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ABSTRACT Wireless sensor networks use low duty cycles, ie. low percent- 

In energy-limited wireless sensor networks, detection using ‘cen- 
soring sensors’ reduces the probability that a sensor must transmit, 
thereby saving energy. In this paper, we introduce a hierarchi- 
cal distributed detection scheme designed specifically for multi- 
hop networks. If a sensor’s local likelihood ratio (LLR) crosses 
a threshold, it is sent to the next higher level sensor. A simple 
feedback scheme is also considered. We study the performance of 
a Gaussian change-of-mean detection system using this hierarchi- 
cal censoring scheme, with and without feedback. We show that 
good detection performance can be achieved while significantly 
reducing sensor transmissions compared to the optimal detection 
system. 

1. INTRODUCTION 

Large-scale wireless sensor networks are envisioned to monitor 
wide environments without network management for long life- 
times. Many example applications, such as temperature and VOC 
monitoring in buildings, moisture and fertilizer level sensing in 
agricultural fields, and detection of intruders across borders, in- 
volve detection of events. Distributed detection using multiple 
sensors has been studied extensively in the literature [1][2]. This 
paper applies a distributed detection framework to wireless sensor 

age of device ‘on’ time, on the order of 0.01 % to I%,  allowing cir- 
cuits to remain in a sleep state the vast majority of the time. When 
necessary, a device wakes up its sensor, processor, transmitter or 
receiver in order to sense, process, receive or transmit a message. 
Each wake-up consumes significant energy. Specifically, for the 
transmitter circuitry, it has been reponed that there is a tradeoff 
between the time required for (and thus energy expended during) 
wake-up and the energy used during sleep mode [ 5 ] .  Due to the 
large percentage of time spent in sleep mode, sleep mode energy 
is minimized, and as a result, wake-up energy is high. It has also 
been reported that wake-up energy can be significantly higher than 
the energy used during transmission [71. 

Much distributed detection research has focused on capacity- 
constrained networks. Research has addressed quantization of sen- 
sor data [XI and exploiting source correlation [9] to reduce sensor 
bit rate. In  particular cases, it has been shown that for a R sensor 
network with a capacity constraint of R bits per unit time, having 
each sensor send one bit is optimal [IO]. 

However, from the perspective of energy, the cast of transmit- 
ting one bit involves wake-up energy and packet overhead such as 
synchronization and id bits. Considering all energy costs in an en- 
ergy budget as in [6] shows that sending one bit of data consumes 
only marginally less energy than sending several bits. In fact, it 
can be argued that the aDoroDriate constraint to bound energy con- 

to a hierarchical topology and a “censoring sensors” [3] strategy. 
We present analysis of censoring in a hierarchical topology and 
suggest a simple feedback scheme. Finally, we show numerical 
results for a Gaussian change-of-mean detection system with and 
without the feedback scheme. 

1.1. Energy Constraint 

Energy is of primary concern in wireless sensor networks [4][5][6]. 
In most applications, the bit rate is very low, often less than one 
bit per second [ 5 ] ,  and the bandwidth is wide. IC costs will fall 
with Moore’s law, however, battery costs will remain relatively 
constant, thus energy will become an increasing fraction of the 
sensor cost. Economical deployment of thousands of sensors will 
require aggressive energy limitation. Equivalently, given a battery 
size, minimizing energy consumption maximizes system lifetime. 
If energy consumption can be sufficiently reduced, sola power or 
energy-mining can be used to power each sensor [51. 
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sensor’s decision regarding whether or not to transmit its data is a 
local decision based on its LLR [3]. 

1.2. Hierarchical Networks 

In wireless sensor networks, due to devices’ limited range, com- 
munication to a fusion center must be routed through intermediate 
devices in the network. Multi-hop is used for energy-efficiency 
and reduced device cost. If required transmit power E t/r2, where 
T is the path length, then total transmit energy is decreased by us- 
ing multiple short hops. Network-wide power savings in multi- 
hop systems can be significant, especially for large-scale networks 
when reception energy costs are small compared to transmission 
costs. Technology scaling should reduce receiver energy consump- 
tion, while transmission costs will remain constant [SI. This pro- 
jection underscores the importance of both multi-hop and mini- 
mizing the probability of transmission. 

