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Abstract

This paper presents a hierarchical Bayesian model to reécehsparse images when the observa-
tions are obtained from linear transformations and coedfiity an additive white Gaussian noise. Our
hierarchical Bayes model is well suited to such naturallgrsp image applications as it seamlessly
accounts for properties such as sparsity and positivityhefitnage via appropriate Bayes priors. We
propose a prior that is based on a weighted mixture of a pesitkponential distribution and a mass at
zero. The prior has hyperparameters that are tuned autathatoy marginalization over the hierarchical
Bayesian model. To overcome the complexity of the postatistribution, a Gibbs sampling strategy
is proposed. The Gibbs samples can be used to estimate tige imde recovered, e.g. by maximizing
the estimated posterior distribution. In our fully Bayese&pproach the posteriors of all the parameters
are available. Thus our algorithm provides more informmatiban other previously proposed sparse
reconstruction methods that only give a point estimate. gérormance of our hierarchical Bayesian
sparse reconstruction method is illustrated on synthetit real data collected from a tobacco virus

sample using a prototype MRFM instrument.
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. INTRODUCTION

For several decades, image deconvolution has receivedasiag interest in the literature
[2], [44]. Deconvolution mainly consists of reconstrugtiimages from observations provided
by optical devices and may include denoising, deblurringestoration. The applications are
numerous including astronomy [46], medical imagery [48inote sensing [38] and photography
[52]. More recently, a new imaging technology, called Magn&esonance Force Microscopy
(MRFM), has been developed (see [35] and [27] for recentres). This non-destructive method
allows one to improve the detection sensitivity of standara@gnetic resonance imaging [43].
Because of its potential atomic-level resolupthe 2-dimensional or3-dimensional images
resulting from this technology are naturally sparse in ttemdard pixel basis. Indeed, as the
observed objects are molecules, most of the image is empespn this paper, a hierarchical
Bayesian model is proposed to perform reconstruction ofi sonages.

Sparse signal and image deconvolution has motivated @s@amany scientific applications
including: spectral analysis in astronomy [4]; seismiasiiganalysis in geophysics [7], [42]; and
deconvolution of ultrasonic B-scans [36]. We propose heneeearchical Bayesian model that is
based on selecting an appropriate prior distribution fer uhknown image and other unknown
parameters. The image prior is composed of a weighted neixtdira standard exponential
distribution and a mass at zero. When the non-zero part sfghor is chosen to be a centered
normal distribution, this prior reduces to a Bernoulli-Galan process. This distribution has been
widely used in the literature to build Bayesian estimatorssparse deconvolution problems (see
[5], [15], [22], [26], [31] or more recently [3] and [16]). Heever, choosing a distribution with
heavier tail may improve the sparsity inducement of therp@ombining a Laplacian distribution
with an atom at zero results in the so-called LAZE prior. Tdlistribution has been used in [25]
to solve a general denoising problem in a non-Bayesian gunagimum likelihood estimation
framework. In [49], [51], this prior has also been used faarsp reconstruction of noisy images,
including MRFM. The principal weakness of these previouprapches is the sensitivity to

hyperparameters that determine the prior distributiog, the LAZE mixture coefficient and the

INote that the current state of art of the MRFM technologyvesimne to acquire images with nanoscale resolution. Indeed,
several hundreds of nuclei are necessary to get a detectigilal. However, atomic-level resolution might be obtdine the

future.
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weighting of the prior vs the likelihood function. The hierhical Bayesian approach proposed
in this paper circumvents these difficulties. Specificatlynew prior composed of a mass at
zero and a single-sided exponential distribution is iniiet!, which accounts for positivity and
sparsity of the pixels in the image. Conjugate priors on tyygehparameters of the image prior
are introduced. It is this step that makes our approach ricieial Bayesian. The full Bayesian
posterior can then be derived from samples generated bydvantkain Monte Carlo (MCMC)
methods [41].

The estimation of hyperparameters involved in the priotritistion described above is the
most difficult task and poor estimation leads to instabilEmpirical Bayes (EB) and Stein
unbiased risk (SURE) solutions were proposed in [49], [®lfeéal with this issue. However,
instability was observed especially at higher signal-oise ratios (SNR). In the Bayesian estima-
tion framework, two approaches are available to estimatsethyperparameters. One approach
couples MCMC methods to an expectation-maximization (ENodthm or to a stochastic
EM algorithm [28], [30] to maximize a penalized likelihoodriction. The second approach
defines non-informative prior distributions for the hypet@meters; introducing a second level
of hierarchy in the Bayesian formulation. This latter fuBayesian approach, adopted in this
paper, has been successfully applied to signal segmemfatl, [13], [14] and semi-supervised
unmixing of hyperspectral imagery [12].

