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Abstract. One of the most important problems in large scale inference problems is the
identification of variables that are highly dependent on several other variables. When depen-
dency is measured by partial correlations these variables identify those rows of the partial
correlation matrix that have several entries with large magnitudes; i.e., hubs in the associ-
ated partial correlation graph. This paper develops theory and algorithms for discovering
such hubs from a few observations of these variables. We introduce a hub screening frame-
work in which the user specifies both a minimum (partial) correlation ρ and a minimum
degree δ to screen the vertices. The choice of ρ and δ can be guided by our mathematical
expressions for the phase transition correlation threshold ρc governing the average number of
discoveries. They can also be guided by our asymptotic expressions for familywise discovery
rates under the assumption of large number p of variables, fixed number n of multivariate
samples, and weak dependence. Under the null hypothesis that the dispersion (covariance)
matrix is sparse these limiting expressions can be used to enforce familywise error con-
straints and to rank the discoveries in order of increasing statistical significance. For n� p
the computational complexity of the proposed partial correlation screening method is low
and is therefore highly scalable. Thus it can be applied to significantly larger problems than
previous approaches. The theory is applied to discovering hubs in a high dimensional gene
microarray dataset.
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1. Introduction

This paper treats the problem of screening a p-variate sample for strongly and multiply
connected vertices in the partial correlation graph associated with the the partial correlation
matrix of the sample. This problem, called hub screening, is important in many applications
ranging from network security to computational biology to finance to social networks. In the
area of network security, a node that becomes a hub of high correlation with neighboring
nodes might signal anomalous activity such as a coordinated flooding attack. In the area
of computational biology the set of hubs of a gene expression correlation graph can serve
as potential targets for drug treatment to block a pathway or modulate host response. In
the area of finance a hub might indicate a vulnerable financial instrument or sector whose
collapse might have major repercussions on the market. In the area of social networks a hub
of observed interactions between criminal suspects could be an influential ringleader.
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The techniques and theory presented in this paper permit scalable and reliable screening
for vertices that are singly connected or multiply connected. Unlike the correlations screen-
ing problem studied in [11], this paper considers the more challenging problem of partial
correlation screening for variables with a specified degree of connectivity. In particular we
consider 1) extension to screening for partial correlations exceeding a specified magnitude;
2) extension to screening variables whose vertex degree in the associated partial correlation
graph1 exceeds a specified degree. In contrast to previous asymptotic “n � p” studies, we
do not require n to go to infinity with p. This “sample starved” finite n large p regime is
one of the principal features of our approach.

While correlation graphs only reflect the marginal dependency between variables, partial
correlation graphs characterize their patterns of conditional dependency. These partial corre-
lations are encoded in the inverse covariance matrix and zeros in this matrix can be reflected
via a graph. In the special case when the variables are distributed multivariate Gaussian,
no edge exists between a pair of variables implies the two variables are conditionally inde-
pendent given the remaining ones. A graphical model captures this Markovian conditional
independence structure and is instantiated in the partial correlation graph. In applications
partial correlation graphs are often considered more useful than correlation graphs as they
are more interpretable, and can directly reflect possible underlying Markovian structure.

The hub screening theory presented here can be applied to structure discovery in p-
dimensional Gaussian graphical models (GGM), a topic of recent interest to statisticians,
computer scientists and engineers working in areas such as gene expression analysis, infor-
mation theoretic imaging and sensor networks [7], [14], [22]. A GGM uses a p× p covariance
matrix to capture patterns of statistical dependency in the p-variate measurement. The
GGM specifies a graph over p vertices where edges are placed between any pair of vertices
that corresponds to a non-zero entry of the inverse covariance matrix. As the partial cor-
relation matrix and the inverse covariance matrix are equivalent (modulo a diagonal matrix
transformation) a hub vertex in the GGM will also be a hub vertex in the partial correlation
graph. Thus a GGM method such as Glasso could also be applied to discover vertices of
high degree. However, our proposed hub screening method attacks the hub screening prob-
lem directly, is scalable to high dimensions, and comes with asymptotic theory to control
false positives. As an example, the authors of [1] propose a Euclidean nearest neighbor
graph method for testing independence in a GGM. When specialized to the null hypothesis
of spatially independent Gaussian measurements, our results characterize the large p phase
transitions and specify a weak (Poisson-like) limit law on the number of highly connected
nodes in such nearest neighbor graphs for finite number n of observations.

Many different methods for inferring properties of correlation and partial correlation ma-
trices have been recently proposed [7], [17], [18], [3], [15]. Several of these methods have
been contrasted and compared in bioinformatics applications [8], [13], [16] similar to the one
we consider in Sec. 5. The above papers address the covariance selection problem [6]: to
find the non-zero entries in the covariance or inverse covariance matrix or, equivalently, to
find the edges in the associated correlation or partial correlation graph.

1Partial correlation graphs are often called concentration graphs.
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The problem treated and the solution proposed in this paper differ from those of these
previous papers in several important ways: 1) as contrasted to covariance selection [6] our
objective is to screen for connected vertices in the graph instead of to screen for edges; 2)
unlike [3] our objective is to directly control false positives instead of maximizing a likelihood
function or minimizing a matrix norm approximation error; 3) our framework is specifically
adapted to the case of a finite number of samples and a large number of variables (n� p);
4) our asymptotic theory provides mathematical expressions for the p-value for each of
the variables with respect to a sparse null hypothesis on the covariance; 5) unlike lasso
type methods like [15] the hub screening implementation can be directly applied to very
large numbers of variables without the need for ancillary prefiltering or variable reduction.
Additional relevant literature on correlation based methods can be found in [11].

For specified ρ ∈ [0, 1] and δ ∈ 1, . . . , p− 1, a hub is defined broadly as any variable that
is correlated with at least δ other variables having magnitude correlation exceeding ρ. Hub
screening is accomplished by thresholding the sample correlation matrix or partial correla-
tion matrix and searching for rows with more than δ non-zero entries. We call the former
correlation hub screening and the latter partial correlation hub screening. The reader may
question the advantage of a screening method that is based on two variables ρ and δ, but
they can serve a useful purpose in the following sense, and can actually be an advantage. In
practice, the magnitude of the correlation and the vertex degree are complementary quanti-
ties in differentiating salient graph properties. For example, a graph of high degree but low
correlation can be of equal or great interest than a hub of low degree with a high correlation.
Therefore imposing any simple linear ordering of these variables would be less informative
since it would deprive the experimenter of stratifying the analysis into hubs of increasing
degree, thus enhancing the interpretability of the results of the screening procedure.

The screening is performed in a computationally efficient manner by exploiting the equiva-
lence between correlation graphs and ball graphs on the set of Z-scores. Specifically, assume
that n samples of p variables are available in the form of a data matrix where n < p.
First the columns of the data matrix are converted to standard n-variate Z-scores. The
set of p Z-scores uniquely determine the sample correlation matrix. If partial correlations
are of interest, these Z-scores are replaced by equivalent modified Z-scores that characterize
the sample partial correlation matrix, defined as the Moore-Penrose pseudo-inverse of the
sample correlation matrix. Then an approximate k-nearest neighbor (ANN) algorithm is
applied to the Z-scores or the modified Z-scores to construct a ball graph associated with
the given threshold ρ. Hub variables are discovered by scanning the graph for those whose
vertex degree exceeds δ. The ANN approach only computes a small number of the sample
correlations or partial correlations, circumventing the difficult (or impossible) task of com-
puting all entries of the correlation matrix when there are millions (or billions) of variables.
State-of-the-art ANN software has been demonstrated on over a billion variables [12] and
thus our proposed hub screening procedure has potential application to problems of mas-
sive scale. We also note that using the standard Moore-Penrose inverse is well understood
to be a sub-optimal estimator of the partial correlation matrix in terms of minimum mean
square error [9]. To our knowledge its properties for screening for partial correlations have
yet to be investigated. This paper demonstrates through theory and experiment that the
Moore-Penrose inverse can be used to screen for hubs in partial correlation graphs.
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No screening procedure would be complete without error control. We establish limiting ex-
pressions for mean hub discovery rates. These expressions are used to obtain an approximate
phase transition threshold ρc below which the average number of hub discoveries abruptly in-
creases. When the screening threshold ρ is below ρc the discoveries are likely to be dominated
by false positives. We show that the probability of false positives can be approximated by a
Poisson-like probability of the form P (Nδ,ρ > 0) = 1− e−λ. This Poisson-like approximation
becomes more accurate in the limit as ρ approaches 1 and p goes to infinity.