The use of multi-hop in wireless sensor networks can also be 
exploited for improved detection performance. Often, distributed 
detection literature assumes that all sensor data is sent to a fusion 
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center. Rather than simply relaying messages to a fusion center, in- 
termediate nodes can perform data aggregation and make local de- 
cisions, preventing a bottleneck at the fusion center. Furthermore, 
feedback has been suggested to enable sensors to make reliable 
decisions on certain events [12]. in this paper, we consider a hier- 
archical or 'spanning tree' topology (eg., Fig. 1) for the purposes 
of censoring and feedback. 

We focus on the case where wireless sensor networks oper- 
ate in weak signal environments, i.e., P(H1) is low. High P(H1) 
applications are typically incompatible with low-duty cycle oper- 
ation. Thus we constrain the average probability of sensor trans- 
mission given Ho. and then optimize detection performance. 

2. DERIVATION OF HIERARCHICAL CENSORING 

In a hierarchical network of N sensors, we denote Gt as the set of 
sensors on level k of the hierarchy, k = 1 . . . M (eg., Gz = {3,6} 
in Fig. 1 j. Each sensor (except for the fusion center) has a parent 
node. We denote the set of children of node i as K,. At a given 
round of sensing, a sensor records data X,. We assume X i  are 
i.i.d. conditional on the hypothesis H,, j = 0 , l .  

Censoring sensors was presented in [31 and 1131. The hierar- 
chical version presented here expands censoring to multiple layers 
of sensors with feedback. Each sensor forms its LLR LF,, from 
both its own data X ,  and the LLRs of its children. The F sub- 
script denotes that LF,, is a fusion of data not only from sensor i 
but also its children. If LF,, falls in a send region, R,, then sensor 
a sends its LLR to its parent. Since the number of data bits is not 
constrained, we can assume for analysis that the real-valued LLR 
is sent to the parent unquantized [31. If the LLR falls in the no- 
send region, R;,  sensor i doesn't transmit, and its silence is used 
as information by its parent. Define the constraint p as the mean 
probability of sensor transmission given Ho, 

Here, FC is the index of the highest level sensor (7 in Fig. I ) .  its 
false alarm rate is the global PF that directly determines detection 
performance, and is constrained independently of the energy con- 
straint. In this paper we use P, to indicate the probability given 
H, , for j={O, l} .  

In [3], the optimal censoring region was shown to he a single 
interval, R = [vi, .e). Moreover, in cases where the prior prob- 
ability of Hi is sufficiently small and limited communication is 
allowed, it is optimal to set VI  = 0. Sufficient conditions for the 
optimality of U, = 0 are given in 1131. in this analysis, we assume 
vi = 0 because of the assumptions on P(H1) and limited trans- 
mission probability detailed in Section 1. Thus the optimal fusion 
rule for sensor i's decision whether or not to transmit is a local 
likelihood ratio test (LLRT) with threshold T,, 

HI 

3 t n i  j € %  Ho 

LF,; = Li,; n L F . ~  x n c3 7% (2) 

where Li,* is the likelihood ratio based only on the data Xi, the 
sets n; = { j  E K, : LF,) t R,} and E ;  = { j  t K, : LF,, E 
R j}  are the subsets of K;  which send, and do not send their LLR, 
respectively. Note that f o r i  E GI,  LF,,  = Li,i since sensors on 

level 1 have no children. The constant c; is the effect on the LLR 
of a non-transmitting child node, 

(3) 

In terms of log-likelihoods l ~ , ,  = log LF,,  and li,, = log Li,; 

HI 
1F.s = [ I , ;  + c 1F.j + loge, lOgTi (4) 

,E% , € E <  N o  

Let the density of 1 ~ , i  and li,, he given by fF,; and f i , i ,  respec- 
tively. Then fF,. can he seen as a mixture pdf. This is derived 
explicitly for a binaq tree in Section 2.2. 

