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Abstract

This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observa-

tions are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our

hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly

accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We

propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at

zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical

Bayesian model. To overcome the complexity of the posteriordistribution, a Gibbs sampling strategy

is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g. by maximizing

the estimated posterior distribution. In our fully Bayesian approach the posteriors of all the parameters

are available. Thus our algorithm provides more information than other previously proposed sparse

reconstruction methods that only give a point estimate. Theperformance of our hierarchical Bayesian

sparse reconstruction method is illustrated on synthetic and real data collected from a tobacco virus

sample using a prototype MRFM instrument.
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I. INTRODUCTION

For several decades, image deconvolution has received increasing interest in the literature

[2], [44]. Deconvolution mainly consists of reconstructing images from observations provided

by optical devices and may include denoising, deblurring orrestoration. The applications are

numerous including astronomy [46], medical imagery [45], remote sensing [38] and photography

[52]. More recently, a new imaging technology, called Magnetic Resonance Force Microscopy

(MRFM), has been developed (see [35] and [27] for recent reviews). This non-destructive method

allows one to improve the detection sensitivity of standardmagnetic resonance imaging [43].

Because of its potential atomic-level resolution1, the 2-dimensional or3-dimensional images

resulting from this technology are naturally sparse in the standard pixel basis. Indeed, as the

observed objects are molecules, most of the image is empty space. In this paper, a hierarchical

Bayesian model is proposed to perform reconstruction of such images.

Sparse signal and image deconvolution has motivated research in many scientific applications

including: spectral analysis in astronomy [4]; seismic signal analysis in geophysics [7], [42]; and

deconvolution of ultrasonic B-scans [36]. We propose here ahierarchical Bayesian model that is

based on selecting an appropriate prior distribution for the unknown image and other unknown

parameters. The image prior is composed of a weighted mixture of a standard exponential

distribution and a mass at zero. When the non-zero part of this prior is chosen to be a centered

normal distribution, this prior reduces to a Bernoulli-Gaussian process. This distribution has been

widely used in the literature to build Bayesian estimators for sparse deconvolution problems (see

[5], [15], [22], [26], [31] or more recently [3] and [16]). However, choosing a distribution with

heavier tail may improve the sparsity inducement of the prior. Combining a Laplacian distribution

with an atom at zero results in the so-called LAZE prior. Thisdistribution has been used in [25]

to solve a general denoising problem in a non-Bayesian quasi-maximum likelihood estimation

framework. In [49], [51], this prior has also been used for sparse reconstruction of noisy images,

including MRFM. The principal weakness of these previous approaches is the sensitivity to

hyperparameters that determine the prior distribution, e.g. the LAZE mixture coefficient and the

1Note that the current state of art of the MRFM technology allows one to acquire images with nanoscale resolution. Indeed,

several hundreds of nuclei are necessary to get a detectablesignal. However, atomic-level resolution might be obtained in the

future.

September 23, 2008 DRAFT



3

weighting of the prior vs the likelihood function. The hierarchical Bayesian approach proposed

in this paper circumvents these difficulties. Specifically,a new prior composed of a mass at

zero and a single-sided exponential distribution is introduced, which accounts for positivity and

sparsity of the pixels in the image. Conjugate priors on the hyperparameters of the image prior

are introduced. It is this step that makes our approach hierarchical Bayesian. The full Bayesian

posterior can then be derived from samples generated by Markov chain Monte Carlo (MCMC)

methods [41].

The estimation of hyperparameters involved in the prior distribution described above is the

most difficult task and poor estimation leads to instability. Empirical Bayes (EB) and Stein

unbiased risk (SURE) solutions were proposed in [49], [51] to deal with this issue. However,

instability was observed especially at higher signal-to-noise ratios (SNR). In the Bayesian estima-

tion framework, two approaches are available to estimate these hyperparameters. One approach

couples MCMC methods to an expectation-maximization (EM) algorithm or to a stochastic

EM algorithm [28], [30] to maximize a penalized likelihood function. The second approach

defines non-informative prior distributions for the hyperparameters; introducing a second level

of hierarchy in the Bayesian formulation. This latter fullyBayesian approach, adopted in this

paper, has been successfully applied to signal segmentation [11], [13], [14] and semi-supervised

unmixing of hyperspectral imagery [12].

Only a few works in the literature have been dedicated to reconstruction of MRFM image

data [6], [8], [53], [54]. In [20], several techniques basedon linear filtering and maximum-

likelihood principles have been proposed that do not exploit image sparsity. More recently,

Ting et al. has introduced sparsity penalized reconstruction methodsfor MRFM (see [51] or

[50]). The reconstruction problem has been formulated as a decomposition into a deconvolution

step and a denoising step, yielding an iterative thresholding framework. In [51] the hyperpa-

rameters are estimated using penalized log-likelihood criteria including the SURE approach

[47]. Despite promising results, especially at low SNR, penalized likelihood approaches require

iterative algorithms that are often slow to converge and canget stuck on local maxima [10].

In contrast to [51], the fully Bayesian approach presented in this paper converges quickly and

produces estimates of the entire posterior and not just local maxima. Indeed, the hierarchical

Bayesian formulation proposed here asymptotically generates Bayes-optimal estimates of all

image parameters, including the hyperparameters.
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In this paper, the response of the MRFM imaging device is assumed to be known. While it

may be possible to extend our methods to unknown point spreadfunctions, e.g., along the lines

of [21], the case of sparse blind deconvolution is outside ofthe scope of this paper.

This paper is organized as follows. The deconvolution problem is formulated in Section II.

The hierarchical Bayesian model is described in Section III. Section IV presents a Gibbs sampler

that allows one to generate samples distributed according to the posterior of interest. Simulation

results, including extensive performance comparison, arepresented in Section V. In Section VI

we apply our hierarchical Bayesian method to reconstruction of a tobacco virus from real MRFM

data. Our main conclusions are reported in Section VII.