In the case of independent identically distributed (i.i.d.) elliptically distributed samples
and sparse block diagonal dispersion matrix, the Poisson rate does not depend on the un-
known correlations. In this case we can specify asymptotic p-values on hub discoveries of
given degree under a sparse dispersion matrix null model. Finite p bounds on the Poisson
p-value approximation error are given that decrease at rates determined by p, δ, ρ, and the
sparsity factor of the dispersion matrix.

To illustrate the power of the proposed hub screening method we apply it to a public
gene expression dataset: the NKI breast cancer data [4]. Each of these datasets contains
over twenty thousand variables (genes) but many fewer observations (GeneChips). In addi-
iton to recapitulating results of previous studies of this data, our screening method reveals
interesting and previously unreported dependency structure among the variables. For the
purposes of exploring neighborhood structure of the discoveries we introduce a waterfall plot
of their approximate p-values that plots the family of degree-indexed p-value curves over the
range of partial correlation thresholds. This graphic rendering can provide insight into the
structure and significance of the correlation neighborhoods as we sweep the variables over
different vertex degree curves in the waterfall plot.

The outline of this paper is as follows. In Sec. 2 we formally define the hub screening
problem. In Sec. 2.3 we present the Z-score representation for the pseudo-inverse of the
sample correlation matrix. In Sec. 3 we give an overview of the results pertaining to phase
transition thresholds and limit theorems for the familywise discovery rates and p-values.
This section also describes the proposed hub screening procedure. Section 4 gives the formal
statements of the results in the paper. The proofs of these results are given in the appendix.
In Sec. 5 we validate the theoretical predictions by simulation and illustrate the proposed
hub screening procedure on gene microarray data.

2. Hub screening framework

Let the p-variate X = [X1, . . . , Xp]
T have mean µ and non-singular p × p dispersion

matrix Σ. We will often assume that X has an elliptically contoured density: fX(x) =
g
(
(x− µ)TΣ−1(x− µ)

)
for some non-negative strictly decreasing function g on IR+. This

family of densities includes the multivariate Gaussian, in which case Σ is the covariance
matrix, and the multivariate Student-t densities as special cases. The correlation matrix and

the partial correlation matrix are defined as Γ = D
−1/2
Σ ΣD

−1/2
Σ and Ω = D

−1/2

Σ−1 Σ−1D
−1/2

Σ−1 ,
respectively, where for a square matrix A, DA = diag(A) denotes the diagonal matrix
obtained from A by zeroing out all entries not on its diagonal.
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Available for observation is a n × p data matrix X whose rows are (possibly dependent)
replicates of X:

X = [X1, · · · ,Xp] = [XT
(1), · · · ,XT

(n)]
T ,

where Xi = [X1i, . . . , Xni]
T and X(i) = [Xi1, . . . , Xip] denote the i-th column and row,

respectively, of X. Define the sample mean of the i-th column X i = n−1
∑n

j=1Xji, the vector

of sample means X = [X1, . . . , Xp], the p×p sample covariance matrix S = 1
n−1

∑n
i=1(X(i)−

X)T (X(i) −X), and the p× p sample correlation matrix

R = D
−1/2
S SD

−1/2
S .(1)

For a full rank sample correlation matrix R the sample partial correlation matrix is defined
as

P = D
−1/2

R−1 R−1D
−1/2

R−1 .

In the case that R is not full rank this definition must be modified. Several methods have
been proposed for regularizing the inverse of a rank deficient covariance including shrinkage
and pseudo-inverse approaches [19]. In this paper we adopt the pseudo-inverse approach and
define the sample partial correlation matrix as

P = D
−1/2

R†
R†D

−1/2

R†
,(2)

where R† denotes the Moore-Penrose pseudo-inverse of R.

2.1. Correlation and partial correlation graphs. Let the non-negative definite symmet-
ric matrix Φ = ((Φij))

p
i,j=1 be generic notation for a correlation-type matrix like Γ, Ω, R, or

P. For a threshold ρ ∈ [0, 1] define Gρ(Φ) the undirected graph induced by thresholding Φ as
follows. The graph Gρ(Φ) has vertex set V = {1, . . . , p} and edge set E = {eij}i,j∈{1,...,p}:i<j,
where an edge eij ∈ E exists in Gρ(Φ) if |Φij| ≥ ρ. The degree of the i-th vertex of Gρ(Φ) is
card {j 6= i : |Φij| ≥ ρ}, the number of edges that connect to i. When Φ is set to Γ or Ω we
obtain the population correlation graph Gρ(Γ) and the population partial correlation graph
Gρ(Ω) [5]. Likewise, when Φ is set to R or P we obtain the sample correlation graph Gρ(R)
and the sample partial correlation graph Gρ(P)

A p × p matrix is said to be row-sparse of degree k, called the sparsity degree, if no row
contains more than k+1 non-zero entries. When Φ is row-sparse of degree k its graph Gρ(Φ)
has no vertex of degree greater than k. A special case is a block-sparse matrix of degree k;
a matrix that can be reduced via row-column permutation to block diagonal form having a
single k × k block.

2.2. Hub discoveries. A given vertex i of the correlation graph is declared a hub screening
discovery at degree level δ and threshold level ρ if the observed vertex degree δi in Gρ(Φ) is
at least δ. More specifically

δi = card {j : j 6= i, |Φij| ≥ ρ} ≥ δ,(3)

where Φ is equal to R for correlation hub screening or is equal to P for partial correlation
hub screening. We denote by Nδ,ρ ∈ {0, . . . , p} the total number of hub screening discoveries
at degree level δ

Nδ,ρ = card{i : δi ≥ δ}.
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There will generally be false positives among the discoveries and, to be practically useful,
these must be predicted as a function of screening parameters ρ and δ in (3). In the sequel we
will develop a large p asymptotic analysis to address this prediction problem and establish
two results: 1) existence of phase transitions in the mean number of discoveries E[Nδ,ρ]; 2)
asymptotic expressions for familywise false positive rate P (Nδ,ρ > 0).

2.3. Z-score representation. Define the n× p matrix of Z-scores associated with the data
matrix X

T = [T1, . . . ,Tp] = (n− 1)−1/2(In − n−111T )XD
−1/2
S ,(4)

where In is the n × n identity matrix and 1 = [1, . . . , 1]T ∈ IRn. This Z-score matrix is to
be distinguished from the (n− 1)× p Z-score matrices U and Y, denoted collectively by the
notation Z in the sequel, that are derived from the matrix T.

We exploit the following Z-score representation of the sample correlation matrix

R = TTT,(5)

and define a set of equivalent but lower dimensional Z-scores called U-scores. The U-scores
lie in the unit sphere Sn−2 in IRn−1 and are obtained by projecting away the rowspace
components of T in the direction of vector 1. More specifically, they are constructed as
follows. Define the orthogonal n × n matrix H = [n−1/21,H2:n]. The matrix H2:n can be
obtained by Gram-Schmidt orthogonalization of the columns of [n−1/21, In,n−1], where In,n−1

is a matrix consisting of the last n− 1 columns of In. It satisfies the properties

1TH = [
√
n, 0, . . . , 0], H2:n

TH2:n = In−1.

The U-score matrix U = [U1, . . . ,Up] is obtained from T by the following relation[
0T

U

]
= HTT.(6)

Using representation (6) we obtain the following result.

Lemma 1. Assume that n < p. The Moore-Penrose pseudo-inverse of R has the represen-
tation

R† = UT [UUT ]−2U.(7)

The proof of Lemma 7 simply verifies that Q
def
= UT [UUT ]−2U satisfies the Moore-Penrose

conditions for Q to be the unique pseudo-inverse of R: 1) the matrices QR and RQ are
symmetric; 2) RQR = R; and 3) QRQ = Q [10].

The representation (7) leads to a Z-score representation of the sample partial correlation
similar to (5) that allows us to unify the treatment of the sample correlation and sample
partial correlation. Specifically, using Lemma 7 the sample partial correlation matrix (2)
can be representated as:

P = YTY,(8)
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where Y = [Y1, . . . ,Yp] is an (n− 1)× p matrix of partial correlation Z-scores

Y = [UUT ]−1UD
−1/2

UT [UUT ]−2U,(9)

with Yi ∈ Sn−2.