2.1. Using Feedback 

In this paper, we test a simple feedback scheme in which a device 
listens for transmissions from its 'siblings' (sensors with the same 
parent). If one sibling transmits its LLR to the parent, then all 
of the other siblings also transmit their LLRs to the parent. This 
scheme doesn't require the parent to transmit back to its children 
to request feedback. Although feedback from the parent could in- 
clude more information than feedback from a sibling, analyzing 
this basic scheme helps to determine when feedback is valuable. 

To achieve the same probability of transmission as without 
feedback, the thresholds T; of the LLRTs must be reduced. Eqs. (2)- 
(4) are still valid, but now, Ri  = K; if L F , ~  t R,, V j  E Kt, or 
Ri = 0 otherwise. Similarly, ni = K; n (E.)'. If # { K , }  is the 
number of children of sensor i, the constraint becomes, 

2.2. Binary Tree Simplification 

1 &) d chrldrenofj3, 6 )  
/ 

3-node cere 

Fig. 1. Diagram of an example hierarchical network of sensors. 
Subset of sensors {1,2,3} is also used as an example. 

Assume that N sensors are arranged in a binary tree as the 
N = 7 case shown in Fig. 1. We simplify the parameter space by 
assuming that the thresholds for sensors on level k are identical. 
We let P F T ( ~ )  he the probability of false transmission from a sen- 
sor on level k .  Without feedback, PFT(k) = P0ILF.i E R,], for 
any i E Gr.  i n  the feedback case, P.v(k)  = 1 - (1  ~ Po[LF,, E 
Ri])', for any i E Gk. The constraint from (1 j is now, 

The density of sensor z's LLR given H, can be shown to be, 

(7) fF,tIH, = fOqOlH, + c lg l lH ,  + f2921H,, 
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where t k  i s  the probability that k children of seiisor i have LLRs 
in the send region, and yiclH, is the density of the l ~ , ,  given H, 
and given IC children have LLRs in the send region. The binomial 
probability tic is, 

where U E Ki. The densities ykiH3 of (7) can be calculated via 
convolution. Defining S, = { l ~ , "  E R,} and S " - -. { lF+ E 
&}, the densities of fF," conditioned on H, and S, or S, are, 

In the case without feedback, the densities yiclH, (t) are, 

gOiH,( i )  = f l , i l H J ( t - 2 1 0 g c z )  (11) 

g l / H j ( i )  = f f . i l H j ( t - l o g C u )  * f F . u i H j . S , ( t )  

gZiH, ($1 = f1,ilH; ( t )  * fF;ulH3,S,(t)  * . fF,ulHJ.Su(t) i  

where * indicates convolution. Note that g21H, ( t )  is the fi,ilH, 

density convolved twice with the density in (Y), since it represents 
the density of the sum of sensor i's own LLR and the LLRs of two 
children given both send their data. 

In the feedback case, it can be shown that (11) holds except 
that gliH1 ( t )  is replaced by, 

Y l l H j ( t )  = f f . i l H ,  ( t )  * f F , u l H I , S , ( t )  * fF ,u lHj ,Su( t ) .  (12) 

In this case, g l l H i ( t )  is the f l , i iH,  density convolved with both 
densities in (9)  and (IO) since it represents the density of the sum 
of sensor i's own LLR and the LLRs of two children given exactly 
one child with LLR in the send region. Derivations of analyti- 
cal results for high N are complicated by multiple convolutions 
with (9) and (IO). Approximations exist for Gaussian data, but for 
brevity, we report numerical results. 

3. NUMERICAL RESULTS 

Consider the Gaussian change-of-mean detection system, 

(13) 
Ho : X ;  - N ( 0 , u ' )  
HI : X ,  - N ( p ,  U ' )  

In this example, the log-likelihood far sensor data Xi, 

is also Gaussian. In this section, p = 1 and U' = 1 are used. 
First, consider the 3-sensor hierarchy shown as a sub-tree in 

Fig. 1. We set the thresholds on level 1 to achieve a given prob- 
ability of false transmission for sensors 1 and 2, p = P F T ( ~ ) .  
We calculate via Matlah the densities yklH, (t) by sampling the re- 
quired densities in (1 1) and (12) and using numerical convolution. 
The weights eic are calcalated from (8). and then (7) is used to find 
the densities of the LLR at sensor 3, ~ F , ~ I H ~  and fF,31H1. 