II. PROBLEM FORMULATION

Let X denote al1 × . . . × ln unknownn-dimensional pixelated image to be recovered (e.g.

n = 2 or n = 3). Observed are a collection ofP projectionsy = [y1, . . . , yP ]T which are

assumed to follow the model:

y = T (κ,X) + n, (1)

whereT (·, ·) stands for a bilinear function,n is a P × 1 dimension noise vector andκ is the

kernel that characterizes the response of the imaging device. In the right-hand side of (1),n is

an additive Gaussian noise sequence distributed accordingto n ∼ N (0, σ2IP ), where theσ2 is

assumed to be unknown.

Note that in standard deblurring problems, the functionT (·, ·) represents the standardn-

dimensional convolution operator⊗. In this case, the imageX can be vectorized yielding the

unknown imagex ∈ R
M with M = P = l1l2 . . . ln. With this notation, Eq. (1) can be rewritten:

y = Hx + n or Y = κ⊗X + N (2)

wherey (resp.n) stands for the vectorized version ofY (resp.N) andH is anP ×M matrix

that describes convolution by the psfκ.

The problem addressed in the following sections consists ofestimatingx andσ2 under sparsity

and positivity constraints onx given the observationsy, the psfκ and the bilinear function2

T (·, ·).

2In the following, for sake of conciseness, the same notationT (·, ·) will be adopted for the bilinear operations used on

n-dimensional imagesX and used onM × 1 vectorized imagesx.
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III. H IERARCHICAL BAYESIAN MODEL

A. Likelihood function

The observation model defined in (1) and the Gaussian properties of the noise sequencen

yield:

f
(
y|x, σ2

)
=

(
1

2πσ2

)P

exp

(
−‖y − T (κ,x)‖2

2σ2

)
, (3)

where‖·‖ denotes the standardℓ2 norm: ‖x‖2 = xTx.

B. Parameter prior distributions

The unknown parameter vector associated with the observation model defined in (1) isθ =

{x, σ2}. In this section, we introduce prior distributions for these two parameters; which are

assumed to be independent.

1) Image prior: First let consider the exponential distribution with shapeparametera > 0:

ga (xi) =
1

a
exp

(
−xi

a

)
1R∗

+
(xi) , (4)

where1E (x) is the indicator function defined onE:

1E (x) =





1, if x ∈ E,

0, otherwise.
(5)

Choosingga (·) as prior distributions forxi (i = 1, . . . , M) leads to a MAP estimator ofx that

corresponds to a maximumℓ1-penalized likelihood estimate with a positivity constraint3. Indeed,

assuming the componentxi (i = 1, . . . , P ) a priori independent allows one to write the full prior

distribution forx = [x1, . . . , xM ]T :

ga (x) =

(
1

a

)M

exp

(
−‖x‖1

a

)
1{x≻0} (x) , (6)

where{x ≻ 0} =
{
x ∈ R

M ; xi > 0, ∀i = 1, . . . , M
}

and ‖·‖1 is the standardℓ1 norm ‖x‖1 =
∑

i |xi|. This estimator has shown interesting sparse properties for Bayesian estimation [1] and

signal representation [19].

3Note that a similar estimator using a Laplacian prior forxi (i = 1, . . . , M ) was proposed in [48] for regression problems

and is usually referred to as the LASSO estimator but withoutpositivity constraint.
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Coupling a standard probability density function (pdf) with an atom at zero is another alter-

native to ensure sparsity. This strategy has for instance been used for located event detection

[26] such as spike train deconvolution [5], [7]. In order to increase the sparsity of the prior, we

propose to use the following distribution derived fromga (·) as prior distribution forxi:

f (xi|w, a) = (1− w)δ (xi) + wga (xi) , (7)

whereδ (·) is the Dirac function. This prior is similar to the LAZE distribution (Laplacian pdf and

an atom at zero) introduced in [25] and used, for example, in [49], [51] for MRFM. However,

the proposed prior in (7) allows one to take into account the positivity of the pixel value to

be estimated. By assuming the componentsxi to be a priori independent (i = 1, . . . , M), the

following prior distribution is obtained forx:

f (x|w, a) =

M∏

i=1

[(1− w)δ (xi) + wga (xi)] . (8)

Introducing the index subsetsI0 = {i; xi = 0} and I1 = I0 = {i; xi 6= 0} allows one to

rewrite the previous equation as follows:

f (x|w, a) =

[
(1− w)n0

∏

i∈I0

δ (xi)

][
wn1

∏

i∈I1

ga (xi)

]
, (9)

with nǫ = card {Iǫ}, ǫ ∈ {0, 1}. Note thatn0 = M − n1 and n1 = ‖x‖0 where‖·‖0 is the

standardℓ0 norm ‖x‖0 = # {i; xi 6= 0}.
2) Noise variance prior: A conjugate inverse-Gamma distribution with parametersν

2
and γ

2

is chosen as prior distribution for the noise variance [40, Appendix A]:

σ2|ν, γ ∼ IG
(ν

2
,
γ

2

)
. (10)

In the following,ν will be fixed to ν = 2 andγ will be an hyperparameter to be estimated (see

[12], [13], [37]).

C. Hyperparameter priors

The hyperparameter vector associated with the previous prior distributions isΦ = {a, γ, w}.
Obviously, the accuracy of the proposed Bayesian model depends on the values of these hy-

perparameters. If prior knowledge, e.g. mean number of the non-zero pixels, is available, these

parameters can be tuned manually to their actual values. However, in practical situations, such

September 23, 2008 DRAFT



7

prior information is not available. In this case, as outlined in Section I, these hyperparameters

can be estimated directly from the data. Priors for these hyperparameters, sometimes referred to

as “hyperpriors” are detailed below.