Only a few works in the literature have been dedicated tonsitaction of MRFM image
data [6], [8], [53], [54]. In [20], several techniques basedl linear filtering and maximum-
likelihood principles have been proposed that do not ekploage sparsity. More recently,
Ting et al. has introduced sparsity penalized reconstruction metf@d8RFM (see [51] or
[50]). The reconstruction problem has been formulated ascamposition into a deconvolution
step and a denoising step, yielding an iterative threshgldiamework. In [51] the hyperpa-
rameters are estimated using penalized log-likelihootera including the SURE approach
[47]. Despite promising results, especially at low SNR, @zed likelihood approaches require
iterative algorithms that are often slow to converge and ganstuck on local maxima [10].
In contrast to [51], the fully Bayesian approach presentethis paper converges quickly and
produces estimates of the entire posterior and not just imexima. Indeed, the hierarchical
Bayesian formulation proposed here asymptotically geasr@ayes-optimal estimates of all

image parameters, including the hyperparameters.
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In this paper, the response of the MRFM imaging device israssuto be known. While it
may be possible to extend our methods to unknown point sgreadions, e.g., along the lines
of [21], the case of sparse blind deconvolution is outsidéhefscope of this paper.

This paper is organized as follows. The deconvolution mabls formulated in Sectionlll.
The hierarchical Bayesian model is described in SectiorSkctior IV presents a Gibbs sampler
that allows one to generate samples distributed accorditiget posterior of interest. Simulation
results, including extensive performance comparisonpagsented in Sectidn]V. In Sectign] VI
we apply our hierarchical Bayesian method to reconstroaifaa tobacco virus from real MRFM

data. Our main conclusions are reported in Sedtion VII.

[I. PROBLEM FORMULATION

Let X denote al; x ... x [, unknownn-dimensional pixelated image to be recovered (e.g.
n = 2 or n = 3). Observed are a collection d? projectionsy = [yl,...,yp]T which are
assumed to follow the model:
y =T (k,X)+n, Q)

whereT (-, -) stands for a bilinear functiom is a P x 1 dimension noise vector and is the
kernel that characterizes the response of the imaging elelicthe right-hand side of (1) is
an additive Gaussian noise sequence distributed accotding~ A (0, %l p), where theo? is
assumed to be unknown.

Note that in standard deblurring problems, the functibfy,-) represents the standard
dimensional convolution operatoy. In this case, the imagX can be vectorized yielding the

unknown imagex € R™ with M = P = [;l, . ..1,. With this notation, Eq.[{1) can be rewritten:
y=Hx+n o Y=k®@X+N (2)

wherey (resp.n) stands for the vectorized version &f (resp.IN) andH is an P x M matrix
that describes convolution by the psf
The problem addressed in the following sections consiststifnatingx ando? under sparsity

and positivity constraints om given the observationg, the psfx and the bilinear functi(%
T(--).

%In the following, for sake of conciseness, the same notalign, -) will be adopted for the bilinear operations used on

n-dimensional imageX and used onV/ x 1 vectorized imagex.
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I1l. HIERARCHICAL BAYESIAN MODEL
A. Likelihood function

The observation model defined inl (1) and the Gaussian piepest the noise sequenae

P 2
f(ylx,0%) = (27302) exp (—Hy — Cg;';’X)” ) : 3

where|-|| denotes the standard norm: ||x||* = xTx.

yield:

B. Parameter prior distributions

The unknown parameter vector associated with the observatiodel defined in[{1) i® =
{x,0?}. In this section, we introduce prior distributions for thetsvo parameters; which are
assumed to be independent.

1) Image prior: First let consider the exponential distribution with shgaeameter > 0:

1 T;
go (@) = ~exp (=) 1ny (@), @
wherelg () is the indicator function defined off:

15 () 1, if z € E, (5)
E\T) =
(), otherwise.

Choosingg, (-) as prior distributions forz; (i = 1,..., M) leads to a MAP estimator of that

corresponds to a maximum-penalized likelihood estimate with a positivity consrﬂ%i Indeed,

assuming the component (i = 1, ..., P) a priori independent allows one to write the full prior
distribution forx = [z1,..., 2] :
(" Il
Ya (X) - a exp a 1{x>0} (X) ) (6)

where{x - 0} = {x e RM;z; > 0,Vi=1,...,M} and|-||, is the standard; norm ||x||, =
> . |lz;|. This estimator has shown interesting sparse propertieBdgesian estimation [1] and

signal representation [19].