Optimal 
- Hierarchical w/o FB 

0.05 0.1 0.15 0.2 
Probability of False Alarm (a) 

- . ... Optimal 
- Hierarchical w/ FB 

0.05 0.1 0.15 0.2 
Probability of False Alarm (b) 

Fig. 2. ROCs for 3-sensor example (a) without feedback and (b) 
with feedback. Plots show the optimal 1 and 3-sensor ROC and 
the hierarchical ROC for p = 0.30,0.15,0.05.0.02, and 0.01. 

These densities are used to calculate PF and P D ~  and the 
ROCs of the final decision are shown in Fig. 2 for cases with 
and without feedback. Values p = P F T ( ~ )  = 0.30, 0.15, 0.05, 
0.02, and 0.01 are shown. Optimal 3-sensor and I-sensor cases 
are shown as bounds on the system performance. Note that with 
p = 0.30, there is a 70% reduction in transmission under Ho, 
hut the detection performance remains close to optimal, especially 
at low PF. Even with the two level 1 sensors transmitting only 
1/100 of the time, performance is significantly better than with 
only one sensor. Comparing Figs. 2(a) and 2(h), feedback allows 
performance closer to 3-sensor optimal at low PF and high p, but 
noticeably degrades performance at high PF and low p. 

For the 7-sensor hierarchy in Fig. 1, two thresholds must be 
set. Tomeet theenergy constraint in (6) .  p = @FT(1)+2PFT(2). 
Although r; for i E GI can be set analytically to achieve a par- 
ticular P F T ( ~ ) ,  T, for i € Gz must be set using the numeri- 
cally calculated density fFF,3IH0. Several combinations of PFT = 
[PFT(~),PFT(Z)] can be tested in order to maximize PD for a 
given PF. In Fig. 3, three combinations that meet p = 0.1 are 
tested in the feedback case: PFT = [0.05,0.2], [0.1,0.1], and 
[0.12, 0.06]. At very low PF, it is best to set P F T ( ~ )  > PFT(Z), 
while at high PF, it is best to set P F T ( ~ )  < P F T ( ~ ) .  In this case, 
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0.3 
0 0.05 0.1 0.15 0.2 

Probability of False Alarm 

Fig. 3. 7-sensor system with feedback and with p = 0.10 for 
various combinations of PFT(1) and PFT(~). 

I ,  

Probability of False Alarm 

Fig. 4. 7-sensor system with and without feedback for p = 
{0.30,0.10,0.03}. PFr(1) = PFr(2) = p for all three cases. 

equal probability of false transmission on each level has very good 
overall performance. Letting PFT(~) be equal V k  also ensures an 
equal rate of energy consumption for all sensors in the network. 

In Fig. 4, we plot lhe ROC results for both with and without 
feedback cases when PFT(1) = PFT(~) = p i s  set to 0.30,0.10, 
or 0.03. Similar to the 3-sensor case, the feedback scheme results 
in increased Pu at low PF~ but has significantly lower PU when p 
is small and PF is high. 

4. CONCLUSION 

In this paper, we have applied censoring sensors to a hierarchical 
framework. This framework will be increasingly important in the 
design of energy-limited wireless sensor networks used for dis- 
tributed detection. We have shown in a Gaussian change-of-mean 
detection example that close to optimal detection performance can 
be achieved when sensors may only transmit a fraction of their 
sensor data. We introduced a simple feedback scheme that can 

improve detection performance at low PF. However, more gen- 
eral use of feedback must be studied in order to determine the best 
use of the mechanism. Furthermore, adapting the hierarchy of a 
network should be considered for possible energy savings and re- 
silience to sensor failures. 
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