1) Hyperparameter a: A conjugate inverse-Gamma distribution is assumed for hyperparameter

a:

a|α ∼ IG (α0, α1) , (11)

with α = [α0, α1]
T . The fixed hyperparametersα0 andα1 have been chosen to obtain a vague

prior: α0 = α1 = 10−10 (see for example [18] for a similar choice).

2) Hyperparameter γ: A non informative Jeffreys’ prior [23], [24] is assumed for hyperpa-

rameterγ:

f (γ) ∝ 1

γ
1R+

(γ) . (12)

3) Hyperparameter w: A conjugate beta distribution with fixed hyperparametersω1 and ω0

is chosen as prior distribution forw:

w|ω ∼ B (ω1, ω0) , (13)

with ω = [ω0, ω1]
T and whereB (a, b) denotes the Beta distribution with parameters(a, b). Note

that by choosingω0 = ω1 = 1, the Beta distribution reduces to the uniform distributionon [0, 1],

which gives the least informative prior.

Assuming that the individual hyperparameters are independent the full hyperparameter prior

distribution forΦ can be expressed as:

f (Φ|α, ω) = f (w) f (γ) f (a)

=
wω1−1 (1− w)ω0−1

awγB (ω1, ω0)
1[0,1] (w) 1R+ (a) 1R+ (γ) ,

(14)

with B (ω1, ω0) = Γ(ω1)Γ(ω0)
Γ(ω1+ω0)

, whereΓ(·) denotes the Gamma function.

D. Posterior distribution

The posterior distribution of{θ,Φ} can be computed as follows:

f (θ,Φ|y, α, ω) ∝ f (y|θ) f (θ|Φ) f (Φ|α, ω) , (15)
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Fig. 1. DAG for the parameter priors and hyperpriors (the fixed hyperparameters appear in dashed boxes).

with

f (θ|Φ) = f (x|a, w) f
(
σ2|γ

)
, (16)

wheref (y|θ) and f (Φ|α, ω) have been defined in (3) and (14). This hierarchical structure,

represented on the directed acyclic graph (DAG) in Fig. 1, allows one to integrate out the

parameterσ2 and the hyperparameter vectorΦ in the full posterior distribution (15), yielding:

f (x|y, α, ω) ∝ B (ω1 + n1, ω0 + n0)

‖y − T (κ,x)‖P
Γ (n1 + α0)

[‖x‖1 + α1]
n1+α0

. (17)

where, as defined in paragraph III-B.1,n1 = ‖x‖0 andn0 = M − ‖x‖0.
The next section presents an appropriate Gibbs sampling strategy [41] that allows one to

generate samples distributed according to the posterior distributionf (x|y, α, ω).

IV. A G IBBS SAMPLING STRATEGY

FOR SPARSE IMAGE RECONSTRUCTION

In this section we describe the Gibbs sampling strategy for generating samples
{
x(t)
}

t=1,...

distributed according to the posterior distribution in (17). As simulating directly according to (17)

is a difficult task, it is much more convenient to generate samples distributed according to the

joint posteriorf (x, σ2|y, α, ω). The main steps of this algorithm are detailed in subsections IV-A

and IV-B (see also Algorithm 1 below).
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ALGORITHM 1:

Gibbs sampling algorithm for sparse image reconstruction

• Initialization:

– Sample parameterx(0) from pdf in (9),

– Sample parameters̃σ2(0) from the pdf in (10),

– Set t← 1,

• Iterations:for t = 1, 2, . . . , do

1. Sample hyperparameterw(t) from the pdf in (19),

2. Sample hyperparametera(t) from the pdf in (20),

3. For i = 1, . . . , M , sample parameterx(t)
i from pdf in (21),

4. Sample parameter̃σ2(t) from the pdf in (24),

5. Sett← t + 1.

A. Generation of samples according to f (x |σ2,y, α, ω )

To generate samples distributed according tof (x |σ2,y, ω ), it is very convenient to sample

according tof (x, w, a |σ2,y, ω ) in the following 3-step procedure.

1) Generation of samples according to f (w |x, ω ): Using (9), the following result can be

obtained:

f (w |x, ω ) ∝ (1− w)n0+ω0−1wn1+ω1−1, (18)

where n0 and n1 have been defined in paragraph III-B.1. Therefore, generation of samples

according tof (w |x, ω ) is achieved as follows:

w |x, ω ∼ Be (ω1 + n1, ω0 + n0) . (19)

2) Generation of samples according to f (a |x, α): Looking at the joint posterior distribution

(15), it yields:

a |x, α ∼ IG (‖x‖0 + α0, ‖x‖1 + α1) . (20)

September 23, 2008 DRAFT
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3) Generation of samples according to f (x |w, a, σ2,y): The prior chosen forxi (i =

1, . . . , M) yields a posterior distribution ofx that is not closed form. However, the posterior

distribution of each componentxi (i = 1, . . . , M) conditionally upon the others can be easily

derived. Indeed straightforward computations detailed inAppendix I yield:

f
(
xi|w, a, σ2,x−i,y

)
∝ (1− wi)δ (xi)

+ wiφ+

(
xi|µi, η

2
i

)
,

(21)

wherex−i stands for the vectorx whoseith component has been removed andµi and η2
i are

given in Appendix I. In (21),φ+ (·, m, s2) stands for the pdf of the truncated Gaussian distribution

defined onR∗
+ with hidden parameters equal to meanm and variances2:

φ+

(
x, m, s2

)
=

1

C (m, s2)
exp

[
−(x−m)2

2s2

]
1R∗

+
(x) , (22)

with

C
(
m, s2

)
=

√
πs2

2

[
1 + erf

(
m√
2s2

)]
. (23)

The form in (21) specifiesxi|w, a, σ2,x−i,y as a Bernoulli-truncated Gaussian variable with

parameter(wi, µi, η
2
i ). Appendix III presents an algorithm that can be used to generate samples

from this distribution.

