m+1,u,dimension,perm);
177 }
178 return(p);
179 }
180
181 /***Need**/
182
183 optkdNode *BuildOptTree(points,numPoints,dimension,perm)
184
185 /***/
186 int dimension,numPoints;
187 double **points;
188 int * perm;
189 {
190
191 int j;
192 /* initialize perm array */
193 /* printf("allocating 1\n");*/
194
195 for (j=0; j < numPoints; j++) {
196 perm[j]=j;
197 }
198 return(BuildkdTree(points,0,numPoints-1,dimension,perm));
199 }
200
201
202 /***********Need**/
203
204 void rnnEuclidean(p,querpoint,points,dimension,numpoints,optfound,nndist,perm)
205
206 /***/
207
208 /* special searching algorithm to take advantage of the fact that square roots
209 do not need to be evaulated */
210
211 optkdNode *p;
212 double *querpoint;
213 double **points;
214 int dimension,numpoints;
215 int * optfound;
216 double *nndist;
217 int * perm;
218 {
219 int i,j,k;
220 double d,thisdist,val,thisx;
221 /*printf("in here 2 alroght\n");*/
222 if (p->bucket) {
223 for (i=p->lopt; i <= p->hipt; i++) {
224 thisdist=0.0;
225 for (j=0; j<dimension; j++) {
226 d=(querpoint[j]-points[perm[i]][j]);
227 thisdist=thisdist+d*d;
228 }
229 if (optfound[0] < numpoints && thisdist > 0.0) {
230 PQInsert(thisdist,perm[i],nndist,optfound);
231 } else if (thisdist > 0.0) {
232 PQreplace(thisdist,nndist,optfound,perm[i]);
233 }
234 }
235 } else {
236 val = querpoint[p->discrim] - p->cutval;
237 if (val < 0) {
238 rnnEuclidean(p->loson,querpoint,points,dimension,numpoints,optfound,nndist,perm);
239 if (nndist[1] >= val*val) {
240 rnnEuclidean(p->hison,querpoint,points,dimension,numpoints,optfound,nndist,perm);

181

241 }
242 } else {
243 rnnEuclidean(p->hison,querpoint,points,dimension,numpoints,optfound,nndist,perm);
244 if (nndist[1] >= val*val) {
245 rnnEuclidean(p->loson,querpoint,points,dimension,numpoints,optfound,nndist,perm);
246 }
247 }
248 }
249 }
250
251
252 /*****************Need**/
253
254 int *kdOptNNQuery(points,dimension, querpoint,numNN,Metric,root,MinkP,optfound,nndist,perm)
255
256 /***/
257
258 optkdNode *root;
259 double *querpoint, **points;
260 int dimension,numNN,MinkP;
261 int * optfound;
262 double * nndist;
263 int * perm;
264 {
265 int j;
266 /*int *optfound;*/
267 /* set up found array */
268 /* printf("allocating 2\n");*/
269 /*optfound = (int *) mxMalloc((numNN+1)*sizeof(int));*/
270 optfound[0]=1; /* for now */
271 /* nndist is a priority queue of the distances of the nearest neighbors found */
272 /* printf("allocating 3\n");*/
273 /* nndist = (double *)mxMalloc((numNN+1)*sizeof(double));*/
274 for (j=0; j < numNN+1; j++) {
275 nndist[j] = 99e99;
276 }
277 /*printf("in here alright\n");*/
278 switch(Metric) {
279 case EUCLIDEAN : rnnEuclidean(root,querpoint,points,dimension,numNN,optfound,nndist,perm);
280 break;
281 /*case MANHATTAN : Distance=ManhattDist;
282 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
283 break;
284 case L_INFINITY: Distance=LInfinityDist;
285 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
286 break;
287 case L_P : Distance=LGeneralDist;
288 rnnGeneral(root,querpoint,points,dimension,numNN,MinkP);
289 break;*/
290 }
291 /*for (j=0;j<numNN;j++)
292 printf("%g\n",nndist[j]);
293 free(nndist);*/
294 return(optfound);
295 /*free(optfound);*/
296 }
297
298
299 /******Need***/
300
301 void KillOptTree(P)
302
303 /***/
304
305 /* Kills a kd-tree to avoid memory holes. */
306
307
308 optkdNode *P;
309
310 {
311 /*if (perm != NULL) {
312 free(perm);
313 } /* free permutation array */
314
315 if (P==NULL) {
316 return;
317 } /* just to be sure */
318 if (P->loson != NULL) {
319 KillOptTree(P->loson);
320 }
321
322 if (P->hison != NULL) {
323 KillOptTree(P->hison);
324 }
325
326 free(P);
327
328 }
329
330
331
332 /***/
333 /* Code to implement the abstract data type priority queue for use in j nearest */
334 /* neighbor searching. Actual implementation is done using heaps. */
335 /* */
336 /* Adapted from Sedgewick’s: Algorithms in C p. 148-160. */
337 /***/
338
339 /*
340 The heap data structure consists of two priority queues. One for the j-smallest
341 distances encountered, one to keep the indexes into the points array of the
342 points corresponding to the j-smallest distances.
343 */
344
345
346
347 /*********Need**/
348
349 void PQupheap(DistArr,FoundArr,k)
350
351 /***/
352
353 double *DistArr; /* j-smallest distances encountered */
354
355 int *FoundArr,k;
356
357 {
358 double v;
359 int j;
360
361 v=DistArr[k]; DistArr[0] = 99e99;
362 j=FoundArr[k];
363
364 while(DistArr[k/2] <= v) {