3. Overview of results

This section provides a high level overview of the technical material presented in Sec. 4
and explains its practical utility for hub screening. Propositions 1, 2, and 3 establish our two
main results: 1) the existence of a phase transition, as a function of the applied threshold
ρ, in the mean number of discoveries, explained in Sec. 3.1; and 2) an asymptotic Poisson-
like limit of the probability of discoveries, explained in Sec. 3.2. In Sec. 5.1 the proposed
screening algorithm is defined and we explain how the asymptotic Poisson-like limit can be
used to predict the probability of false positives under the hypothesis that the rows of the
data matrix X are i.i.d. with an elliptically contoured distribution and sparse dispersion
matrix Σ.

3.1. Phase transitions in the mean number of hub discoveries. There is a phase
transition in the mean number E[Nδ,ρ] of hub discoveries of degree δ that depends on the
applied screening threshold ρ. This critical phase transition threshold, which we call ρc,δ, is
such that if the screening threshold ρ decreases below ρc,δ, the of hub discoveries of degree δ
abruptly increases to the maximum p. The mathematical form of the critical phase transition
threshold is the same for correlation graphs and partial correlation graphs. An asymptotic
expression for the critical threshold is obtained from the limiting form (21) of E[Nδ,ρ] given
in Prop. 2

ρc,δ =
√

1− (cn,δ(p− 1))−2δ/(δ(n−2)−2),(10)

where cn,δ = anδJp,δand an = 2B((n−2)/2, 1/2) with B(i, j) denoting the beta function. The

unknown dispersion matrix Σ influences ρc,δ only through the quantity Jp,δ = J(fZ∗1 ,...,Z∗δ+1
),

defined in (33), which is a measure of average (δ + 1)-order dependency among the Z-scores
{Zi}pi=1.

When the rows of X are i.i.d. elliptically distributed and Σ is block-sparse of degree k
then, from Prop. 3

J(fZ∗1 ,...,Z∗δ+1
) = 1 +O ((k/p)γδ) ,(11)

where γδ = δ+1 for correlation hub screening and γδ = 1 for partial correlation hub screening.
In the extreme case where Σ is diagonal, k = 0 and Jp,δ = 1. In this case all discoveries are
false positives. Otherwise, if k increases more slowly than p then the remainder O ((k/p)γδ)
goes to zero and the phase transition threshold ρc,δ no longer depends on Σ, reducing to the
false positive phase transition threshold one would obtain if Σ were diagonal.

For large p, cn,δ depends only weakly on p and the critical threshold increases to 1 at
rate O((p − 1)−2δ/(δ(n−2)−2)), which is close to logarithmic in p for large n (n � log p) but
much faster than logarithmic for small n (n� log p). Fig. 1 plots the false positive critical



8 ALFRED HERO AND BALA RAJARATNAM

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
1

1

1
1

2

2

2
2 2

3

3

3
3

PHASE TRANSITION THRESHOLD

C
R

IT
IC

A
L
 T

H
R

E
S

H
O

L
D

  
  

ρ
c
,δ

NUMBER OF OBSERVATIONS (n)

1

1

1

1
1

2

2

2

2
2

3

3

3

3
3

1

1

1

1

2

2

2

2

2

3

3

3

3

3

p=10000000000

p=10000

p=10

Figure 1. Critical phase transition threshold ρc,δ governing the mean number
of false positives in the number of hub discoveries as a function of number of
observations n for various vertex degrees δ = 1, 2, 3 and (from bottom to
top curve groups) variable dimensions p = 10, p = 10, 000, and p = 10 × 109.
When the correlation threshold is greater than ρc,δ the number of false positives
falls rapidly to zero. The figure shows that the critical threshold decreases as
either n or δ increase. The critical threshold is close to one when n is small in
which case reliable detection of hubs is impossible. However, a relatively small
increase in sample size is sufficient to reduce the critical threshold even for
very large p. For example, with p = 10 billion variables only n = 200 samples
are required to bring ρc,1 down to 0.6.

threshold (diagonal Σ) as a function of n for several values of δ and p. The critical threshold
decreases as either the sample size n increases, the number of variables p decreases, or the
vertex degree δ increases. Remarkably, even for ten billion samples (upper curves on the
figure) only a relatively small number of samples are necessary for hub screening to be
useful. For example, with n = 200 one can reliably discover connected vertices (δ = 1 in the
figure) having partial correlation greater than ρc,δ = 0.6.

3.2. Poisson-type limits on probability of hub discoveries. For fixed n, as p→∞ and
ρ→ 1 Prop. 2 establishes that, under certain conditions, the probability of hub discoveries
P (Nδ,ρ > 0) converges to a Poisson-type limit 1−exp(−Λδ,ρ) where Λδ,ρ is the rate parameter
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of a related Poisson distributed random variable N∗δ,ρ. A sufficient condition for the Poisson-
type limit to hold is that: 1) ρ increases to one with p at a prescribed rate depending on n;
2) the covariance matrix Σ is block sparse of degree k with k = o(p). For correlation graphs
(Φ = R) the second condition can be relaxed to 2’) the covariance matrix is row sparse of
degree k with k = o(p)

The rate of convergence is provided in Prop. 1 along with a finite p approximation to the
Poisson rate parameter Λδ,ρ

Λδ,ρ = λδ,ρJ(fZ∗1 ,...,Z∗δ+1
),(12)

with

λδ,ρ = lim
p→∞

p

(
p− 1

δ

)
P0(ρp, n)δ,(13)

and P0(ρ, n) is the spherical cap probability defined in (26). It is important to note that the
parameter λδ,ρ does not depend on the distribution of the data X.

When the rows of X are i.i.d. elliptically distributed with dispersion matrix Σ block-
sparse of degree k, Prop. 3 establishes two things: 1) relation (11), so that Λδ,ρ ≈ λδ,ρ; and
2) ‖∆p,n,k,δ‖1 is equal to zero for correlation hub screening and is of order O(k/p) for partial
correlation hub screening.

Therefore, Prop. 3 and 2 imply that when the block-sparse model is posed as the null
hypothesis the false positive familywise error rate (FWER) can be approximated as

P (Nδ,ρ > 0) = 1− exp(−λδ,ρ).(14)

The accuracy of the approximation (14) is specified by the bound (20) given in Prop. 1.
Corollary 1 provides rates of convergence under the assumptions that p(p−1)δ(1−ρ2)(n−2)/2 =
O(1) and the rows of X are i.i.d. with sparse covariance. For example, assume that the
covariance is block-sparse of degree k. If k does not grow with p then the rate of convergence
of P (Nδ,ρ > 0) to its Poisson limit is no worse than O(p−1/δ) for δ > n − 3. On the other
hand, if k grows with rate at least O(p1−α), for α = min{(δ + 1)−1, (n − 2)−1}/δ, the rate
of convergence is no worse than O (k/p). This latter bound can be replaced by O

(
(k/p)δ+1

)
for correlation hub screening under the less restrictive assumption that the covariance is
row-sparse.

The combination of Prop. 1 and the assertions (Prop. 3) that J(fZ∗1 ,...,Z∗δ+1
) = 1 +

O ((k/p)γδ) and ‖∆p,n,k,δ‖1 ≤ O(k/p) yields

|P (Nδ,ρ > 0)− (1− exp(−λδ,ρ))| ≤
{
O
(
max

{
(k/p)γδ , p−(δ−1)/δ(k/p)δ−1, p−1/δ, (1− ρ)1/2

})
, δ > 1

O
(
max

{
(k/p)γδ , (k/p)2, p−1, (1− ρ)1/2

})
, δ = 1

.

The terms (k/p)γδ , p−(δ−1)/δ(k/p)δ−1, p−1/δ and (1− ρ)1/2 respectively quantify the contribu-
tion of errors due to: 1) insufficient sparsity in the covariance or, equivalently, the correlation
graph; 2) excessive dependency among neighbor variables in this graph; 3) poor convergence
of E[Nδ,ρ]; and 4) inaccurate mean-value approximation of the integral representation of
limp→∞E[Nδ,ρ] by (38). One of these terms will dominate depending on the regime of oper-
ation. For example, specializing to partial correlation hub screening (γδ = δ + 1), if δ > 1
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and O
(
p1−(δ+1)/(2δ)

)
≤ k ≤ o(p) then (k/p)δ+1 > p−(δ−1)/δ(k/p)δ−1 and the deficiency in the

Poisson probability approximation will not be the determining factor on convergence rate.