To summarize, generating samples distributed according tof (x |w, σ2, a, ,y) can be performed

by updating the coordinates ofx successively usingM Gibbs moves (requiring generation of

Bernoulli-truncated Gaussian variables).

B. Generation of samples according to f (σ2 |x,y)

Samples are generated as the following way:

σ2 |x,y ∼ IG
(

P

2
,
‖y − T (κ,x)‖2

2

)
. (24)

V. SIMULATION ON SYNTHETIC IMAGES

A. Reconstruction of 2-dimensional image

In this subsection, a32 × 32 synthetic image, depicted in Fig. 2 (right), is simulated using

the prior in (9) with parametera = 1 and w = 0.02. In this figure and in the following ones,

white pixels stands for identically null values. A general analytical derivation of the psf of the
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TABLE I

PARAMETERS USED TO COMPUTE THEMRFM PSF.

Parameter
Value

Description Name

Amplitude of external magnetic field Bext 9.4 × 103 G

Value of Bmag in the resonant slice Bres 1.0 × 104 G

Radius of tip R0 4.0 nm

Distance from tip to sample d 6.0 nm

Cantilever tip moment m 4.6 × 105 emu

Peak cantilever oscillation oscillation xpk 0.8 nm

Maximum magnetic field gradient Gmax 125

−4 −2 0 2 4

−4

−2

0

2

4

5 10 15 20 25 30

5

10

15

20

25

30

Fig. 2. Left: Psf of the MRFM tip. Right: unknown sparse imageto be estimated.

MRFM tip has been given in [32] and is explained in [51]. Following this model, a10 × 10

2-dimensional convolution kernel, represented in Fig. 2 (left), has been generated when the

physical parameters are tuned to the values gathered in Table I. The corresponding matrixH

introduced in (2) is of size1024×1024. The observed measurementsy, depicted in Fig. 2 (right)

are of sizeP = 1024. These observations are corrupted by an additive Gaussian noise with two

different variancesσ2 = 1.2×10−1 andσ2 = 1.6×10−3, corresponding to signal-to-noise ratios

SNR = 2dB andSNR = 20dB respectively.
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1) Simulation results: The observations are processed by the proposed algorithm that consists

of NMC = 2000 iterations of the Gibbs sampler withNbi = 300 burn-in iterations. Then the MAP

estimator of the unknown imagex is computed by retaining amongX =
{
x(t)
}

t=1,...,NMC
the

generated sample that maximizes the posterior distribution in (17):

x̂MAP = argmax
x∈RM

+

f (x|y)

≈ argmax
x∈X

f (x|y) .

(25)

These estimates are depicted in Fig. 3 for the two levels of noise considered. Observe that the

estimated image is very similar to the actual image, even at low SNR.

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5
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15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

Fig. 3. Top, left (resp. right): noisy observations for SNR= 2dB (resp.20dB). Bottom, left (resp. right): reconstructed image

for SNR= 2dB (resp.20dB).

Moreover, as the proposed algorithm generates samples distributed according to the posterior

distribution in (17), these samples can be used to compute the posterior distributions of each

parameter. As examples, the posterior distributions of thehyperparametersa andw, as well as

the noise varianceσ2, are shown in Fig. 4, 5 and 6. These estimated distributions are in good
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agreement with the ground truth values of these parameters,randomly drawn from the prior

distribution.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

a

f(
a|

y)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

a

f(
a|

y)

Fig. 4. Posterior distribution of hyperparametera (left: SNR = 2dB, right: SNR = 20dB).

The posterior distributions of four different pixels are depicted in Fig. 7. These posteriors are

consistent with the actual values of these pixels that are represented as dotted red lines in these

figures.

2) Comparison of reconstruction performances: Here we compare our proposed hierarchical

Bayesian method to the methods of [49], [51]. The techniquesproposed in [49], [51] are

based on penalized likelihood EM algorithms that perform empirical estimation of the unknown

hyperparameters. Therein, two empirical Bayesian estimators, denoted Emp-MAP-Lap and Emp-

MAP-LAZE, based on a Laplacian or a LAZE prior respectively,were proposed. We also

compare with the estimator provided by a standard Landweberalgorithm [29]. These will be

compared to our hierarchical Bayesian MAP estimator, givenin (25), and also to a minimum

mean square error (MMSE) estimator extracted from the estimated full Bayes posterior (17).

The MMSE estimator of the unknown parameterx is obtained by an empirical averaging over
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Fig. 5. Posterior distribution of hyperparameterw (left: SNR = 2dB, right: SNR = 20dB).

the lastNr = 1700 outputs of the Gibbs sampler according to:

x̂MMSE = E [x|y]

≈ 1

Nr

Nr∑

t=1

x(Nbi+t).
(26)

As in [51] we compare estimators with respect to several performance criteria. Lete = x− x̂

denote the reconstruction error whenx̂ is the estimator of the imagex to be recovered. These

criteria are: theℓ0, ℓ1 and ℓ2-norms ofe, which measures the accuracy of the reconstruction,

and theℓ0-norm of the estimator̂x, which measures its sparsity. As pointed out in [51], small

non-zero values of the pixel are usually not distinguishable from exactly zero values by a human

being. Thus, a less strict measure4 of sparsity than theℓ0-norm, which is denoted‖·‖δ, is the

4The introduced measure of sparsity is denoted‖·‖
δ
. However, it has to be mentioned that is not a norm.
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Fig. 6. Posterior distribution of hyperparameterσ2 (left: SNR = 2dB, right: SNR = 20dB).

number of reconstructed image pixels that are less than a given thresholdδ:

‖x̂‖δ =

M∑

i=1

1x̂i<δ (x̂i) ,

‖e‖δ =
M∑

i=1

1ei<δ (ei) .