3Note that a similar estimator using a Laplacian prior or(; = 1,..., M) was proposed in [48] for regression problems

and is usually referred to as the LASSO estimator but withpmsitivity constraint.
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Coupling a standard probability density function (pdf) lwén atom at zero is another alter-
native to ensure sparsity. This strategy has for instanea lnsed for located event detection
[26] such as spike train deconvolution [5], [7]. In order hwriease the sparsity of the prior, we

propose to use the following distribution derived fram(-) as prior distribution forz;:
f(xilw,a) = (1 —w)d (2;) + wga () , (7)

whered (-) is the Dirac function. This prior is similar to the LAZE didtution (Laplacian pdf and
an atom at zero) introduced in [25] and used, for example4j,[[51] for MRFM. However,
the proposed prior in{7) allows one to take into account tbsitywity of the pixel value to
be estimated. By assuming the componentso be a priori independent & 1,..., M), the

following prior distribution is obtained foxk:

f (x|w, a) H (x;) + wgq ()] - (8)

=1
Introducing the index subsef® = {i;z; =0} andZ, = Z, = {i;z; # 0} allows one to
rewrite the previous equation as follows:

f(x|w,a) = [(1 —w)™ ]9 (xz-)] [wm I 9 (xi)] , 9)

€21y i€l
with n. = card {Z.}, ¢ € {0,1}. Note thatn, = M — n; andn; = ||x||, where |||, is the
standard/, norm ||x||, = # {4; z; # 0}.
2) Noise variance prior: A conjugate inverse-Gamma distribution with parametgm@nd 7

is chosen as prior distribution for the noise variance [4ppéndix AJ:

o?|v,y NIQ(2 g) (10)

In the following, v will be fixed tor = 2 and~ will be an hyperparameter to be estimated (see
[12], [13], [37]).

C. Hyperparameter priors

The hyperparameter vector associated with the previows gistributions is® = {a,~y, w}.
Obviously, the accuracy of the proposed Bayesian modelrikpen the values of these hy-
perparameters. If prior knowledge, e.g. mean number of drezero pixels, is available, these

parameters can be tuned manually to their actual valuesekawin practical situations, such
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prior information is not available. In this case, as outline Sectiorl]l, these hyperparameters
can be estimated directly from the data. Priors for thesetpgrameters, sometimes referred to
as “hyperpriors” are detailed below.

1) Hyperparameter a: A conjugate inverse-Gamma distribution is assumed for ipgrameter

ala ~IG (g, 1), (11)

with a = [ozo,ozl]T. The fixed hyperparameters, and «; have been chosen to obtain a vague
prior: iy = oy = 10719 (see for example [18] for a similar choice).
2) Hyperparameter v: A non informative Jeffreys’ prior [23], [24] is assumed foygderpa-

rameter-y:

ﬂwa%me- (12)

3) Hyperparameter w: A conjugate beta distribution with fixed hyperparametersand w

is chosen as prior distribution fav:
wlw ~ B (wi,wy), (13)

with w = [wy, wy]” and whereB (a, b) denotes the Beta distribution with parametgrsh). Note
that by choosing, = w; = 1, the Beta distribution reduces to the uniform distributam|0, 1],
which gives the least informative prior.

Assuming that the individual hyperparameters are indepeinthe full hyperparameter prior

distribution for® can be expressed as:

f(®@le,w) = f(w) f(7) f(a)

_ wo— 14)
wr ™ (1 — w)“° ! (
= 1 1 1
ava (wlawO) [0,1] (’LU) R+ (a) R+ (7) 5
with B (w1, wp) = % wherel'(-) denotes the Gamma function.
D. Posterior distribution
The posterior distribution of@, ®} can be computed as follows:
f(8,®ly,a,w) o< f(y|0) f(0]®) f (Pl w), (15)
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Fig. 1. DAG for the parameter priors and hyperpriors (thedikgperparameters appear in dashed boxes).

with
f(61®) = f (x[a,w) f (o°]7), (16)

where f (y|0) and f (®|a,w) have been defined inl(3) and {14). This hierarchical strectur
represented on the directed acyclic graph (DAG) in Eig. Iowal one to integrate out the

parametew? and the hyperparameter vectrin the full posterior distribution (15), yielding:

B(w; +n1,wo+mn0) I'(ng+ ag)
ly = T (s, x)|” (%) + ™™

where, as defined in paragraph 1lI-B:1, = ||x||, andny, = M — ||x]|,.

The next section presents an appropriate Gibbs sampliagegyr [41] that allows one to

f(xly, e, w) o A7)

generate samples distributed according to the postersritdition f (x|y, o, w).