3.3. Asymptotic p-values and waterfall plots. Under the null hypothesis of block sparse
Σ the FWER approximation (14) can be used to assess the statistical significance of each
discovery. Let the sample correlations between the Z-score of variable i and all the other
p − 1 variables be ordered as ρi(1) < ρi(2) < . . . < ρi(p − 1), where ρi(k) denotes the
correlation (or partial correlation) between the i-th variable and its k-th nearest neighbor
in the complete correlation (or partial correlation) graph G0(Φ), Φ = R or P. The p-value
associated with discovery i at degree level δ is defined as

pvδ(i) = 1− exp(−λδ,ρi(δ)).(15)

where λδ,ρ is specified in (13). The quantity (15) approximates the probability that at least
one hub vertex of degree greater than or equal to δ would be discovered in Gρ(Φ) using a
threshold ρ equal to the observed correlation value ρi(δ).

Additional useful information can be gleaned by graphical rendering of the aggregate
lists of p-values. Assume that the hub screening procedure generates an associated family
of graphs {Gρ(Φ)}ρ∈[0,ρ∗], where ρ∗ is an intital threshold. We define the waterfall plot

of p-values as the family of curves, plotted against the thresholds ρi(δ), indexed by δ =
1, 2, . . . ,where the δ-th curve is formed from the (linearly interpolated) ordered list of p-
values {pvδ(ij)}pj=1, pvδ(i1) ≥ . . . ≥ pvδ(ip) (see Fig. 3).

4. Main theorems

The asymptotic theory for hub discovery in correlation and partial correlation graphs is
presented in the form of three propositions and one corollary. Prop. 1 gives a general bound
on the finite sample approximation error associated with the approximation of the mean
and probability of discoveries given in Prop. 2. The results of Props. 1 and 2 apply to
general random matrices of the form ZTZ where the p columns of Z lie on the unit sphere
Sn−2 ⊂ IRn−1 and, in view of (6) and (8), they provide a unified theory of hub screening
for correlation graphs and partial correlation graphs. Corollary 1 specializes the bounds
presented in Prop. 1 to the case of sparse correlation graphs using Prop. 3.

For δ ≥ 1, ρ ∈ [0, 1], and Φ equal to the sample correlation matrix R or the sample partial
covariance matrix P we recall the definition of Nδ,ρ as the number of vertices of degree at

least δ in Gρ(Φ). Define Ñδ,ρ as the number of subgraphs in Gρ that are isomorphic to a star
graph with δ edges. In the sequel we will use the key property that Nδ,ρ = 0 if and only if

Ñδ,ρ = 0.

For δ ≥ 1, ρ ∈ [0, 1], and n > 2 define

Λ = ξp,n,δ,ρJ(fZ∗1 ,...,Z∗δ+1
)(16)

where

ξp,n,δ,ρ = p

(
p− 1

δ

)
P δ

0 ,(17)
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P0 = P0(ρ, n) is defined in (26), J is given in (33), and fZ∗1 ,...,Z∗δ+1
is the average joint density

given in (30).

We also define the following quantity needed for the bounds of Prop. 1

ηp,δ = p1/δ(p− 1)P0.(18)

Note that ξp,n,δ,ρ/η
δ
p,δ = (an/(n− 2))δ/δ! to order O (max{p−1, 1− ρ}), where an = (2Γ((n−

1)/2))/(
√
πΓ((n − 2)/2)). Let ϕ(δ) be the function equal to 1 for δ > 1 and equal to 2 for

δ = 1.

Proposition 1. Let Z = [Z1, . . . ,Zp] be a (n − 1) × p random matrix with Zi ∈ Sn−2. Fix
integers δ and n where δ ≥ 1 and n > 2. Let the joint density of any subset of the Zi’s be
bounded and differentiable. Then, with Λ defined in (16),

|E[Nδ,ρ]− Λ| ≤ O
(
ηδp,δ max

{
ηp,δp

−1/δ, (1− ρ)1/2
})

(19)

Furthermore, let N∗δ,ρ be a Poisson distributed random variable with rate E[N∗δ,ρ] = Λ/ϕ(δ).
If (p− 1)P0 ≤ 1 then, for any integer k, 1 ≤ k ≤ p,∣∣P (Nδ,ρ > 0)− P (N∗δ,ρ > 0)

∣∣ ≤(20) {
O
(
ηδp,δ max

{
ηδp,δ (k/p)δ+1 , Qp,k,δ, ‖∆p,n,k,δ‖1, p

−1/δ, (1− ρ)1/2
})

, δ > 1

O
(
ηp,1 max

{
ηp,1 (k/p)2 , ‖∆p,n,k,1‖1, p

−1, (1− ρ)1/2
})
, δ = 1

,

with Qp,k,δ = ηδ−1
p,δ p

−(δ−1)/δ (k/p)δ−1 and ‖∆p,n,k,δ‖1 defined in (32).

The proof of the above proposition is given in the Appendix. The Poisson-type limit
(22) is established by showing that the count Ñρ,δ of the number of groups of δ mutually
coincident edges in Gρ converges to a Poisson random variable with rate Λ/ϕ(δ).

Proposition 2. Let ρp ∈ [0, 1] be a sequence converging to one as p→∞ such that p1/δ(p−
1)(1− ρ2

p)
(n−2)/2 → en,δ ∈ (0,∞). Then

lim
p→∞

E[Nδ,ρp ] = κn,δ lim
p→∞

J(fZ∗1 ,...,Z∗δ+1
),(21)

where κn,δ = (en,δan/(n− 2))δ /δ!. Assume that the weak dependency condition limp,k→∞ ‖∆p,n,k,δ‖1 =
0 is satisfied for some k = o(p), where ‖∆p,n,k,δ‖1 is defined in (32). Then

P (Nδ,ρp > 0)→ 1− exp(−Λ/ϕ(δ)).(22)

The proof of Prop. 2 is an immediate and obvious consequence of Prop. 1 and is omitted.
For correlation graphs (Φ = R), ‖∆p,n,k,δ‖1 = 0 when Σ is row sparse of degree k. Row
sparsity is thus a sufficient condition that guarantees the weak dependency condition in Prop.
2. For partial correlation screening a sufficient condition is that the covariance matrix be
block sparse of degree k.

Propositions 1 and 2 are general results that apply to both correlation hub and partial
correlation hub screening under a wide range of conditions. Corollary 1 specializes these
results to the case of sparse covariance and i.i.d. rows of X having elliptical distribution.
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Corollary 1. In addition to the hypotheses of Prop. 2 assume that n > 3 and that the rows
of X are i.i.d. elliptically distributed with a covariance matrix Σ that is row-sparse of degree
k. Assume that k grows as O (p1−α) ≤ k ≤ o(p) where α = min {(δ + 1)−1, (n− 2)−1} /δ.
Then, for correlation hub screening the asymptotic approximation error in the limit (22)
is upper bounded by O

(
(k/p)δ+1

)
. Under the additional assumption that the covariance is

block-sparse, for partial correlation hub screening this error is upper bounded by O (k/p).

The proof of Corollary 1 is given in the Appendix. The proposition below specializes these
results to sparse covariance.

Proposition 3. Let X be a n× p data matrix whose rows are i.i.d. realizations of an ellip-
tically distributed p-dimensional vector X with mean parameter µ and covariance parameter
Σ. Let U = [U1, . . . ,Up] be the matrix of correlation Z-scores (6) and Y = [Y1, . . . ,Yp] be
the matrix of partial correlation Z-scores (9) defined in Sec. 2.3. Assume that the covari-
ance matrix Σ is block-sparse of degree q. Then the pseudo-inverse partial correlation matrix
P = YTY has the representation

P = UTU(1 +O(q/p)).(23)

Let Zi denote Ui or Yi and assume that for δ ≥ 1 the joint density of any distinct set of
Z-scores Ui1 , . . . ,Uiδ+1

is bounded and differentiable over Sδ+1
n−2. Then the (δ+1)-fold average

function J (30) and the dependency coefficient ∆p,n,k,δ (32) satisfy

J(fZ∗1 ,...,Z∗δ+1
) = 1 +O (δq/p) ,(24)

‖∆p,n,k,δ‖1 =

{
O (δq/p) , ϕ = 1

0, ϕ = 0
(25)

where ϕ = 0 and ϕ = 1 for correlation and partial correlation hub screening, respectively.

Proof of Proposition 3:

The proof of Proposition 3 is given in the Appendix. �

5. Experiments

In this section we illustrate the hub screening proposed procedure, summarized in Sec.
5.1, for three different datasets. The first two are simulation experiments that have ground
truth. These consist of a low dimensional toy example, which illustrates the interpretation of
the p-value waterfall plots, and a high dimensional sham dataset that illustrates the fidelity
of our error control. The third is a real gene expression dataset with no ground truth but
for which the proposed procedure recapitulates results of previously published analysis.