182

365 DistArr[k] = DistArr[k/2];
366 FoundArr[k] = FoundArr[k/2];
367 k=k/2;
368 }
369 DistArr[k] = v;
370 FoundArr[k] = j;
371 }
372
373 /***********Need**/
374
375 void PQInsert(distance,index,DistArr,FoundArr)
376
377 /***/
378
379 double distance,*DistArr;
380 int index, *FoundArr;
381
382 {
383 FoundArr[0]=FoundArr[0]+1;
384 DistArr[FoundArr[0]] = distance;
385 FoundArr[FoundArr[0]] = index;
386 PQupheap(DistArr,FoundArr,FoundArr[0]);
387 }
388
389
390
391 /************Need***/
392
393 void PQdownheap(DistArr,FoundArr,k,index)
394
395 /***/
396
397 double *DistArr; /* j-smallest distances encountered */
398
399 int *FoundArr,k,index;
400
401 {
402
403 int j,l,N;
404 double v;
405
406 v=DistArr[k];
407 N = FoundArr[0]; /* tricky patch to maintain the data structure */
408 FoundArr[0]=index;
409
410 while (k <= N/2) {
411 j=k+k;
412 if (j < N && DistArr[j] <DistArr[j+1]) j++;
413 if (v>=DistArr[j]) break;
414 DistArr[k]=DistArr[j];
415 FoundArr[k]=FoundArr[j];
416 k=j;
417 }
418
419 DistArr[k] = v;
420 FoundArr[k]= index;
421 FoundArr[0]=N; /* restore data struct */
422
423
424 }
425
426 /*************Need**/
427
428 void PQreplace(distance,DistArr,FoundArr,index)
429
430 /***/
431
432 double *DistArr,distance;
433 int *FoundArr;
434
435 {
436 DistArr[0]=distance;
437 PQdownheap(DistArr,FoundArr,0,index);
438 }
439
440
441 /**/
442
443 void principal (double numpoints, double num_images, double dimension, double kneighbors, double *rrw, double *praMI, double gamma)
444
445 /**/
446 {
447 double **Points, **Points1, *distx;
448 double *querpoint, *querpoint1;
449 optkdNode *OptkdRoot, *OptkdRoot1, *OptkdRoot2;
450 int *Found, MinkP;
451 int Metric;
452 int i, j, k, j1, n, ii;
453 double * nndist, distx1, temp_distx1;
454 int *optfound,*optfound1;
455 int *perm, *perm1, *perm2;
456 Metric = EUCLIDEAN;
457 MinkP = 0;
458 numpoints = (int) numpoints;
459 dimension = (int) dimension;
460 kneighbors = (int) kneighbors;
461 /*printf("allocating 4\n");*/
462 /*if (dimension/num_images != 1)*/
463 querpoint=(double *) mxMalloc(sizeof(double)*(dimension/num_images));
464 querpoint1=(double *) mxMalloc(sizeof(double)*(dimension));
465 /*printf("allocating 5\n");*/
466 Points = (double **)mxMalloc((numpoints)*sizeof(double *));
467 /*hist2 = (double **)mxMalloc((255)*sizeof(double *));
468 linear_hist2 = (double *)mxMalloc((numpoints)*sizeof(double));*/
469 /*printf("allocating 6\n");*/
470
471 for (k = 0; k < numpoints; k++) {
472 Points[k] = (double *)mxMalloc((dimension)*sizeof(double));
473 }
474 for (k = 0, i = 0; k < numpoints; k++) {
475 for (j = 0; j < dimension; j++, i++) {
476 Points[k][j] = rrw[i];
477 }
478 }
479
480
481 /* printf("allocating 7\n");*/
482 /*if (dimension/num_images != 1) {*/
483 Points1 = (double **)mxMalloc((numpoints)*sizeof(double *));
484 for (k = 0; k < numpoints; k++) {
485 Points1[k] = (double *)mxMalloc((dimension/num_images)*sizeof(double));
486 }
487 /*}*/
488