IV. A GIBBS SAMPLING STRATEGY

FOR SPARSE IMAGE RECONSTRUCTION

In this section we describe the Gibbs sampling strategy éregating sampleéx(“}t:l’__
distributed according to the posterior distribution[in](1&s simulating directly according t6_(1L7)
is a difficult task, it is much more convenient to generate @amdistributed according to the
joint posteriorf (x, 02|y, o, w). The main steps of this algorithm are detailed in subsesfigA

and[1V-B (see also Algorithril 1 below).
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ALGORITHM 1:

Gibbs sampling algorithm for sparse image reconstruction

« Initialization:

— Sample parametet®) from pdf in (9),

— Sample paramete®*©) from the pdf in [1D),

— Sett « 1,
o lterations:fort=1,2,..., do

1. Sample hyperparameterf?) from the pdf in [I9),
Sample hyperparametef*) from the pdf in [20),
Fori=1,...,M, sample parametargt) from pdf in (23),
Sample parameter(*) from the pdf in [24),

g M e

Sett «— t + 1.

A. Generation of samples according to f (x |02y, o, w)

To generate samples distributed according {e |02, y,w), it is very convenient to sample
according tof (x,w,a|o?,y,w) in the following 3-step procedure.

1) Generation of samples according to f (w|x,w): Using [9), the following result can be
obtained:

)no+wo—1wn1+w1—1 (18)

9

fwlxw)ox(l—w

where ny, and n; have been defined in paragraph IlI-B.1. Therefore, germeradf samples

according tof (w |x,w) is achieved as follows:
w|x,w ~ Be (wy + ny,wo + no) - (19)

2) Generation of samples according to f (a |x, a): Looking at the joint posterior distribution

@5), it yields:
a|x, o ~ ZG (|Ix[ly + o, [[x]l, + a1). (20)
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3) Generation of samples according to f (x|w,a,0? y): The prior chosen forr; (i =
1,..., M) yields a posterior distribution ok that is not closed form. However, the posterior
distribution of each component, (: = 1,..., M) conditionally upon the others can be easily

derived. Indeed straightforward computations detailedppendix yield:

/ ($i|waa> UQaX—uY) oc (1 —w;)d ()
(21)

+ wi¢+ (xz|/llv 7712) )
wherex_; stands for the vectox whoseith component has been removed andand»? are
given in Appendixll. In[(21)¢, (-, m, s*) stands for the pdf of the truncated Gaussian distribution

defined onR?* with hidden parameters equal to meanand variances*:

on (x,m, 32) = mexp [—@;Tm)] Ir: (z), (22)

with

€ (m.s?) = /7 {1+erf(\/2%)]

The form in [21) specifies;|w, a, 0%, x_;,y as a Bernoulli-truncated Gaussian variable with

(23)

parameterw;, 1i;, n?). AppendixIl presents an algorithm that can be used to geaesamples
from this distribution.

To summarize, generating samples distributed accordirfig*dw, o2, a, , y ) can be performed
by updating the coordinates af successively using/ Gibbs moves (requiring generation of

Bernoulli-truncated Gaussian variables).

B. Generation of samples according to f (o2 |x,y)

Samples are generated as the following way:

2
0_2 ‘X,y Nz‘g <§7 ||y_T2(K’7X)|| > ) (24)

V. SIMULATION ON SYNTHETIC IMAGES
A. Reconstruction of 2-dimensional image

In this subsection, 82 x 32 synthetic image, depicted in Figl 2 (right), is simulateihgs
the prior in [9) with parametes = 1 andw = 0.02. In this figure and in the following ones,

white pixels stands for identically null values. A generabbytical derivation of the psf of the
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TABLE |

PARAMETERS USED TO COMPUTE THEMRFM PSF

Parameter

Value
Description Name
Amplitude of external magnetic field Bex 9.4 x 10° G
Value of Bmag in the resonant slice | Bies 1.0 x 10* G
Radius of tip Ry 4.0 nm
Distance from tip to sample d 6.0 nm
Cantilever tip moment m 4.6 x 10° emu

11

Peak cantilever oscillation oscillation xpk 0.8 nm
Maximum magnetic field gradient Gmax 125
-4
5
- [}
-2 10 - -
[}
15 =
0
20
[}
2 25
|
4 30
-4 -2 0 2 4 5 10 15 20 25 30

Fig. 2.

Left: Psf of the MRFM tip. Right: unknown sparse imagebe estimated.