5.1. Hub screening procedure. We summarize the main steps of the proposed procedure
as follows. First an initial correlation threshold ρ∗ is selected close to the critical phase
transition threshold (10). This threshold is applied to the sample correlation matrix Φ = R
(1) or to the sample partial correlation matrix Φ = P (2) to generate the graph Gρ∗(Φ).
The p-value expression (15) is then used to compute the waterfall plot of p-values on the
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Figure 2. Left: diagram of the graphical model governing the first 4 variables
among the vector of 1000 variables in the simulation study. The remaining
996 variables are i.i.d and uncorrelated with the first 4 variables. Right: first
10 rows and columns of the sparse correlation and partial correlation matrices.
The top 4× 4 block in the correlation is a full matrix while the corresponding
block in the partial correlation has zero entries corresponding to conditionally
independent pairs (’1’,’3’) and (’1’,’4’) variables ’2’.

basis of the sample correlations, or partial correlations, of the nearest neighbors of each
connected vertex in Gρ∗(Φ). The waterfall plot can then be used to identify those vertices
having p-values that fall below a user-specified level.

5.2. Numerical simulation study. We first considered screening for hubs in a simple syn-
thetic Gaussian graphical model. We drew n = 40 samples of a 1000-dimensional zero mean
Gaussian random vector to form the 40× 1000 data matrix X. Only 4 of the 1000 variables
have any dependency; the rest are i.i.d. and are independent of the first 4. Specifically, the
first 4 variables have partial correlation matrix equal to

Ω =


1 0.41 0 0

0.41 1 −0.52 −0.82
0 −0.52 1 0.71
0 −0.82 0.71 1

 .
This partial correlation matrix is represented by the simple graphical model shown in Fig
2. As Σ is block sparse with sparsity factor k/p = 1/250, we computed the critical phase
transition threshold ρc,1 using (10) with parameter cn,δ = anδ. For n = 40 and p = 1000 the
critical threshold was found to be equal to 0.593. This value was used as the initial threshold
ρ∗ resulting in an average E[N1,ρ∗ ] = 55 of the 1000 variables passing the correlation threshold
and forming the initial sample partial correlation graph Gρ∗(P ).

The result of one of the simulation runs provides an illustration of the waterfall plot, Fig.
3. For this simulation N1,ρ∗ = 64 and the p-values of each of these variables were evaluated
and plotted as described in Sec. 3.3. Using the threshold ρ = 0.59, no vertices in Gρ∗(P )
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Figure 3. Waterfall plot of approximate p-values (plotted in terms of the
log of the Poisson rate λ) for partial correlation hub screening. Here there
are p = 1000 variables in a Gaussian graphical model displayed in Fig. 2
and there are n = 40 samples. For these values of n, p the expression (10)
gave 0.593 as the critical phase transition threshold ρc,1 governing the mean
number of partial correlation discoveries using the proposed procedure. Using
this partial correlation threshold value, 64 variables survive the screen and the
p-values of these variables are shown as circles on the figure. These variables
fall into two groups denoted by the two curves. The “ρ” position of a circle
on the top curve is the minimal threshold for which the associated variable
would be declared as connected (vertex degree d > 0) in the sample partial
correlation graph. The log(λ) position of this circle indicates the associated

p-value via the formula pv= 1 − e−elog λ . The bottom curve is similar except
that it designates the connected variables whose vertex degrees are d > 1. In
particular, the figure shows that only vertices ’2’ and ’4’ would pass the hub
screen at a false positive level less than 0.13 = 1 − e−e−2

and only vertex ’2’
would pass the screen at this level as a hub of degree d > 1. No false positives
of any degree would occur at this level.

were found to have degree exceeding two and the only only vertex found of degree greater
than 1 was vertex ’2,’ the vertex of degree three in Fig. 2. For ease of visualization, in Fig.
3 we plot the log rate parameters log λ instead of the p-values themselves using the relation:
pv= 1 − e−elog λ . The exhibited waterfall plot has grouped the variables, denoted as circles,
into two groups of vertices in Gρ∗(P ): a group of 2 vertices having degree d > 1 and a larger
group of connected vertices (having degree d > 0). The reader will note that our screening
procedure would correctly identify vertices ’1’, ’2’ and ’4’ as being connected and vertex ’2’ as
having degree at least 2, at false positive level less than 0.13, which corresponds to log λ < −2.
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observed degree # predicted (E[Nδ,ρ∗ ]) # actual (Nδ,ρ∗)
di > δ = 0 8531 8354
di > δ = 1 1697 1631
di > δ = 2 234 240
di > δ = 3 24 24
di > δ = 4 2 1

Table 1. Illustration of agreement between the predicted (mean) number of
false positives and the observed number of false positives in a single simulation
run of the sham NKI dataset experiment shown in Fig. 4. Only actual observed
degrees 1 through 5 appear in the table. No vertices of higher degree than 5
were discovered.

Furthermore none of the 996 non-dependent vertices would be discovered at any reasonable
false positive level (the lowest circle on the waterfall plot is at a level log λ > 0 corresponding
to the extremely weak p-value of 0.63). The relatively low statistical significance of the true
discoveries ’1’,’2’,’3’,’4’ is due to the small value of n chosen for this illustration. The level
of significance improves substantially if one doubles the number n of samples (results not
shown here).

To illustrate the scalability of our proposed method we created a sham dataset of high
dimension. Figure 4 shows the waterfall plot of partial correlation hub p-values for a sham
measurement matrix with i.i.d. normal entries that emulates the NKI experimental data
presented in the next subsection. There are n = 266 samples and p = 24, 481 variables
in this sham. For these values of n, p the critical phase transition threshold on discoveries
with positive vertex degree was determined to be ρc,1 = 0.296. For purposes of illustration
of the fidelity of our theoretical predictions we used an initial screening threshold equal to
ρ∗ = 0.26. As this is a sham, all discoveries are false positives.

The waterfall plots of p-values (15) are shown in Fig. 4. The way we have parameterized
the p-value curves on the left means that the leftmost point of each curve in the left waterfall
plot should occur at approximately (ρ∗, E[Nδ,ρ∗ ]), as can be verified by comparing the second
and third columns of Table 1. This table demonstrates good agreement between the predicted
(mean) number of partial correlation hub discoveries and the actual number of discoveries for
a single realization of the data matrix. The realization shown in the table is representative
of the several simulations runs observed on this sham dataset.

5.3. Parcor screening of NKI dataset. The Netherlands Cancer Institute (NKI) dataset
[4] contains data from Affymetrix GeneChips collected from 295 subjects who were diagnosed
with early stage breast cancer. The dataset was collected and analyzed by van de Vijver et
al [21] to discover gene expression signatures that can differentiate between good and poor
prognosis. Several other groups have used the NKI dataset to illustrate various types of
statistical algorithms. Notably, Peng et al [15] used the dataset to illustrate their graphical
lasso method for covariance selection that they subsequently used to identify hubs in the
partial correlation graph. Here we illustrate the proposed partial correlation hub screening
method on this NKI dataset and compare to results of Peng et al.
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Figure 4. Waterfall plot of p-values for partial correlation hub screening of a
sham version of the NKI dataset [4] plotted in terms of log λ as in Fig. 2. The
data matrix X has n = 266 rows and p = 24, 481 columns and is populated
with i.i.d. zero mean and unit variance Gaussian variables (Σ = I). The
predicted mean number of discoveries of any degree is very close to the actual
number of discoveries of that degree (see Table I). The level of significance of
any of the discoveries indicated on the waterfall plot for this sham dataset is,
as expected, very low (p-value greater than 0.3).

As in Peng et al [15], we only used a subset of the available GeneChip samples. Specifically,
since 29 of the 295 GeneChips had variables with missing values, only 266 of the them were
used in our analysis. Each GeneChip sample in the NKI dataset contains the expression levels
of 24,481 genes. Peng et al [15] applied univariate Cox regression to reduce the number of
variables to 1,217 genes prior to applying their sparse partial correlation estimation (space)
method. In contrast, we applied our partial correlation hub screening procedure directly to
all 24,481 variables.