183

489 /*printf("%d\n",i);*/
490 /*printf("%g numpoints, %g dimension",numpoints,dimension);*/
491 *praMI = 0.0;
492
493
494 optfound1 = (int *) mxMalloc((kneighbors + 2)*sizeof(int));
495 nndist = (double *)mxMalloc((kneighbors + 2)*sizeof(double));
496 perm = (int *) mxMalloc(numpoints*sizeof(int));
497 OptkdRoot = BuildOptTree(Points, numpoints, dimension, perm);
498 /*if (dimension/num_images != 1) {*/
499 perm1 = (int *) mxMalloc(numpoints*sizeof(int));
500 optfound = (int *) mxMalloc((kneighbors + 2)*sizeof(int));
501 /* }*/
502
503 distx = (double *) mxMalloc(numpoints * sizeof(double));
504 for (i=0; i<numpoints; i++) {
505 distx[i] = 0.0;
506 for (j = 0; j < dimension; j++)
507 querpoint1[j]=Points[i][j];
508 Found = kdOptNNQuery (Points, dimension, querpoint1, kneighbors, Metric, OptkdRoot, MinkP, optfound1, nndist,perm);
509 for (j = kneighbors; j >= 1; j--) {
510 if (Found[j]!=i) distx[i] += sqrt(nndist[j]);
511 }
512 distx[i] = distx[i]/kneighbors;
513 }
514
515 /*if (dimension/num_images != 1) {*/
516 for (n = 0; n < num_images; n++) {
517 for (k = 0; k < numpoints; k++)
518 for (i = 0, j = n*(dimension/num_images); j < (n+1)*(dimension/num_images); j++, i++)
519 Points1[k][i] = Points[k][j];
520 OptkdRoot1 = BuildOptTree(Points1, numpoints, dimension/num_images, perm1);
521 for (i=0; i<numpoints; i++) {
522 distx1 = 0.0;
523 for (ii = 0, j = n*(dimension/num_images); j < (n+1)*(dimension/num_images); j++, ii++)
524 querpoint[ii]=Points[i][j];
525 Found = kdOptNNQuery(Points1,dimension/num_images,querpoint,kneighbors,Metric,OptkdRoot1,MinkP,optfound,nndist,perm1);
526 for (j = kneighbors; j>=1; j--) {
527 if (Found[j]!=i) {
528 temp_distx1 = 0.0;
529 for (ii = 0; ii < dimension; ii++)
530 temp_distx1 += pow((Points[i][ii] - Points[Found[j]][ii]),2);
531 distx1 += sqrt(temp_distx1);
532 }
533 }
534 distx1 = distx1/kneighbors;
535 /*printf("distx %g distx1 %g distx2 %g linear_hist2 %g\n",distx,distx1,distx2,linear_hist2[i]);*/
536 distx[i] = distx[i]/(pow(distx1,(1/num_images)));
537 /*else { *praMI = linear_hist2[i]*pow(distx[i], (num_images)*gamma);}*/
538 /*printf("prami %g nowadded %g",*praMI,pow(distx/(pow(distx1*distx2,0.5)), 2*gamma));}*/
539 }
540 }
541 /*}*/
542
543 for (i = 0; i < numpoints; i++)
544 *praMI += pow(distx[i], num_images*gamma);
545
546 /**praMI = log(*praMI);*/
547 /*printf("aMI is %g\n",*praMI);*/
548 /*printf("distx1 = %g, distx2 = %g, distx = %g\n",distx1,distx2,distx);*/
549 }

End of kNN-based NLCC estimation program

BIBLIOGRAPHY

184

185

BIBLIOGRAPHY

[1] http://www.eecs.umich.edu/ hero/research.html, Website of Alfred O. Hero, Profes-
sor EECS, University of Michigan, Ann Arbor.

[2] http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html, Matlab
Reference website for external program interface.

[3] A.J.Ratches, C.P Walters, R.G. Buser, and B.D. Guenther. Aided and automatic
target recognition based upon sensory inputs from image forming systems. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(9):1004–1019,
1997.

[4] Y. Amit and D. Geman. Shape quantization and recognition with randomized trees.
Neural Computation, 9:1545–1588, 1997.

[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of
the ACM, 45(6):891–923, 1998.

[6] J. Ashley, R. Barber, M. Flickner, D. Lee, W. Niblack, and D. Petkovic. Automatic
and semiautomatic methods for image annotation and retrieval in qbic. In Proc.
SPIE Storage and Retrieval for Image and Video Databases III, pages 24–35.

[7] S. Baase. Computer Algorithms. Addison-Wesley, 1988.