MRFM tip has been given in [32] and is explained in [51]. Faling this model, al0 x 10

2-dimensional convolution kernel, represented in [Fig. Zt)(lehas been generated when the

physical parameters are tuned to the values gathered ir [Mafihe corresponding matrik
introduced inl(R) is of siz&024 x 1024. The observed measurememgtsdepicted in Figl. 2 (right)

are of sizeP = 1024. These observations are corrupted by an additive Gaussiaa with two

different variances?> = 1.2 x 107! ando? = 1.6 x 1073, corresponding to signal-to-noise ratios

SNR = 2dB andSNR = 20dB respectively.
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1) Smulation results. The observations are processed by the proposed algoritinedhsists
of Nyc = 2000 iterations of the Gibbs sampler witki,; = 300 burn-in iterations. Then the MAP

estimator of the unknown image is computed by retaining amony = {x®} e the

generated sample that maximizes the posterior distributia(17):
Xwap = argmax f (x|y)
XERJ‘f
(25)

~ argmax f (x|y) .
XEX

These estimates are depicted in Fig. 3 for the two levels @&fenconsidered. Observe that the

estimated image is very similar to the actual image, eveovatSNR.
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Fig. 3. Top, left (resp. right): noisy observations for SNRdB (resp.20dB). Bottom, left (resp. right): reconstructed image

for SNR= 2dB (resp.20dB).

Moreover, as the proposed algorithm generates sampletdistl according to the posterior

distribution in [17T), these samples can be used to competedisterior distributions of each

parameter. As examples, the posterior distributions ofhtyy@erparameters andw, as well as

the noise variance?, are shown in Figll4,]5 arld 6. These estimated distributioesragood
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agreement with the ground truth values of these parametngiomly drawn from the prior

distribution.

faly)
-
1

15F b

f(aly)
=
1

0.5 4

Fig. 4. Posterior distribution of hyperparametefleft: SNR = 2dB, right: SNR = 20dB).

The posterior distributions of four different pixels arepdsed in Fig[ 7. These posteriors are
consistent with the actual values of these pixels that gyeesented as dotted red lines in these
figures.

2) Comparison of reconstruction performances. Here we compare our proposed hierarchical
Bayesian method to the methods of [49], [51]. The technigoexposed in [49], [51] are
based on penalized likelihood EM algorithms that perfornpeital estimation of the unknown
hyperparameters. Therein, two empirical Bayesian estirmatlenoted Emp-MAP-Lap and Emp-
MAP-LAZE, based on a Laplacian or a LAZE prior respectivelyere proposed. We also
compare with the estimator provided by a standard Landwalggrithm [29]. These will be
compared to our hierarchical Bayesian MAP estimator, give@5), and also to a minimum
mean square error (MMSE) estimator extracted from the estichfull Bayes posteriof_(17).

The MMSE estimator of the unknown parameters obtained by an empirical averaging over
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| |
0 0.01 0.02 0.03 0.04 0.05

0.06

100

80

60

f(wly)

401

0 0.01 0.02 0.03 0.04 0.05
Fig. 5. Posterior distribution of hyperparameter(left: SNR = 2dB, right: SNR = 20dB).

the lastV, = 1700 outputs of the Gibbs sampler according to:

Xmmse = E [X|Y]

1 &
~ Z (Npi+t)
N — X .
N, t=1

0.06

(26)

As in [51] we compare estimators with respect to severaloperdnce criteria. Let = x — x

denote the reconstruction error whens the estimator of the image to be recovered. These

criteria are: the/y, ¢; and ¢,-norms ofe, which measures the accuracy of the reconstruction,

and thely-norm of the estimatok, which measures its sparsity. As pointed out in [51], small

non-zero values of the pixel are usually not distinguisedtdm exactly zero values by a human

being. Thus, a less strict measHlm‘ sparsity than the,-norm, which is denoted-|;, is the

“The introduced measure of sparsity is dendtef}. However, it has to be mentioned that is not a norm.
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100 T T T T T T

80 b

60 b

f(a?ly)

40 b

0.08 0.09 0.1 0.11 0.12 0.13 0.14

6000 T T T T T T T T T

4000 b

f(a?ly)

2000 b

1.2 1.3 1.4 15 1.6 1.7 1.8 1.9 2 2.1 2.2
x 10

Fig. 6. Posterior distribution of hyperparameter (left: SNR = 2dB, right: SNR = 20dB).

number of reconstructed image pixels that are less thanemdiwveshold:

M
%l = La,cs (31)
=1 (27)

M
lells = Le<s ().
i=1

It what follows,d has been chosen ds= 102 ||x|| .. To summarize, the following criteria have
been computed for the image in paragraph VIA.1 for two lee€ISNR: ||e]|,, |lells llell;, [lells
1%[l, and [[x[[.