An initial threshold ρ∗ = 0.35 > ρc,1 = 0.296 was selected. Figure 5 illustrates the wa-
terfall plot of p-values of all discovered variables. Note in particular the very high level of
significance of certain variables at the lower extremities of the p-value curves. According to
NCBI Entrez several of the most statistically significant discovered genes on these strands
have been related to breast cancer, lymphoma, and immune response. The p-value trajecto-
ries (colored labels) across different values of δ of three of these genes are illustrated in the
figure (ARRB2 (Arrestin, Beta 2), CTAG2 (Cancer/testis antigen) and IL14 (Interleukin)).
Note that some genes are highly statistically significant only at low vertex degree (CTAG2)
or at high vertex degree (IL14), while others retain high statistical significance across all
vertex degrees (ARRB2). Figure 6 is the same plot with the trajectories of the 6 unam-
biguously annotated hub genes given in Table 4 of Peng et al [15]. While these 6 genes do
not have nearly as high p-values, or as high partial correlation, as compared to other genes
shown in Fig. 5 their predicted p-values are still very small.
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Figure 5. Waterfall plot of partial correlation p-values for NKI gene expres-
sion dataset of [4] plotted in terms log Poisson rate. Each curve indexes the
p-values for a particular degree threshold δ and a gene is on the curve if its
degree di in the initial graph is greater than or equal to δ. The discovered
vertex degree ranges from 1 to 58 (last dot labeled IL14 at bottom left). The
p-value trajectories of several genes of interest are indicated over the range of
vertex degree δ in the partial correlation graph. The cancer-related CTAG2
gene does not appear on any curve except for d > 0 and d > 1, but has low
p-value on these two curves - it has high statistical significance as a connected
gene of low degree (< 3) but not as a hub gene of high degree. In contrast,
the gene ARBB2 appears with low p-values on most of the curves suggesting
that it is a significant hub genes of high vertex degree. Interestingly, IL14 does
not have high significance as a connected vertex of low degree but has high
significance as a hub of high degree.

6. Conclusions

We treated the problem of screening for variables that are strongly correlated hubs in
a correlation or partial correlation graph when n � p and p is large. The proposed hub
screening procedure thresholds the sample correlation or the pseudo-inverse of the sample
correlation matrix using Z-score representations of the correlation and partial correlation
matrices. For large p and finite n asymptotic limits that specify the probability of false
hub discoveries were established. These limits were used to obtain expressions for phase
transition thresholds and p-values under the assumption of a block-sparse covariance matrix.
To illustrate the applicability and computational scalability of our hub screening algorithm
we applied it to the NKI breast cancer gene expression dataset. With different levels of
false positive control, the proposed algorithm recapitulated genes previously reported in a
graphical lasso study [15] of the same dataset while discovering cancer-related genes not
reported in [15] having higher statistical significance.

The screening algorithms introduced in this paper apply under the hypothesis that the
(δ+1)-order dependency function J defined in (12) is close to one. Proposition 3 establishes
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Figure 6. Same as Fig. 5 but showing the p-value trajectories of 6 of the
hub genes (’BUB1’ ’CENPA’ ’KNSL6’ ’STK12’ ’RAD54L’ ’ID-GAP’) reported
in Peng et al [15]. These are the genes reported in Table 4 of [15] that have
unambiguous annotation on the GeneChip array.

this hypothesis holds when p is large and the dispersion matrix Σ is sparse. In [20] an
entropy-estimation approach was proposed for empirically testing this hypothesis, but it was
restricted to the case δ = 1. A general theory of empirical estimation and testing of J
remains to be developed.
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7. Appendix

This appendix contains two subsections. Section 7.1 gives the necessary definitions. Sec-
tion 7.2 gives proofs of the theory given in Sec. 4 .

7.1. Notation, Preliminaries and Definitions.

• X: n× p matrix of observations.
• Z = [Z1, . . . ,Zp]: (n − 1) × p matrix of correlation (or partial correlation) Z-scores
{Zi}i associated with X.
• ZTZ: p × p sample correlation matrix R (if Z = U) or sample partial correlation

matrix P (if Z = Y) associated with X.
• ZT

i Zj: sample correlation (or partial correlation) coefficient, the i, j-th element of
ZTZ.
• ρ ∈ [0, 1]: screening threshold applied to matrix ZTZ.

• r =
√

2(1− ρ): spherical cap radius parameter.
• Sn−2: unit sphere in IRn−1.
• an = |Sn−2|: surface area of Sn−2.
• G0(Φ): graph associated with population correlation matrix Φ = Γ or partial corre-

lation matrix Φ = Ω. An edge in G0(Φ) corresponds to a non-zero entry of Φ.
• Gρ = Gρ(Φ): graph associated with thresholded sample correlation matrix Φ = R or

partial correlation matrix Φ = P. Specifically, the edges of Gρ(Φ) are specified by
the non-diagonal entries of ZTZ whose magnitudes exceed level ρ.
• di: observed degree of vertex i in Gρ(Φ), Φ ∈ {R,P}.
• δ: screening threshold for vertex degrees in Gρ(Φ), Φ ∈ {R,P}.
• k: upper bound on vertex degrees of G0(Φ), Φ ∈ {Γ,Ω}.
• Nδ,ρ: generic notation for the number of correlation hub discoveries (Nδ,ρ(R)) or

partial correlation hub discoveries (Nδ,ρ(P)) of degree di ≥ δ in Gρ(R), or Gρ(P),
respectively.
• Ñδ,ρ counts the number of subsets of δ mutually coincident edges in Gρ.
• A(r, z): the union of two anti-polar spherical cap regions in Sn−2 of radii r =√

2(1− ρ) centered at points −z and z.
• P0: probability that a uniformly distributed vector U ∈ Sn−2 falls in A(r, z)

P0 = P0(ρ, n) = an

∫ 1

ρ

(
1− u2

)n−4
2 du

= (n− 2)−1an(1− ρ2)(n−2)/2(1 +O(1− ρ2)),

(26)

where an = 2B((n− 2)/2, 1/2) and B(l,m) is the beta function.

For given integer k, 0 ≤ k < p, and Φ either the population correlation matrix Γ or the
population partial correlation matrix Ω define

Nk(i) = argmaxj1 6=···6=jmin(k,di)

min(k,di)∑
l=1

|Φijl |,(27)
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where di denotes the degree of vertex i in G0(Φ) and the maximization is over the range of
distinct jl ∈ {1, . . . , p} that are not equal to i. When k ≥ di these are the indices of the di
neighbors of vertex i in G0(Φ). When k < di these are the subset of the k-nearest neighbors
(k-NN) of vertex i. For the sequel it will be convenient to define the following vector valued

indexing variable: ~i = (i0, . . . , iδ), where 0 < δ ≤ p and i0, . . . , iδ are distinct integers in
{1, . . . , p}. With this index denote by Z~i the set of δ + 1 Z-scores {Zij}δj=0.

Define the set of complementary k-NN’s of Z~i as ZAk(~i) = {Zl : l ∈ Ak(~i)}, where

Ak(~i) =
(
∪δl=0Nk(il)

)c − {~i},(28)

with Ac denoting set complement of set A. The complementary k-NN’s include vertices
outside of the k-nearest-neighbor regions of the set of points Z~i.

Define the δ-fold leave-one-out average of the density, a function of i, fZi1 ,...,Ziδ ,Zi :

fZ∗1−i,...,Z∗δ−i,Zi(z1, . . . , zδ, zi)(29)

= 2−d
∑

s1,...,sδ∈{−1,1}

(
p− 1

δ

)−1 p∑
i1 6=···6=iδ 6=i

fZi1 ,...,Ziδ ,Zi(s1z1, . . . , sδzδ, zi),

where in the inner summation, indices i1, . . . , iδ range over {1, . . . , p}. Also define the (δ+1)-
fold average of the same density

fZ∗1 ,...,Z∗δ+1
(z1, . . . , zδ, zi)(30)

= p−1

p∑
i=1

(
1
2fZ∗1−i,...,Z∗δ−i,Zi(z1, . . . , zδ, zi) + 1

2fZ∗1−i,...,Z∗δ−i,Zi(z1, . . . , zδ,−zi)
)
.

For any data matrix Z define the dependency coefficient between the columns Z~i and their
complementary k-NN’s

∆p,n,k,δ(~i) =
∥∥∥(fZ~i|ZAk(~i)

− fZ~i)/fZ~i
∥∥∥
∞
,(31)

and the average of these coefficients is

‖∆p,n,k,δ‖1 =

(
p

(
p− 1

δ

))−1 p∑
i0=1

∑
i1<...<iδ

∆p,n,k,δ(~i).(32)

where the second sum is indexed over i1, . . . , iδ 6= i0.