(27)

It what follows,δ has been chosen asδ = 10−2 ‖x‖∞. To summarize, the following criteria have

been computed for the image in paragraph V-A.1 for two levelsof SNR:‖e‖0, ‖e‖δ, ‖e‖1, ‖e‖2,
‖x̂‖0 and‖x̂‖δ.

Table II shows the six performance measures for the five different algorithms studied. The

proposed Bayesian methods (labeled “proposed MMSE” and “proposed MAP” in the table)

outperform the other estimators in terms ofℓ1 or ℓ2-norms. Note that the MMSE estimation of

the unknown image is a non sparse estimator in theℓ0-norm sense. This is due to the very small

but non-zero posterior probability of non-zero value at many pixels. The sparsity measure‖·‖δ
indicates that most of the pixels are in fact very close to zero. The MAP estimator seems to be a
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Fig. 7. Posteriors distributions of the non-zero values ofx for SNR = 20dB, (actual values are depicted with dotted red lines).

very powerful estimator for the sparse reconstruction problem as it seems to balance the sparsity

of the solution and the minimization of the reconstruction error. However, by construction, the

MMSE estimation will always have lower mean square error.

B. Reconstruction of undersampled 3-dimensional images

As discussed in Section VI, the prototype MRFM instrument collects data projections as irreg-

ularly spaced, or undersampled, spatial samples. In this subsection, we indicate how the image

reconstruction algorithm can be adapted to this undersampled scenario in 3D. For concreteness,

we illustrate by a concrete example. First, a24×24×6 image is generated such as4 pixels have

non-zero values in eachz slice. The resulting data is depicted in Fig. 9 (right) and Fig. 8 (top).

This image to be recovered is assumed to be convolved with a5×5×3 kernel that is represented

in Fig. 9 (right). The resulting convolved image is depictedin Fig. 10 (left). However, the actually

observed image is an undersampled version of this image. More precisely, the sampling rates

are assumed to bedx = 2, dy = 3 dz = 1 respectively in the3 dimensions. Consequently the
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TABLE II

RECONSTRUCTION PERFORMANCES FOR DIFFERENT SPARSE DECONVOLUTION ALGORITHMS.

Method
Error criterion

‖e‖
0

‖e‖
δ

‖e‖
1

‖e‖
2

‖x̂‖
0

‖x̂‖
δ

SNR= 2dB

Landweber 1024 990 339.76 13.32 1024 990

Emp-MAP-Lap 18 17 14.13 4.40 0 0

Emp-MAP-LAZE 60 58 9.49 1.44 55 55

Proposed MMSE 1001 30 3.84 0.72 1001 27

Proposed MAP 19 16 2.38 0.81 13 13

SNR= 20dB

Landweber 1024 931 168.85 6.67 1024 931

Emp-MAP-Lap 33 18 1.27 0.31 28 23

Emp-MAP-LAZE 144 19 1.68 0.22 144 27

Proposed MMSE 541 5 0.36 0.11 541 16

Proposed MAP 19 7 0.39 0.13 16 16

observed3D image, shown in Fig. 10, is of size12×8×6. Finally, an i.i.d. Gaussian noise with

σ = 0.02 is added following the model in (1). Note that under these assumptions, the application

T (·, ·) can be split into two standard operations following the composition:

T (κ,X) = gdx,dy ,dz
(κ⊗X) , (28)

wheregdx,dy ,dz
(·) stands for the undersampling function.

For illustration the proposed hierarchical Bayesian algorithm is used to perform the sparse

reconstruction with undersampled data. The number of MonteCarlo runs was fixed toNMC =

2000 with Nbi = 300 burn-in iterations. Figure 8 shows the result of applying the proposed MAP

estimator to the estimated posterior.
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Fig. 8. Top: slices of the sparse image to be recovered. Bottom: slices of the estimated sparse image.
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Fig. 9. Left: 24 × 24 × 6 unknown image to be recovered. Right:5 × 5 × 3 kernel modeling the psf.
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Fig. 10. Left:24 × 24 × 6 regularly sampled convolved image. Left:12 × 8 × 6 undersampled observed image.

VI. A PPLICATION ON REAL MRFM IMAGES

Here we illustrate the hierarchical Bayesian MAP reconstruction algorithm for real three

dimensional MRFM data. The data is a set of MRFM projections of a sample of tobacco virus.

Comprehensive details of both the experiment and the MRFM data acquisition protocol are given

in [8]. The observed sample consists of a collection of Tobacco mosaic virus particles that are

divided into a whole viral segment in addition to viral fragments. The projections are computed

from the measured proton distribution and the3-dimensional psf following the protocol described

in [8] and [9]. The resulting scan data are depicted in Figure11 (top) for four different distances

between the MRFM tip and the sample:d = 24nm, d = 37nm, d = 50nm andd = 62nm. Each

of these x-y slices is of size60× 32 pixels.

These experimental data are undersampled, i.e. the spatialresolution of the MRFM tip, and

therefore the psf function, is finer than the resolution of the observed slices. Consequently, these

data have been deconvolved taking into account the oversampling rates defined bydx = 3, dy = 2
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Fig. 11. Top: experimental scan data. Middle: scan data reconstructed from the proposed hierarchical Bayesian algorithm.

Bottom: scan data reconstructed from the Landweber algorithm.

anddz = 3 in the three directions. The MAP estimate of the unknown image is computed from

NMC = 1000 Gibbs samples of the proposed Bayesian algorithm initialized with the output of a

single Landweber iteration. Several more iterations of theLandweber algorithm would produce

the reconstructions reported in [35]. The image reconstructions produced by the Landweber and

Bayesian MAP algorithm are shown in Figs. 11-13. Three horizontal slices of the estimated

image5 are depicted in Figure 12. A3-dimensional view of the estimated profile of the virus

5Note that most part of the estimated3 dimensional image is empty space due to the very localizatedposition of the imaged

data.
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fragments is shown in Figure 13. The MMSE estimates of the parameters introduced in Section III

are σ̂2
MMSE = 0.10, âMMSE = 1.9× 10−12 and ŵMMSE = 1.4× 10−2.