Table[Il shows the six performance measures for the five rdiffiealgorithms studied. The
proposed Bayesian methods (labeled “proposed MMSE” andptmsed MAP” in the table)
outperform the other estimators in terms/gfor /,-norms. Note that the MMSE estimation of
the unknown image is a non sparse estimator in/ghgorm sense. This is due to the very small
but non-zero posterior probability of non-zero value at ynpixels. The sparsity measufe|,

indicates that most of the pixels are in fact very close t@ Zz€he MAP estimator seems to be a
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50 , — , 50
40 : ] 40

30 30

(g 1Y)
104y oY)

2.05 2.1 2.15 2.2 2.25 2.3 1.65 1.7 1.75 1.8 1.85

%2310 X115
50 T 50
40 40

(55 )
10,5 6¥)

0 :
115 12 0.35 0.4 0.45 05
23,6 X11,26

Fig. 7. Posteriors distributions of the non-zero values é6r SNR = 20dB, (actual values are depicted with dotted red lines).

very powerful estimator for the sparse reconstruction j@mbas it seems to balance the sparsity
of the solution and the minimization of the reconstructioroe However, by construction, the

MMSE estimation will always have lower mean square error.

B. Reconstruction of undersampled 3-dimensional images

As discussed in Sectidn VI, the prototype MRFM instrumertiects data projections as irreg-
ularly spaced, or undersampled, spatial samples. In thisesion, we indicate how the image
reconstruction algorithm can be adapted to this underssorgdenario in 3D. For concreteness,
we illustrate by a concrete example. First4ax 24 x 6 image is generated such apixels have
non-zero values in eachslice. The resulting data is depicted in Hig. 9 (right) and. 8 (top).
This image to be recovered is assumed to be convolved witk ax 3 kernel that is represented
in Fig.[d (right). The resulting convolved image is depiciedig.[10 (left). However, the actually
observed image is an undersampled version of this imagee Moacisely, the sampling rates

are assumed to bé, = 2, d, = 3 d. = 1 respectively in the3 dimensions. Consequently the
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TABLE Il

RECONSTRUCTION PERFORMANCES FOR DIFFERENT SPARSE DECONMDILON ALGORITHMS.

Error criterion

Method
lello  llells Nl el MIxllo — [1%lls
SNR= 2dB
Landweber 1024 990 339.76 13.32 1024 990
Emp-MAP-Lap 18 17 14.13 4.40 0 0

Emp-MAP-LAZE 60 58 9.49 1.44 55 53

Proposed MMSE | 1001 30 3.84 0.72 1001 2r

Proposed MAP 19 16 2.38 0.81 13 13
SNR = 20dB

Landweber 1024 931 168.85 6.67 1024 931

Emp-MAP-Lap 33 18 1.27 0.31 28 23

Emp-MAP-LAZE | 144 19 1.68 0.22 144 27
Proposed MMSE | 541 5 0.36 0.11 541 16

Proposed MAP 19 7 0.39 0.13 16 16

observed3D image, shown in Fid. 10, is of sizZe x 8 x 6. Finally, an i.i.d. Gaussian noise with
o = 0.02 is added following the model iml(1). Note that under theseimggions, the application

T (-,-) can be split into two standard operations following the cosifion:
T (K, X) = 9d, dy .. (k@ X), (28)

wheregy, 4,.4. (-) stands for the undersampling function.

For illustration the proposed hierarchical Bayesian atgor is used to perform the sparse
reconstruction with undersampled data. The number of M@a#do runs was fixed tdVyc =
2000 with Ny,; = 300 burn-in iterations. Figurel 8 shows the result of applying pnoposed MAP

estimator to the estimated posterior.
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Fig. 9. Left:24 x 24 x 6 unknown image to be recovered.

September 23, 2008

Rightx 5 x 3 kernel modeling the psf.
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Fig. 10. Left:24 x 24 x 6 regularly sampled convolved image. Lef2 x 8 x 6 undersampled observed image.

VI. APPLICATION ON REALMRFM IMAGES

Here we illustrate the hierarchical Bayesian MAP recomtsion algorithm for real three
dimensional MRFM data. The data is a set of MRFM projectioha sample of tobacco virus.
Comprehensive details of both the experiment and the MRH aequisition protocol are given
in [8]. The observed sample consists of a collection of Tobamosaic virus particles that are
divided into a whole viral segment in addition to viral fragnts. The projections are computed
from the measured proton distribution and 8hdimensional psf following the protocol described
in [8] and [9]. The resulting scan data are depicted in Fifllf€¢top) for four different distances
between the MRFM tip and the samplé= 24nm, d = 37nm, d = 50nm andd = 62nm. Each
of these x-y slices is of sizé0 x 32 pixels.

These experimental data are undersampled, i.e. the spagialution of the MRFM tip, and
therefore the psf function, is finer than the resolution &f tivserved slices. Consequently, these

data have been deconvolved taking into account the ovetsamptes defined by, = 3, d, = 2
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Experimental data

Reconstruction (Gibbs)

Reconstruction (Land.)