[8] R. Baraniuk, P. Flandrin, A. J. E. M. Jensen, and O. Michel. Measuring time fre-
quency information content using the Rényi entropies. IEEE Trans. on Inform.
Theory, IT-47(4), April 2001.

[9] M. Basseville. Distance measures for signal processing and pattern recognition.
Signal Processing, 18:349–369, 1989.

[10] C. F. Bazlamaçci and K. Hindi. Minimum-weight spanning tree algorithms: A
survey and empirical study. Computers and Operations Research, 28:767–785,
2001.

[11] J. Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path through many
points. Proc. Cambridge Philosophical Society, 55:299–327, 1959.

186

[12] J. Beirlant, E. J. Dudewicz, L. Györfi, and E.C. van der Meulen. Nonparametric
entropy estimation: an overview. Intern. J. Math. Stat. Sci., 6(1):17–39, june 1997.

[13] J. L. Bentley. Multidimensional binary search trees in database applications. IEEE
Trans. Software Engineering, SE-5(4):333–340, 1979.

[14] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, Sept. 1975.

[15] J.L. Bentley. Multidimensional binary search trees used for associative searching.
Communic. Assoc. Comput. Mach., 18:509–517, 1975.

[16] P. Bhatti, G. LeCarpentier, M. Roubidoux, J. Fowlkes, M. Helvie, and P. Carson.
Discrimination of sonographic breast lesions using frequency shift color doppler
imaging, age and gray scale criteria. Journal of Ultrasound Medicine, 20(4):343–
350, 2001.

[17] T. Butz and J. Thiran. Affine registration with feature space mututal information.
In Lecture Notes in Computer Science 2208: MICCAI 2001, pages 549–556.

[18] Studholme C. and Cardenas V. A template-free approach to volumetric spatial nor-
malization of brain anatomy. Pattern Recognition Letters, 25:1191–1202, 2004.

[19] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquı́n. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, Sept. 2001.

[20] R. Chellappa, C. L. Wilson, and S. Sirohey. Human and machine recognition of
faces: A survey. IEEE Proceedings, 83(5):705–740, 1995.

[21] D. Cheriton and R. Tarjan. Finding minimum spanning trees. SIAM Journal on
Computing, 5:724–742, 1976.

[22] J.W. Choi, T. H. Fang, W. Yoo, and M.H. Lee. Sensor data fusion using percep-
tion net for a precise assembly task. IEEE/ASME Transactions on Mechatronics,
8(4):513–516, 2003.

[23] Y. Choi and S. Lee. Injectivity conditions of 2D and 3D uniform cubic B-Spline
functions. Graphical Models, 62:411–427, 2000.

[24] S. R. Cloude and E. Pottier. An entropy based classification scheme for land ap-
plications of polarimetric SAR. IEEE Trans. on Geoscience and Remote Sensing,
75:pp. 68–78, 1997.

[25] C. A. Cocosco, V. Kollokian, R. K. S. Kwan, and A. C. Evans. Brainweb: Online
interface to a 3D MRI simulated brain database. NeuroImage, 5(4), 1997.

[26] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-Hill,
Englewood-Cliffs NJ, 1990.

187

[27] N. Cristiani and J. Shaw-Taylor. Suport Vector Machines and other kernel-based
learning methods. Cambridge U. Press, 2000.

[28] I. Csiszár. Information-type measures of divergence of probability distributions and
indirect observations. Studia Sci. Math. Hung., 2:299–318, 1967.

[29] J. S. de Bonet and P. Viola. Structure driven image database retrieval. In Advances
in neural information processing, volume 10, 1997.

[30] A. Dembo and O. Zeitouni. Large deviations techniques and applications.
Springer-Verlag, NY, 1998.

[31] M. N. Do and M. Vetterli. Texture similarity measurement using Kullback-Liebler
distance on wavelet subbands. In IEEE Int. Conf. on Image Processing, pages 367–
370, Vancouver, BC, 2000.

[32] D. Dunn, W. Higgins, and J. Wakeley. Texture segmentation using 2d gabor ele-
mentary functions. IEEE Trans. Pattern Anal. Mach. Intelligence, 16(2):130–149,
1994.

[33] Equinox Corporation. Human identification at distance project:
http://www.equinoxsensors.com/products/hid.html/.

[34] Y. Erdi, K. Rosenzweig, A. Erdi, H. Macapinlac, Y. Hu, L. Braban, J. Humm,
O. Squire, C. Chui, S. Larson, and E. Yorke. Radiotherapy treatment planning
for patients with non-small cell lung cancer using pet. Radiotherapy and Oncology,
62(1):51–60, 2002.

[35] V. Erdogmus, J. Prncipe, and L. Vielva. Blind deconvolution with minimum rényi’s
entropy. In EUSIPCO, Toulouse, France, 2002.