Fig. 12. Three horizontal slices of the estimated image.

By forward projecting the estimated virus image through thepoint spread function one can

visually evaluate the goodness of fit of the reconstruction to the raw measured data. This is

depicted in Fig. 11. These figures are clearly in good agreement with the observed data (top). To

evaluate the convergence speed, the reconstruction error is represented in Figure 14 as a function

of the iterations for the proposed Bayesian and the Landweber algorithms. This shows that the

convergence rate of our algorithm is significantly better than the Landweber algorithm.

VII. CONCLUSIONS

This paper presented a hierarchical Bayesian algorithm fordeconvolving sparse positive images

corrupted by additive Gaussian noise. A Bernoulli-truncated exponential distribution was pro-

posed as prior distribution for the sparse image to be recovered. The unknown hyperparameters

of the model were integrated out from the posterior distribution of the image producing a full

posterior distribution that can be used for estimation of the pixel values by maximization (MAP)

or integration (MMSE). An efficient Gibbs sampler was used togenerate samples according to

this posterior distribution. The derived Bayesian estimators significantly outperformed several

previously proposed sparse reconstruction algorithms. Our approach was implemented on real

MRFM data to form a3D image of a tobacco virus. Future work will include extension of

the proposed method to other sparse bases, inclusion of uncertain point spread functions, and

investigation of molecular priors.

September 23, 2008 DRAFT



22

Fig. 13. 3-dimensional view of the estimated profile of the Tobacco virus fragments.

APPENDIX I

DERIVATION OF THE CONDITIONAL
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Fig. 14. Error reconstructions as functions of the iteration number for the proposed algorithm (continuous blue line) and

Landweber algorithm (dotted red line).

POSTERIOR DISTRIBUTIONf (xi |w, a, σ2,x−i,y )

The posterior distribution of each componentxi (i = 1, . . . , M) conditionally upon the others

is linked to the likelihood function (3) and the prior distribution (7) via the Bayes’ formula:

f
(
xi|w, a, σ2,x−i,y

)
∝ f

(
y|x, σ2

)
f (xi|w, a) . (29)

This distribution can be easily derived by decomposingx on the standard orthonormal basis

B = {u1, . . . ,uM} , (30)

whereui is the ith column of theM ×M identity matrix. Indeed, let decompose

x = x̃i + xiui, (31)

wherex̃i is the vectorx whoseith element has been replaced by0. Then the linear property of

the operatorT (κ, ·) allows one to state:

T (κ,x) = T (κ, x̃i) + xiT (κ,ui) . (32)

Consequently, (29) can be rewritten

f
(
xi|w, a, σ2,x−i,y

)
∝ exp

(
−‖ei − xihi‖2

2σ2

)

×
[
(1− w)δ (xi) +

w

a
exp

(
−xi

a

)
1R∗

+
(xi)

]
,

(33)
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where6 



ei = y − T (κ, x̃i) ,

hi = T (κ,ui) .

(34)

An efficient way to computeei within the Gibbs sampler scheme is reported in Appendix II. Then,

straightforward computations similar to those in [7] and [34, Annex B] yield to the following

distribution:

f
(
xi|w, a, σ2,x−i,y

)
∝ (1− wi)δ (xi)

+ wiφ+

(
xi|µi, η

2
i

)
,

(35)

with 




η2
i =

σ2

‖hi‖2
,

µi = η2
i

(
hT

i ei

σ2
− 1

a

)
,

(36)

and 




ui =
w

a
C
(
µi, η

2
i

)
exp

(
µ2

i

2η2
i

)
,

wi =
ui

ui + (1− w)
.

(37)

The distribution in (35) is a Bernoulli-truncated Gaussiandistribution with hidden meanµi and

hidden varianceη2
i .

APPENDIX II

FAST RECURSIVE COMPUTATIONS

FOR SIMULATING ACCORDING TOf (x |w, a, σ2,y )

In the Gibbs sampling strategy presented in Section IV, the main computationally expensive

task is the generation of samples distributed according tof (xi |w, a, σ2,x−i,y). Indeed, the

evaluation of the hidden mean and hidden variance in (36) of the Bernoulli-truncated Gaussian

distribution may be costly, especially when the bilinear application T (·, ·) is not easily com-

putable. In this appendix, an appropriate recursive strategy is proposed to accelerate the Gibbs

sampling by efficiently updating the coordinatei of the vectorx at iteration t of the Gibbs

sampler.

6It can be noticed that, for deblurring applications,hi is also theith column of the matrixH introduced in (2).
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Let x(t,i−1) denote the current Monte Carlo state of the unknown vectorized imagex (i =

1, . . . , M):

x(t,i−1) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
. (38)

with, by definition,x(t,0) = x(t−1,M). Updatingx(t,i−1) consists of drawingx(t)
i according to the

Bernoulli-truncated Gaussian distributionf
(
xi

∣∣∣w, a, σ2,x
(t,i−1)
−i ,y

)
in (21) with:

x
(t,i−1)
−i =

[
x

(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
. (39)

The proposed strategy to simulate efficiently according to (21) is based on the following property.

Property: Given the quantityT
(
κ,x(0)

)
and the vectors{hi}i=1,...,M , simulating according to

f
(
xi

∣∣∣w, a, σ2,x
(t,i)
−i ,y

)
can be performed without evaluating the bilinear functionT (·, ·).