20 40 60 20 40 60 20 40 60

Fig. 11. Top: experimental scan data. Middle: scan datansnoacted from the proposed hierarchical Bayesian alyorit

Bottom: scan data reconstructed from the Landweber algorit

andd, = 3 in the three directions. The MAP estimate of the unknown iensgcomputed from
Nuc = 1000 Gibbs samples of the proposed Bayesian algorithm inigdliwith the output of a
single Landweber iteration. Several more iterations oflthedweber algorithm would produce
the reconstructions reported in [35]. The image reconstms produced by the Landweber and
Bayesian MAP algorithm are shown in Figs.l[11-13. Three lotal slices of the estimated

imagél are depicted in Figure“12. A-dimensional view of the estimated profile of the virus

Note that most part of the estimat8diimensional image is empty space due to the very localizagsition of the imaged

data.
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fragments is shown in Figufel13. The MMSE estimates of tharpaters introduced in Sectibn 11l

are&fAMSE = 0.10, ammse = 1.9 x 102 and Wumse = 1.4 X 102,

' N, i ]
; i m '
I'n | “rl | lll:l
* : oW W a
= r. a Fl. 1, 1

Fig. 12. Three horizontal slices of the estimated image.

By forward projecting the estimated virus image through ploet spread function one can
visually evaluate the goodness of fit of the reconstructmrine raw measured data. This is
depicted in Figl_I1. These figures are clearly in good agreemith the observed data (top). To
evaluate the convergence speed, the reconstruction smepliesented in Figurel14 as a function
of the iterations for the proposed Bayesian and the Landwalgerithms. This shows that the

convergence rate of our algorithm is significantly bettemthhe Landweber algorithm.

VIlI. CONCLUSIONS

This paper presented a hierarchical Bayesian algorithmdoonvolving sparse positive images
corrupted by additive Gaussian noise. A Bernoulli-truedaéxponential distribution was pro-
posed as prior distribution for the sparse image to be reedvd he unknown hyperparameters
of the model were integrated out from the posterior distidsuof the image producing a full
posterior distribution that can be used for estimation efgixel values by maximization (MAP)
or integration (MMSE). An efficient Gibbs sampler was usedjémerate samples according to
this posterior distribution. The derived Bayesian estormtsignificantly outperformed several
previously proposed sparse reconstruction algorithms. @pproach was implemented on real
MRFM data to form a3D image of a tobacco virus. Future work will include extemsiaf
the proposed method to other sparse bases, inclusion oftaimceoint spread functions, and

investigation of molecular priors.
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Fig. 13. 3-dimensional view of the estimated profile of the Tobaccawvifragments.

APPENDIX |

DERIVATION OF THE CONDITIONAL
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Fig. 14. Error reconstructions as functions of the iteratrmumber for the proposed algorithm (continuous blue lingj a

Landweber algorithm (dotted red line).

POSTERIOR DISTRIBUTIONf (z; |w,a, 0% x_;,y)

The posterior distribution of each component(i = 1, ..., M) conditionally upon the others

is linked to the likelihood function{3) and the prior digtution (7) via the Bayes’ formula:
f (@ilw,a,0* x0y) o f (y]x.0%) f (:lw.a). (29)
This distribution can be easily derived by decomposingn the standard orthonormal basis
B={u,...,uy}, (30)
whereu; is theith column of theM x M identity matrix. Indeed, let decompose
X = X; + 70, (31)

wherex; is the vectorx whoseith element has been replaced (ayThen the linear property of

the operatofl (k, -) allows one to state:
T(k,x)=T(k,%;) + 2T (K, ;) . (32)

Consequently[(29) can be rewritten

2 le; — ahy?
f (l'i|w,&,0 7X—i7y) XeXp\ ——F 5

202

(33)
X [(1 —w)o (x;) + %exp (—%) 1rs (xz)] ;
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Wher@
e, = y—T(Kl,il),
(34)
hl' =T (FL, ui) .
An efficient way to compute; within the Gibbs sampler scheme is reported in Appendixhief,

straightforward computations similar to those in [7] and,[2\nnex B] yield to the following

distribution:
f (ZUZ|'(U, a, 027 X—is Y) (8 (1 - w2)5 (xl)
(35)
+ wi¢+ (x2|MZ7 7]22) )
with
;= i
C g
36
i =1 2 >
o a
and 5
w Hi
U; = gC (:ul?,r]zz) exp (2 2) ’
i (37)
R
Cou (1 —w)’

The distribution in[(3b) is a Bernoulli-truncated Gaussihistribution with hidden meap,; and
hidden variancey?.