[36] J. Fisher, T. Darrell, W. Freeman, and P. Viola. Learning joint statistical models for
audio-visual fusion and segregation. In Advances in Neural Information Processing
Systems, Denver, Colorado, 2000.

[37] J. Fisher and A. Willsky. Information theoretic feature extraction for atr. In Proc.
of. 34th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,
CA, 1999.

[38] M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved network
optimization. Journal of ACM, 34:596–615, 1987.

[39] B.R. Frieden and Anisa T. Bajkova. Reconstruction of complex signals using mini-
mum rényi information. In Proc. of Meeting of Intl. Soc. for Optical Engin. (SPIE),
volume 2298, 1994.

[40] J. H. Friedman, F. Baskett, and L. J. Shustek. An algorithm for finding nearest
neighbors. IEEE Trans. on Computers, C-24, 1975.

188

[41] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical Soft-
ware, 3(3), 1977.

[42] Jerome H. Friedman and Lawrence C. Rafsky. Multivariate generalizations of the
Wald-Wolfowitz and Smirnov two-sample tests. Annals of Statistics, 7(4):697–717,
1979.

[43] H. N. Gabow, Z. Galil, T. H. Spencer, and R. Tarjan. Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica, 6:109–
122, 1986.

[44] D. Geman and Koloydenko A. Invariant statistics and coding of natural microim-
ages. In IEEE Workshop on Statist. Computat. Theories of Vision, Fort Collins, CO,
June 1999.

[45] Sébastien Gilles. Description and experimentation of image matching
using mutual information. Technical report, Oxford University, 1996.
www-rocq.inria.fr/˜gilles/IMMMI/mutual_info.ps.gz.

[46] F. Glover, D. Klingman, R. Krishnan, and A Padman. An in-depth emperical inves-
tigation of non-greedy approached for the minimum spanning tree problem. Euro-
pean Journal of Operations Research, 56:353–356, 1992.

[47] P. Gordon and S. Goldenberg. Malignant breast masses detected only by ultrasound.
Cancer, 76:626–630, 1995.

[48] S. Haney, P. Thompson, T. Cloughesy, J. Alger, and A.Toga. Tracking tumor growth
rates in patients with malignant gliomas: A test of two algorithms. Americal Jour-
nal of Neuroradiology, 22(1):73–82, 2001.

[49] Y. He, A. Ben-Hamza, and H. Krim. An information divergence measure for ISAR
image registration. Signal Processing, Submitted, 2001.

[50] N. Henze and M. Penrose. On the multivariate runs test. Annals of Statistics,
27:290–298, 1999.

[51] A. O. Hero, J. Costa, and B. Ma. Asymptotic relations between minimal
graphs and alpha entropy. Technical Report 334, Comm. and Sig. Proc.
Lab. (CSPL), Dept. EECS, University of Michigan, Ann Arbor, Mar, 2003.
www.eecs.umich.edu/˜hero/det_est.html.

[52] A. O. Hero, B. Ma, and O. Michel. Imaging applications of stochastic minimal
graphs. In IEEE Int. Conf. on Image Processing, Thessaloniki, Greece, October
2001.

[53] A. O. Hero, B. Ma, O. Michel, and J. D. Gorman. Alpha-divergence for clas-
sification, indexing and retrieval. Technical Report 328, Comm. and Sig. Proc.

189

Lab. (CSPL), Dept. EECS, University of Michigan, Ann Arbor, July, 2001.
www.eecs.umich.edu/˜hero/det_est.html.

[54] A.O. Hero, J. Costa, and B. Ma. Convergence rates of minimal graphs with random
vertices. IEEE Trans. on Inform. Theory, submitted, 2002.

[55] A.O. Hero, B. Ma, O. Michel, and J. Gorman. Applications of entropic spanning
graphs. IEEE Signal Processing Magazine, 19(5):85–95, Sept. 2002.

[56] A.O. Hero and O. Michel. Asymptotic theory of greedy approximations to minimal
k-point random graphs. IEEE Trans. on Inform. Theory, IT-45(6):1921–1939, Sept.
1999.

[57] D. Hill, P Batchelor, M. Holden, and D. Hawkes. Medical image registration. Phys.
Med. Biol., 26:R1–R45, 2001.

[58] R. Hoffman and A. K. Jain. A test of randomness based on the minimal spanning
tree. Pattern Recognition Letters, 1:175–180, 1983.

[59] J. Huang, S. Kumar, M. Mitra, and W. Zhu. Spatial color indexing and applications.
In Proc. of IEEE Int’l Conf. Computer Vision ICCV’98, pages 602–608.

[60] A. Hyvärinen. Fast ICA Code. www.cis.hut.fi/projects/ica/fastica/.