The coefficient (32) quantifies weak dependence of the Z-scores. If, for all i, Z~i and its
complementary k-NN neighborhood variables are independent then ‖∆p,n,k,δ‖1 = 0. When
the rows of X are i.i.d. and elliptically distributed, and Z = U are the standard correlation
Z-scores, then a sufficient condition for ‖∆p,n,k,δ‖1 = 0 is that G0(Φ) have no vertex of degree
greater than k or, equivalently, that the dispersion matrix Σ be row sparse of degree k.

Finally, for arbitrary joint density fZ1,...,Zδ(z1, . . . , zδ) on Sδn−2 = ×δi=1Sn−2, define

J(fZ1,...,Zδ) = |Sn−2|δ−1

∫
Sn−2

fZ1,...,Zδ(z, . . . , z)dz.(33)
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7.2. Proofs of theorems. Proof of Prop. 1:

The proof of (19) uses similar arguments to those used to establish Lemma 1 and Prop. 1
in [11].

With φi = I(di ≥ δ) we have Nδ,ρ =
∑p

i=1 φi. Define φij = I (Zj ∈ A(r,Zi)) the indicator
of the presence of an edge in Gρ(Φ) between vertices i and j, where A(r,Zi) is the union of

two antipolar caps in Sn−2 of radius r =
√

2(1− ρ) centered at Zi and −Zi, respectively.
Then φi and φij have the explicit relation

φi =

p−1∑
l=δ

∑
~k∈C̆i(p−1,l)

l∏
j=1

φikj

p−1∏
m=l+1

(1− φikm)(34)

where we have defined the index vector ~k = (k1, . . . , kp−1) and the set

C̆i(p− 1, l) = {~k : k1 < . . . < kl, kl+1 < . . . < kp−1 kj ∈ {1, . . . , p} − {i}, kj 6= kj′}.

The inner summation in (34) simply sums over the set of distinct indices not equal to i

that index all
(
p−1
l

)
different types of products

∏l
j=1 φikj

∏p−1
m=l+1(1 − φikm). Subtracting∑

~k∈C̆i(p−1,δ)

∏δ
j=1 φikj from both sides of (34)

φi −
∑

~k∈C̆i(p−1,δ)

δ∏
j=1

φikj(35)

=

p−1∑
l=δ+1

∑
~k∈C̆i(p−1,l)

l∏
j=1

φikj

p−1∏
m=l+1

(1− φikm)(36)

+
∑

~k∈C̆i(p−1,l)

p−1∑
m=l+1

(−1)m−l
∑

kl+1<...<km

l∏
j=1

φikj

m∏
n=l+1

φikn(37)

where, in the last line we have used the expansion

p−1∏
m=l+1

(1− φikm) = 1 +

p−1∑
m=l+1

(−1)m−l
∑

kl+1<...<km

m∏
n=l+1

φikn .

The following simple asymptotic representation will be useful in the sequel. For any
i1, . . . , ik ∈ {1, . . . , p}, i1 6= · · · 6= ik 6= i, k ∈ {1, . . . , p− 1},

E

[
k∏
j=1

φiij

]
=

∫
Sn−2

dv

∫
A(r,v)

du1 · · ·
∫
A(r,v)

duk fUi1
,...,Uik

,Ui
(u1, · · · ,uk,v)(38)

≤ P k
0 a

k
nMk|1(39)

with P0 = P0(ρ, n) defined in (26), an = |Sn−2|, and

Mk|1 = max
i1 6=···6=ik+1

∥∥∥fZi1 ,...,Zik |Zik+1

∥∥∥
∞
,(40)
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The following simple generalization of (39) to arbitrary product indices φij will also be needed

E

[
m∏
l=1

φiljl

]
≤ Pm

0 a
m
nM|Q|,(41)

where Q =unique({il, jl}ml=1) is the set of unique indices among the distinct pairs {(il, jl)}ml=1

and M|Q| is a bound on the joint density of ZQ.

Define the random variable

θi =

(
p− 1

δ

)−1 ∑
~k∈C̆i(p−1,δ)

δ∏
j=1

φikj .(42)

We show below that for sufficiently large p∣∣∣∣E[φi]−
(
p− 1

δ

)
E[θi]

∣∣∣∣ ≤ γp,δ((p− 1)P0)δ+1,(43)

where γp,δ = maxδ+1≤l<p{alnMl|1}
(
e−

∑δ
l=0

1
l!

)
(1 + (δ!)−1) and Ml|1 is a least upper bound

on any l-dimensional joint density of the variables {Zi}pj 6=i conditioned on Zi.

To show inequality (43) take expectations of (37) and apply the bound (39) to obtain∣∣∣∣E[φi]−
(
p− 1

δ

)
E[θi]

∣∣∣∣
≤

∣∣∣∣∣
p−1∑
l=δ+1

(
p− 1

l

)
P l

0a
lMl|1 +

(
p− 1

δ

) p−1−δ∑
l=1

(
p− 1− δ

l

)
P δ+l

0 aδ+ln Mδ+l|1

∣∣∣∣∣
≤ A(1 + (δ!)−1),(44)

where

A =

p−1∑
l=δ+1

(
p− 1

l

)
P l

0a
lMl|1.

The line (44) follows from the identity
(
p−1−δ

l

)(
p−1
δ

)
=
(
p−1
l+δ

)
(δ!)−1 and a change of index in

the second summation on the previous line. Since (p− 1)P0 < 1

|A| ≤ max
δ+1≤l<p

{alnMl|1}
p−1∑
l=δ+1

(
p− 1

l

)
((p− 1)P0)l

≤ max
δ+1≤l<p

{alnMl|1}

(
e−

δ∑
l=0

1

l!

)
((p− 1)P0)δ+1.

Application of the mean-value-theorem to the integral representation (38) yields∣∣∣E[θi]− P δ
0J(fZ∗1−i,...,Z∗δ−i,Zi)

∣∣∣ ≤ γ̃p,δ((p− 1)P0)δr,(45)

where γ̃p,δ = 2aδ+1
n Ṁδ+1|1/δ! and Ṁδ+1|1 is a bound on the norm of the gradient

∇zi1 ,...,ziδ
fZ∗1−i,...,Z∗δ−i|Zi(zi1 , . . . , ziδ |zi).
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Combining (43)-(45) and the relation r = O((1− ρ)1/2),∣∣∣∣E[φi]−
(
p− 1

δ

)
P δ

0J(fZ∗1 ,...,Z∗δ+1
)

∣∣∣∣ ≤ O
(
((p− 1)P0)δ max

{
(p− 1)P0, (1− ρ)1/2

})
.(46)

Summing over i and recalling the definitions (17) and (18) of ξp,n,δ,ρ and ηp,δ,∣∣∣E[Nδ,ρ]− ξp,n,δ,ρJ(fZ∗1 ,...,Z∗δ+1
)
∣∣∣ ≤ O

(
p((p− 1)P0)δ max

{
(p− 1)P0, (1− ρ)1/2

})
= O

(
ηδp,δ max

{
ηp,δp

−1/δ, (1− ρ)1/2
})
.(47)

This establishes the bound (19).

For the bound (20) we use the Chen-Stein method [2]. The part of the bound (20) that
holds for δ = 1 was derived in the course of proof of Prop. 1 in [11]. The key idea used to
generalize to the case δ > 1 is to come up with a related counting random variable that is
asymptotically Poisson for which the probability of zero counts is asymptotically identical
to P (Nδ,ρ = 0). This related random variable is the number of subgraphs in Gρ that are

isomorphic to a star graph having δ edges. We denote this random variable as Ñδ,ρ and it
has the representation:

Ñδ,ρ =

p∑
i0=1

∑
i1<...<iδ

δ∏
j=1

φi0ij ,(48)

where the second sum is indexed over i1, . . . , iδ 6= i0. For ~i
def
= (i0, i1, . . . , iδ) define the

index set B~i = Bi0,i1,...,iδ = {(j0, j1, . . . , jδ) : jl ∈ Nk(il) ∪ {il}, l = 0, . . . , δ} ∩ C< where
C< = {(j0, . . . , jδ) : j0 ∈ {1, . . . , p}, 1 ≤ j1 < · · · < jδ ≤ p, j1, . . . , jδ 6= j0}. These index
the distinct sets of points Z~i = {Zi0 ,Zi1 , . . . ,Ziδ} and their respective k-NN’s. Note that

|B~i| ≤ kδ+1. Identifying Ñδ,ρ =
∑

~i∈C<
∏δ

l=1 φi0il and N∗δ,ρ a Poisson distributed random

variable with rate E[Ñδ,ρ], the Chen-Stein bound [2, Thm. 1] is

2 max
A
|P (Ñδ,ρ ∈ A)− P (N∗δ,ρ ∈ A)| ≤ b1 + b2 + b3,(49)

where

b1 =
∑
~i∈C<

∑
~j∈B~i

E

[
δ∏
l=1

φi0il

]
E

[
δ∏

m=1

φj0jm

]
,

b2 =
∑
~i∈C<

∑
~j∈B~i−{~i}

E

[
δ∏
l=1

φi0il

δ∏
m=1

φj0jm

]
,

and, for p~i = E[
∏δ

l=1 φi0il ],

b3 =
∑
~i∈C<

E

[
E

[
δ∏
l=1

φi0il − p~i

∣∣∣∣∣φ~j : ~j 6∈ B~i

]]
.