APPENDIX I
FAST RECURSIVE COMPUTATIONS

FOR SIMULATING ACCORDING TOf (x|w,a,0?,y)

In the Gibbs sampling strategy presented in Sedtidn IV, teérnomputationally expensive
task is the generation of samples distributed according (o; |w, a, 0% x_;,y). Indeed, the
evaluation of the hidden mean and hidden variancé ih (36h@f&ernoulli-truncated Gaussian
distribution may be costly, especially when the bilineaplagation 7' (-, -) is not easily com-
putable. In this appendix, an appropriate recursive gjyaie proposed to accelerate the Gibbs
sampling by efficiently updating the coordinateof the vectorx at iterationt of the Gibbs

sampler.

®It can be noticed that, for deblurring applicatioms, is also theith column of the matrixH introduced in [[R).
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Let x(**~1) denote the current Monte Carlo state of the unknown veadrimagex (i =

1,...,M):
. T
X(m_l) = [xgt)v ey Et)lv xgt 1)7 Ei_ll)v ) 1'5\3[_1)] . (38)
with, by definition,x®? = x(t=1:M) Updatingx(“*~1) consists of drawing:\" according to the
w,a,o? x(“ 1,y> in 1) with:

. T
e [ LSRR L PR s vl (39)

Bernoulli-truncated Gaussian dIStrIbutl(jl’(xl

The proposed strategy to simulate efficiently accordin@ff) (s based on the following property.

.....

w, a, 02,x(_t;i),y> can be performed without evaluating the bilinear functiot, -).

Proof: Simulating according td (21) mainly requires to compute tectore; introduced by
@4):
=y - T( g (bi= ”) , (40)

with
| T
K0 = [0 a0 0000l o

7;17

Moreover, by using the decomposition [n31) and by expigitihe linear property of (k, -),
the vectorT( b= 1’) in the right-hand side of {40) can be rewritten as:

T (k%) = T (1, x70) =0V, (42)

K3 K3

whereh; has been introduced if_(84). Consequently, to prove thegptpgpnve have to demon-

strate that the vector serigd’ (k,x"*)} _  can be computed recursively without using

-----

T (-,-). Assume thafl" (K‘,,X(t’i_l)) is available at this stage of the Gibbs sampling and ﬁff?at

has been drawn. The new Monte Carlo state is then:

| T
X(t,z) = [gjgt), ce l’z(-t_)la xz('t)v xz(i-_ll)’ T ,$§\t4_1)] . (43)

Similarly to (42), the vecto (x,x"") can be decomposed as follows:

T (F&,X(t’i)) =T (K‘, x(“ 1)) + mgt)hi. (44)
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Therefore, combinind_ (42) and_(44) allow one to state:
T (n, x(t’i)) =T (n, x(t’i_l)) + (xgt) — xgt_l)) h;.
|

The bilinear functiorl’ (-, -) only needs to be used at the very beginning of the Gibbs sagpli
algorithm to evaluatd’ (x,x(”’) and the vectorgh;},_, . The resulting simulation scheme

corresponding to step 3 of Algorithim 1 is shown in Algorithin 2

ALGORITHM 2:

Efficient simulation according to f (x|w,a,0?,y)

Fori=1,..., M, update theth coordinate of the vector
. T
x(t’lil) = [xgt)a e 71.51:)11 ‘rz('t_l)v xgi_ll)v cee 7x§ff_1):|

via the following steps:

1. computel|h; |,
setT (n, igt’ifl)) =T (k,x®171) — 2 Vh,
sete; =x—T (H,S{E ’i_l)),
computey;, n? andw; as defined in[(36) and (B7),
drawz" according to[(2lL),

%

' T
SetX(t’l) = [Igt)a R 7x§i)1a Il(-t),ilfl(-i_ll), e ,Ig\i[_l)} s

setT (i, x(9) = T (1, x""V) + 2{"h;.

N o g koD

APPENDIX |11

SIMULATION ACCORDING TO A
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BERNOULLI-TRUNCATED GAUSSIAN DISTRIBUTION

This appendix describes how we generate random variatdgodied according to a Bernoulli-

truncated Gaussian distribution with parametersm, s?) whose pdf is:
f (@A m,s%) = (1—A)d(x)

(z —m)”

A —7] 1131 (l’)

T T m, )

exXp 952

whereC' (m, s?) has been defined il (23). Monte Carlo draws from this densityle obtained

by using an auxiliary binary variable following the strategy shown in Algorithid 3.

ALGORITHM 3:

Simulation according to

a Bernoulli-truncated Gaussian distribution

1. generate according tos ~ Ber (),
=0, if e=0;
wa*(m,sQ), if e =1.

2. set

In Algorithm[3, Ber (-) and N " (-, -) denote the Bernoulli and the positive truncated Gaussian
distributions respectively. In step, samples distributed according to the truncated Gaussian
distribution can be generated by using an appropriate &cegget procedure with instrumental
distributions [17], [33], [39].
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