[61] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and appli-
cations. Neural Networks, 13(4-5):411–430, 1999.

[62] R. Jassemi-Zargani and D. Necsulescu. Extended kalman filter-based sensor fusion
for operational space control of a robot arm. IEEE Trans. on Instrumentation and
Measurement, 51(6):1279–1282, Dec. 2002.

[63] Mark Jenkinson, Peter Bannister, Michael Brady, and Stephen Smith. Improved
methods for the registration and motion correction of brain images. Technical re-
port, Oxford University, 2002.

[64] K. Johnson, A. Cole-Rhodes, I. Zavorin, and J. Le Moigne. Multi-resolution image
registration of remotely sensed imagery using mutual information. In Proc. of SPIE
OE/Aerospace Sensing, Wavelet Applications VIII, Orlando, FL, 2001.

[65] A. Kapur, P. Carson, J. Eberhard, M. Goodsitt, K. Thomenius, M. Lokhandwalla
M, D. Buckley, R. Hoctor, M. Roubidoux, M. Helvie, C. Booi, G. LeCarpentier,
R. Erkamp, H-P Chan, J. Fowlkes A. Dattamajumdar, A. Hall, J. Thomas, and
C. Landberg. Combination of digital mammography with semi-automated 3d breast
ultrasound. Technology in Cancer Research and Treatment, 3:325–334, 2004.

[66] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm
to find minimum spanning trees. Journal of Association for Computing Machinery,
42(2):321–328, 1995.

190

[67] R. Kedar, D. Cosgrove, I. Smith, J. Mansi, and J. Bamber. Breast carcinoma: Mea-
surement of tumor response to primary medical therapy with color doppler flow
imaging. Radiology, 190:825–830, 1994.

[68] T. Kieu and P. Viola. Boosting image retrieval. In IEEE Conference on Computer
Vision and Pattern Recognition, 2000.

[69] T. Kolb, J. Lichy, and J. Newhouse. Occult cancer in women with dense breasts:
Detection with screening ultrasound: Diagnostic yield and tumor characteristics.
Radiology, 207:191–198, 1998.

[70] C. Kreucher, K. Kastella, and A. O. Hero. Sensor management using relevance
feedback learning. IEEE Trans. on Signal Processing, submitted, 2001.

[71] J. F. Krücker, , C.R. Meyer, G.L. LeCarpentier, J.B. Fowlkes, and P.L. Carson. 3d
spatial compounding of ultrasound images using image-based nonrigid registration.
Ultrasound in Medicine and Biology, 26(9):1475–1488, 2000.

[72] J. F. Krücker, G.L. LeCarpentier, J.B. Fowlkes, and P.L. Carson. Rapid elastic
image registration for 3d ultrasound. IEEE Transactions on Medical Imaging,
21(11):1384–1394, 2002.

[73] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. Amer. Math. Soc., 7:48–50, 1956.

[74] S. Kullback and R.A. Leibler. On information and sufficiency. Ann. Math. Statist.,
22:79–86, 1951.

[75] M. Lefébure and L. Cohen. Image registration, optical flow and local rigidity. J.
Mathematical Imaging and Vision, 14(2):131–147, 2001.

[76] Michael E. Leventon and W. Eric L. Grimson. Multi-modal volume registration
using joint intensity distributions. Technical report, MIT AI Laboratory, 1998.
www.ai.mit.edu/projects/vision-surgery.

[77] M. Lewicki and B. Olshausen. Probabilistic framework for the adaptation and com-
parison of image codes. J. Opt. Soc. Am., 16(7):1587–1601, 1999.

[78] W. Li and H. Leung. Simultaneous registration and fusion of multiple dissimilar
sensors for cooperative driving. IEEE Trans. on Intelligent Transportation Systems,
5(2):84–98, 2004.

[79] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantization design.
IEEE Trans. on Communication, 28:84–95, 1980.

[80] C. Liu and H. Wechsler. Comparative assessment of independent component analy-
sis. In Proc. the 2nd International Conference on Audioand Video-based Biometric
Person Authentication, pages 22–24, Washington D. C., March 1999.

191

[81] Yanxi Liu, Robert T. Collins, and William E. Rothfus. Robust midsagittal plane
extraction from coarse, pathological 3d images. IEEE Trans. on Image Processing,
9(1):132–137, 2000.

[82] B. Ma. Parametric and non-parametric approaches for multisensor data fu-
sion. PhD thesis, University of Michigan, Ann Arbor, MI 48109-2122, 2001.
www.eecs.umich.edu/˜hero/research.html.

[83] W. Ma and B. Manjunath. Netra: A toolbox for navigating large image databases.
In Proc. of IEEE Int. Conf. on Image Processing, volume 1, pages 568–571, 1997.