Over the range of indices in the sum of b1 E[
∏δ

l=1 φiil ] is of order O(P δ
0 ), by (41), and

therefore
b1 ≤ O

(
pδ+1kδ+1P 2δ

0

)
= O

(
η2δ
p,δ(k/p)

δ+1
)
,
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which follows from definition (18).

Similarly to the proof of Prop. 1 in [11] more care is needed to bound b2 due to the
symmetry relation φij = φji. If in the summations defining b2, i0 = jm and j0 = il occur for
some l,m then there will be a match and φi0ilφj0jm = φi0il . In such case the summand of b2

will be of lower order than O(P 2δ
0 ). For example, for the case that l,m = 1 a match implies

φi0i1 = φj0j1 and, from (41),

E[
δ∏
l=1

φi0il

δ∏
m=1

φj0jm ] = E[
δ∏
l=1

φj1il

δ∏
m=2

φi1jm ] = O
(
P 2δ−1

0

)
.

Over C< and B~i − {i} there can be no more than a single match in b2’s summand. For a
given match there are at most pδ+1kδ−1 summands of reduced order. We conclude that

b2 ≤ O
(
pδ+1kδ+1P 2δ

0

)
+O

(
pδ+1kδ−1P 2δ−1

0

)
= O

(
η2δ
p,δ(k/p)

δ+1
)

+O
(
η2δ−1
p,δ (k/p)δ−1p−(δ−1)/δ

)
,

which follows from the relation p2δP 2δ−1
0 = (pδ+1P δ

0 )2−1/δ/p(δ−1)/δ.

Next we bound the term b3 in (49). The set Ak(~i) = Bc
~i
−{~i} indexes the complementary

k-NN’s of Z~i so that, using the representation (41),

b3 =
∑
~i∈C<

E

[
E

[
δ∏
l=1

φi0il − p~i

∣∣∣∣∣ZAk(~i)

]]

=
∑
~i∈C<

∫
S
|Ak(~i)|
n−2

dzAk(~i)

(
δ∏
l=1

∫
Sn−2

dzi0

∫
A(r,zi0 )

dzil

)(
fZ~i|ZAk (z~i|zAk(~i))− fZ~i(z~i)

fZ~i(z~i)

)
fZ~i(z~i)fZAk(~i)

(zAk(~i))

≤ O
(
pδ+1P δ

0 ‖∆p,n,k,δ‖1

)
= O

(
ηδp,δ‖∆p,n,k,δ‖1

)
.

Observe that, with Λ = E[Nδ,ρ]

|P (Nδ,ρ > 0)− (1− exp(−Λ))| ≤
∣∣∣P (Ñδ,ρ > 0)− P (Nδ,ρ > 0)

∣∣∣
+
∣∣∣P (Ñδ,ρ > 0)−

(
1− exp(−E[Ñδ,ρ])

)∣∣∣
+
∣∣∣exp(−E[Ñδ,ρ])− exp(−Λ)

∣∣∣
≤ b1 + b2 + b3 +O

(∣∣∣E[Ñδ,ρ]− Λ
∣∣∣) .(50)

Combining the above inequalities on b1, b2 and b3 yields the first three terms in the argument
of the “max” on the right side of (20).

It remains to bound the term |E[Ñδ,ρ]−Λ|. Application of the mean value theorem to the
multiple integral (41) gives∣∣∣∣∣E

[
δ∏
l=1

φiil

]
− P δ

0J
(
fZi1 ,...,Ziδ ,Zi

)∣∣∣∣∣ ≤ O
(
P δ

0 r
)
.(51)
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Applying relation (48)∣∣∣∣E[Ñδ,ρ]− p
(
p− 1

δ

)
P δ

0J
(
fZ∗1 ,...,Z∗δ+1

)∣∣∣∣ ≤ O
(
pδ+1P δ

0 r
)

= O
(
ηδp,δr

)
.(52)

Combine this with (50) to obtain the bound (20). This completes the proof of Prop. 1. �

Proof of Cor. 1:

For correlation hub screening (Z = U) ‖∆p,n,k,δ‖1 = 0 so it suffices to consider the
other arguments of “max” in the bound (20). As in the proof of Prop 2, (1 − ρp)

1/2 =
O
(
p−(δ+1)/((n−2)δ)

)
and we can merge the last two terms in (20) into the single term p−α(δ+1) =

max
{
p−1/δ, (1− ρp)1/2

}
, with α defined in the Corollary statement. Finally, note that

ηp,δ = O(1) and (k/p)δ+1 ≥ Qp,k,δ = (k/p)δ−1p−(δ−1)/δ when k/p ≥ p−(δ−1)/(2δ). Therefore, as
α ≤ (δ − 1)/(2δ) when n > 3, we conclude that if k/p ≥ p−α all arguments of “max” in the
bound (20) are dominated by (k/p)δ+1.Turning to partial correlation hub screening (Z = Y),
under the block-sparse covariance assumption Prop. 3 asserts that ‖∆p,n,k,δ‖1 = O(k/p)
which dominates (k/p)δ+1. This completes the proof of Cor. 1. �

Proof of Proposition 3:

By block-sparsity, the matrix U of Z-scores can be partitioned as U = [Ũ,U], where

Ũ = [Ũ1, . . . , Ũq] and U = [U1, . . . ,Up−q] are the dependent and independent columns of U,

respectively. Since the columns of U’s are i.i.d. and uniform over the unit sphere Sn−2, as
p→∞ we have

(p− q)−1U UT → E[UiU
T

i ] = (n− 1)−1In−1.

Furthermore, as the entries of the matrix q−1ŨŨT are bounded by 1,

p−1ŨŨT = O(q/p),

where O(u) is an (n − 1) × (n − 1) matrix whose entries are of order O(u). Hence, as

UUT = UUT
+ ŨŨT , the pseudo-inverse of R has the asymptotic large p representation

R† =

(
n− 1

p

)2

UT [In−1 + O(q/p)]−2U =

(
n− 1

p

)2

UTU(1 +O(q/p)),(53)

which establishes (23).

Define the partition C = Q ∪ Qc of the index set C = {(i0, . . . , iδ) : 1 ≤ i0 6= · 6= iδ ≤ p}
where Q = {(i0, . . . , iδ) : 1 ≤ il ≤ q, 1 ≤ l ≤ δ} is the set of (d + 1)-tuples restricted to

the dependent columns Ũ of U. The summation representations (30) and (32) of J and
‖∆p,n,k,δ‖1 yield

J(fZ∗1 ,...,Z∗δ+1
) = |C|−1

∑
~i∈Q

+
∑
~i 6∈Q

 J(fZi0 ,...,Ziδ ),(54)
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and

‖∆p,n,k,δ‖1 = |C|−1

∑
~i∈Q

+
∑
~i 6∈Q

∆p,n,k,δ(~i).(55)

For correlation hub screening (Z = U) ∆p,n,k,δ(~i) = 0 for all ~i ∈ C while, as the set

{Ui0 , . . . ,Uiδ}’s are i.i.d. uniform for ~i ∈ Q, J(fZi0 ,...,Ziδ ) = 1 for ~i ∈ Q. As J(fZi0 ,...,Ziδ ) is

bounded and |Qc|/|C| = O (δ(q/p)) the relations (24) and (25) are established for the case
of correlation screening.

For partial correlation hub screening (Z = Y) then, as Y = [In−1 + O(q/p)]−1U, the joint

densities of Y and U are related by fY = (1+O(q/p))fU. Therefore, over the range~i 6∈ Q, the
J and ∆p,n,k,δ summands in (54) and (55) are of order 1 +O(q/p) and O(q/p), respectively,
which establishes (24) and (25) for partial correlation screening. This completes the proof
of Prop. 3. �
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