Proof : Simulating according to (21) mainly requires to compute the vectorei introduced by

(34):

ei = y − T
(
κ, x̃

(t,i−1)
i

)
, (40)

with

x̃
(t,i−1)
i =

[
x

(t)
1 , . . . , x

(t)
i−1, 0, x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
. (41)

Moreover, by using the decomposition in (31) and by exploiting the linear property ofT (κ, ·),
the vectorT

(
κ, x̃

(t,i−1)
i

)
in the right-hand side of (40) can be rewritten as:

T
(
κ, x̃

(t,i−1)
i

)
= T

(
κ,x(t,i−1)

)
− x

(t−1)
i hi, (42)

wherehi has been introduced in (34). Consequently, to prove the property, we have to demon-

strate that the vector series
{
T
(
κ,x(t,k)

)}
k=1,...,M

can be computed recursively without using

T (·, ·). Assume thatT
(
κ,x(t,i−1)

)
is available at this stage of the Gibbs sampling and thatx

(t)
i

has been drawn. The new Monte Carlo state is then:

x(t,i) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
. (43)

Similarly to (42), the vectorT
(
κ,x(t,i)

)
can be decomposed as follows:

T
(
κ,x(t,i)

)
= T

(
κ, x̃

(t,i−1)
i

)
+ x

(t)
i hi. (44)
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Therefore, combining (42) and (44) allow one to state:

T
(
κ,x(t,i)

)
= T

(
κ,x(t,i−1)

)
+
(
x

(t)
i − x

(t−1)
i

)
hi.

�

The bilinear functionT (·, ·) only needs to be used at the very beginning of the Gibbs sampling

algorithm to evaluateT
(
κ,x(0)

)
and the vectors{hi}i=1,...,M . The resulting simulation scheme

corresponding to step 3 of Algorithm 1 is shown in Algorithm 2.

ALGORITHM 2:

Efficient simulation according to f
(
x
∣∣w, a, σ2,y

)

For i = 1, . . . , M, update theith coordinate of the vector

x(t,i−1) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T

via the following steps:

1. compute‖hi‖2,

2. setT
(
κ, x̃

(t,i−1)
i

)
= T

(
κ,x(t,i−1)

)
− x

(t−1)
i hi,

3. setei = x− T
(
κ, x̃

(t,i−1)
i

)
,

4. computeµi, η2
i andwi as defined in (36) and (37),

5. drawx
(t)
i according to (21),

6. setx(t,i) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
,

7. setT
(
κ,x(t,i)

)
= T

(
κ, x̃

(t,i−1)
i

)
+ x

(t)
i hi.

APPENDIX III

SIMULATION ACCORDING TO A
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BERNOULLI-TRUNCATED GAUSSIAN DISTRIBUTION

This appendix describes how we generate random variables distributed according to a Bernoulli-

truncated Gaussian distribution with parameters(w, m, s2) whose pdf is:

f
(
x|λ, m, s2

)
= (1− λ) δ(x)

+
λ

C (m, s2)
exp

[
−(x−m)2

2s2

]
1R∗

+
(x)

whereC (m, s2) has been defined in (23). Monte Carlo draws from this density can be obtained

by using an auxiliary binary variableε following the strategy shown in Algorithm 3.

ALGORITHM 3:

Simulation according to

a Bernoulli-truncated Gaussian distribution

1. generateε according toε ∼ Ber (λ),

2. set





x = 0, if ε = 0;

x ∼ N+
(
m, s2

)
, if ε = 1.

In Algorithm 3,Ber (·) andN+ (·, ·) denote the Bernoulli and the positive truncated Gaussian

distributions respectively. In step2, samples distributed according to the truncated Gaussian

distribution can be generated by using an appropriate accept-reject procedure with instrumental

distributions [17], [33], [39].

ACKNOWLEDGEMENTS

The authors would like to thank M. Ting for providing the codeto generate point spread

functions of MRFM tip and for interesting suggestions regarding this work. The authors are also

very grateful to Dr. Daniel Rugar who provided the real data used in Section VI as well as a

valuable feedback about this paper.

September 23, 2008 DRAFT



28

REFERENCES

[1] S. Alliney and S. A. Ruzinsky, “An algorithm for the minimization of mixed l1 and l2 norms with application to Bayesian

estimation,”IEEE Trans. Signal Processing, vol. 42, no. 3, pp. 618–627, March 1994.

[2] H. Andrews and B. Hunt,Digital Image Restoration. Englewood Cliffs, NJ: Prentice-Hall, 1977.

[3] S. Bourguignon and H. Carfantan, “Bernoulli-Gaussian spectral analysis of unevenly spaced astrophysical data,” in Proc.

IEEE Workshop on Stat. Signal Processing (SSP), Bordeaux, France, July 2005, pp. 811–816.

[4] S. Bourguignon, H. Carfantan, and J. Idier, “A sparsity-based method for the estimation of spectral lines from irregularly

sampled data,”IEEE J. Sel. Topics Signal Processing, vol. 1, no. 4, Dec. 2007.

[5] F. Champagnat, Y. Goussard, and J. Idier, “Unsuperviseddeconvolution of sparse spike trains using stochastic approxima-

tion,” IEEE Trans. Signal Processing, vol. 44, no. 12, pp. 2988–2998, Dec. 1996.

[6] S. Chao, W. M. Dougherty, J. L. Garbini, and J. A. Sidles, “Nanometer-scale magnetic resonance imaging,”Review Sci.

Instrum., vol. 75, no. 5, pp. 1175–1181, April 2004.

[7] Q. Cheng, R. Chen, and T.-H. Li, “Simultaneous wavelet estimation and deconvolution of reflection seismic signals,”IEEE

Trans. Geosci. and Remote Sensing, vol. 34, no. 2, pp. 377–384, March 1996.

[8] C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,”Proc. Nat.