[84] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multimodal-
ity image registration by maximization of mutual information. IEEE Transactions
on Medical Imaging, 16(2):187–198, Apr. 1997.

[85] F. Maes, D. Vandermeulen, and P. Suetens. Medical image registration using mutual
information. Proceedings of the IEEE, 91(10):1699–1722, 2003.

[86] J. B. Maintz and M. Viergever. A survey of medical image registration. Medical
Image Analysis, 2(1):1–36, 1998.

[87] C. R. Meyer, J. L. Boes, B. Kim, P. H. Bland, K. R. Zasadny, P. V. Kison, K. F. Koral,
K. A. Frey, and R. L. Wahl. Demonstration of accuracy and clinical versatility of
mutual information for automatic multimodality image fusion using affine and thin-
plate spline warped geometric deformations. Medical Image Analysis, 1(3):195–
206, Apr. 1997.

[88] C.R. Meyer, J.L. Boes, B. Kim, P.H. Bland, G.L. LeCarpentier, J.B. Fowlkes, M.A.
Roubidoux, and P.L. Carson. Semiautomatic registration of volumetric ultrasound
scans. Ultrasound in Medicine and Biology, 25(3):339–347, 1999.

[89] O. Michel, R. Baraniuk, and P. Flandrin. Time-frequency based distance and di-
vergence measures. In IEEE International time-frequency and Time-Scale Analysis
Symposium, pages 64–67, Oct 1994.

[90] N. Milisavljevic and I. Bloch. Sensor fusion in anti-personnel mine detection us-
ing a two-level belief function model. IEEE Transactions on Systems, Man and
Cybernetics, 33(2):269–283, 2003.

[91] B. M. E. Moret and D. Shapiro. How to find a minimum spanning tree in practice.
Lecture Notes in Computer Science, 555:192–203, 1991.

[92] D. Mount and S. Arya. Approximate Nearest Neighbor Code.
http://www.cs.umd.edu/˜mount/ANN.

[93] NASA Visible Earth internet site: http://visibleearth.nasa.gov/.

[94] H. Neemuchwala, A. Hero, and P. Carson. Image registration using entropic graph
matching criteria. In Proc. of Asilomar Conference, Monterey, CA, November
2002.

192

[95] H. Neemuchwala, A. Hero, P. Carson, and C. Meyer. Local feature matching us-
ing entropic graphs. In Proc. of the IEEE International Symposium on Biomedical
Imaging.

[96] H. Neemuchwala, A. O. Hero, and P. Carson. Image matching using alpha-entropy
measures and entropic graphs. European Journal of Signal Processing, Special
Issue on Content based image retrieval, Accepted, 2004.

[97] H. Neemuchwala, A. O. Hero, and P. Carson. Feature coincidence trees for reg-
istration of ultrasound breast images. In IEEE Int. Conf. on Image Processing,
Thessaloniki, Greece, Oct. 2001.

[98] S. A. Nene and S. K. Nayar. A simple algorithm for nearest neighbor search in high
dimensions. IEEE Trans. on Pattern Anal. and Machine Intell., 19, 1997.

[99] J. Nesetril, E. Milkova, and H. Nesetrilova. Otakar Boruvka on minimum span-
ning tree problem (translation of both 1926 papers, comments, history). DMATH:
Discrete Mathematics, 233, 2001.

[100] A.B. Nobel and R.A. Olshen. Termination and continuity of greedy growing for
tree-structured vector quantizers. IEEE Trans. on Inform. Theory, IT-42(1):191–
205, 1996.

[101] B. Olshausen. Sparse codes and spikes. MIT Press, 2001.

[102] H. Park and C. Meyer. Grid refinement in adaptive non-rigid registration. Lecture
Notes in Computer Science, MICCAI, 2003.

[103] C. Penney, J. Weese, J. Little, D. Hill, and D. Hawkes. A comparison of similarity
measures for used in 2-D-3-D medical image registration. IEEE Trans. on Medical
Imaging, 17(4):586–595, 1998.

[104] R. C. Prim. Shortest connection networks and some generalizations. Bell Syst.
Tech. Journ., 36:1389–1401, 1957.

[105] Project Atlanta NASA Marshall Space Flight Center, Huntsville, Alabama.

[106] A. Rangarajan, I.-T. Hsiao, and G. Gindi. Integrating anatomical priors in ect re-
construction via joint mixtures and mutual information. In IEEE Medical Imaging
Conference and Symposium on Nuclear Science, volume III, Oct. 1998.

[107] C. Redmond and J. E. Yukich. Asymptotics for Euclidean functionals with power
weighted edges. Stochastic Processes and their Applications, 6:289–304, 1996.

[108] A. Rényi. On measures of entropy and information. In Proc. 4th Berkeley Symp.
Math. Stat. and Prob., volume 1, pages 547–561, 1961.

[109] T. Rohlfing, J. West, J. Beier, T. Liebig, C. Tachner, and U. Thornale. Registration
of functional and anatomical mri: accuracy, assessment and applications in navi-
gated neurosurgery. Computer Aided Surgery, 5(6):414–425, 2000.

193

[110] D. Rueckert, M. Clarkson, D. Hill, and D. Hawkes. Non-rigid registration using
higher order mutual information. In Proc. SPIE, pages 438–447.

[111] G. Simone, A. Farina, F.C. Morabito, S.B. Serpico, and L. Bruzzone. Image fusion
techniques for remote sensing applications. Information Fusion, 3:3–15, 2002.

[112] A. Srivastava, A. B. Lee, E. P. Simoncelli, and S. C. Zhu. On advances in statistical
modeling of natural images. Journal of Mathematical Imaging and Vision, 18(1),
Jan. 2003.

[113] A. Stavros, D. Thickman, C. Rapp, M. Dennis, S. Parker, and G. Sisney. Solid
breast nodules: use of sonography to distinguish between benign and malignant
lesions. Radiology, 196:123–134, 1995.

[114] J. M. Steele. Probability theory and combinatorial optimization, volume 69 of
CBMF-NSF regional conferences in applied mathematics. Society for Industrial
and Applied Mathematics (SIAM), 1997.

[115] R. Stoica, J. Zerubia, and J. M. Francos. Image retrieval and indexing: A hierar-
chical approach in computing the distance between textured images. In IEEE Int.
Conf. on Image Processing, Chicago, Oct. 1998.

[116] R. Stoica, J. Zerubia, and J. M. Francos. The two-dimensional wold decomposition
for segmentation and indexing in image libraries. In Proc. IEEE Int. Conf. Acoust.,
Speech, and Sig. Proc., Seattle, May 1998.

[117] H. Stone, J. Le Moigne, and M. McGuire. The translation sensitivity of wavelet-
based registration. IEEE Trans. Pattern Anal. Mach. Intelligence, 21(10):1074–
1081, 1999.

[118] I. J. Taneja. New developments in generalized information measures. Advances in
Imaging and Electron Physics, 91:37–135, 1995.

[119] R. Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, 1983.

[120] A. Toga. Brain Warping. Academic Press, ISBN: 0126925356, 1999.

[121] D. Tomazevic, B. Likar, T. Slivnik, and F. Pernus. 3-d/2-d registration of ct and mr
to x-ray images. IEEE Transactions on Medical Imaging, 22(11):1407–1416, 2003.

[122] N. Vasconcelos and A. Lippman. A Bayesian framework for content-based index-
ing and retrieval. In IEEE Data Compression Conference, Snowbird, Utah, 1998.
nuno.www.media.mit.edu/people/nuno/.

[123] N. Vasconcelos and A. Lippman. Bayesian representations and learn-
ing mechanisms for content based image retrieval. In SPIE Stor-
age and Retrieval for Media Databases 2000, San Jose, CA, 2000.
nuno.www.media.mit.edu/people/nuno/.

194

[124] O. Vasicek. A test for normality based on sample entropy. J. Royal Statistical
Society, Ser. B, 38:54–59, 1976.

[125] P. Viola and W. M. Wells III. Alignment by maximization of mutual information. In
Proceedings of IEEE International Conference on Computer Vision, pages 16–23,
Los Alamitos, CA, Jun. 1995.

[126] Toga W. and Thompson P. The role of image regsitration in brain mapping. Image
and Vision Computing, 19:3–24, 2001.

[127] W. Wald and J. Wolfowitz. On a test whether two samples are from the same popu-
lation. Ann. Math. Statist., 11:147–162, 1940.

[128] W. J. Williams, M. L. Brown, and A. O. Hero. Uncertainty, information, and time-
frequency distributions. In Proc. of Meeting of Intl. Soc. for Optical Engin. (SPIE),
volume 1566, pages 144–156, 1991.

[129] Y. Wu, T. Kanade, C. Li, and J. Cohn. Image registration using wavelet-based
motion model. International Journal of Computer Vision, 38(2):129–152, 2000.

[130] Ming-Hsuan Yang, David J. Kriegman, and Narendra Ahuja. Detecting faces in
images: A survey. IEEE Trans. on Pattern Anal. and Machine Intell., 24(1):24–58,
Jan 2002.

[131] A. Yao. An O(|E|loglog|V |) algorithm for finding minimum spanning trees. Infor-
mation Processing Letters, 4:21–23, 1975.

[132] J. E. Yukich. Probability theory of classical Euclidean optimization, volume 1675
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1998.