Academy of Science, 2008, submitted.

[9] ——, “Nanoscale magnetic resonance imaging. Supplementary information,” Proc. Nat. Academy of Science, 2008,

submitted.

[10] J. Diebolt and E. H. S. Ip., “Stochastic EM: method and application,” in Markov Chain Monte Carlo in Practice, W. R.

Gilks, S. Richardson, and D. J. Spiegelhalter, Eds. London:Chapman & Hall, 1996, pp. 259–273.

[11] N. Dobigeon and J.-Y. Tourneret, “Joint segmentation of wind speed and direction using a hierarchical model,”Comput.

Stat. & Data Analysis, vol. 51, no. 12, pp. 5603–5621, Aug. 2007.

[12] N. Dobigeon, J.-Y. Tourneret, and C.-I Chang, “Semi-supervised linear spectral unmixing using a hierarchical Bayesian

model for hyperspectral imagery,”IEEE Trans. Signal Processing, vol. 56, no. 7, pp. 2684–2695, July 2008.

[13] N. Dobigeon, J.-Y. Tourneret, and M. Davy, “Joint segmentation of piecewise constant autoregressive processes processes

by using a hierarchical model and a Bayesian sampling approach,” IEEE Trans. Signal Processing, vol. 55, no. 4, pp.

1251–1263, April 2007.

[14] N. Dobigeon, J.-Y. Tourneret, and J. D. Scargle, “Jointsegmentation of multivariate astronomical time series: Bayesian

sampling with a hierarchical model,”IEEE Trans. Signal Processing, vol. 55, no. 2, pp. 414–423, Feb. 2007.

[15] A. Doucet and P. Duvaut, “Bayesian estimation of state-space models applied to deconvolution of Bernoulli-Gaussian

processes,”Signal Processing, vol. 57, no. 2, pp. 147–161, March 1997.

[16] C. Févotte, B. Torrésani, L. Daudet, , and S. J. Godsill, “Sparse linear regression with structured priors and application to

denoising of musical audio,”IEEE Trans. Audio, Speech, Language Processing, vol. 16, no. 1, pp. 174–185, Jan. 2008.

[17] J. Geweke, “Efficient simulation from the multivariatenormal and Student-T distributions subject to linear constraints,”

in Computing Science and Statistics, Proc. of the 23th Symposium on the Interface, E. M. Keramidas, Ed. Fairfax, VA:

Interface Foundation of North America, Inc., 1991, pp. 571–578.

[18] S. J. Godsill and P. J. W. Rayner, “Statistical reconstruction and analysis of autoregressive signals in impulsivenoise using

the Gibbs sampler,”IEEE Trans. Speech, Audio Proc., vol. 6, no. 4, pp. 352–372, July 1998.

[19] R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,”IEEE Trans. Inf. Theory, vol. 49, no. 12, pp.

3320–3325, Dec. 2003.

September 23, 2008 DRAFT



29

[20] P. C. Hammel, D. V. Pelekhov, P. E. Wigen, T. R. Gosnell, M. M. Midzor, and M. L. Roukes, “The Magnetic-Resonance

Force Microscope: A new tool for high-resolution, 3-D, subsurface scanned probe imaging,”Proc. IEEE, vol. 91, no. 5,

pp. 789–798, May 2003.

[21] K. Herrity, R. Raich, and A. O. Hero, “Blind deconvolution for sparse molecular imaging,” inProc. IEEE Int. Conf.

Acoust., Speech, and Signal (ICASSP), Las Vegas, USA, April 2008, pp. 545–548.

[22] J. Idier and Y. Goussard, “Stack algorithm for recursive deconvolution of Bernoulli-gaussian processes,”IEEE Trans. Signal

Processing, vol. 28, no. 5, pp. 67–79, Sept. 1990.

[23] H. Jeffreys, “An invariant form for the prior probability in estimation problems,”Proc. of the Royal Society of London.

Series A, vol. 186, no. 1007, pp. 453–461, 1946.

[24] ——, Theory of Probability, 3rd ed. London: Oxford University Press, 1961.

[25] I. M. Johnstone and B. W. Silverman, “Needles and straw in haystacks: empirical Bayes estimates of possibly sparse

sequences,”Ann. Stat., vol. 32, no. 4, pp. 1594–1649, 2004.

[26] J. J. Kormylo and J. M. Mendel, “Maximum likelihood detection and estimation of Bernoulli-Gaussian processes,”IEEE

Trans. Inf. Theory, vol. 28, no. 3, pp. 482–488, May 1982.

[27] S. Kuehn, S. A. Hickman, and J. A. Marohn, “Advances in mechanical detection of magnetic resonance,”J. Chemical

Physics, vol. 128, no. 5, Feb. 2008.

[28] E. Kuhn and M. Lavielle, “Coupling a stochastic approximation version of EM with an MCMC procedure,”ESAIM Probab.

Statist., vol. 8, pp. 115–131, 2004.

[29] L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,”Amer. J. Math., vol. 73, no. 3, pp.

615–624, July 1951.

[30] M. Lavielle and E. Lebarbier, “An application of MCMC methods for the multiple change-points problem,”Signal

Processing, vol. 81, no. 1, pp. 39–53, Jan. 2004.

[31] M. Lavielle, “Bayesian deconvolution of Bernoulli-Gaussian processes,”Signal Processing, vol. 33, no. 1, pp. 67–79, July

1993.

[32] J. Mamin, R. Budakian, and D. Rugar, “Point response function of an MRFM tip,” IBM Research Division, Tech. Rep.,

Oct. 2003.

[33] V. Mazet, D. Brie, and J. Idier, “Simulation of postive normal variables using several proposal distributions,” inProc.

IEEE Workshop on Statistical Signal Processing (SSP), Bordeaux, France, July 2005, pp. 37–42.
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