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Abstract—Building on previous work in robust optimization,
we present a formulation of robust logistic regression under
bounded data uncertainties. The robust estimates are obtained
using block coordinate gradient descent with iterative group
thresholding, which zeros out highly uncertain variables. For high
dimensional problems with uncertain measurements, we discuss
the addition of regularization penalties such that both robustness
and block sparsity are imposed in the parameter estimates. An
empirical approach to estimate the uncertainty magnitude is
presented through the use of quantiles. We compare the results of
{1 -Logistic Regression against /;-Robust Logistic Regression on a
real gene expression data set and achieve reductions in the worst-
case false alarm rate and probability of error by 10% — 20%,
thus illustrating the value added of using robust classifiers in risk
sensitive domains when confronted with uncertain measurements.

Index Terms—Robust Optimization, Group Structured Reg-
ularization, Logistic Regression, Gene Expression Microarrays.

I. INTRODUCTION

HERE are two common methods for accommodating

uncertainty in the observed data in risk minimization
problems. The first approach assumes stochastic measurement
corruption, centered about the true signal. This method is
commonly known as error in variables (EIV) and has a
rich history in least-squares and logistic regression (LR)
problems [1], [2], [3], [4]. Unfortunately, EIV estimators are
optimistic, require solving non-convex optimization problems,
and de-regularize Hessian-like matrices making numerical
estimation less stable. The latter approach of accommodating
measurement uncertainty involves developing estimators that
are robust to worst-case perturbations in the data and result
in solving well posed convex programs [5], [6], [7], [8], [9],
[10], [11].

The work presented throughout this paper builds on the
results of [7] and [5]. Specifically, we generalize the robust
optimization problem to a variety of different uncertainty
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sets appropriate for real problems. We present novel group-
thresholding conditions which produce block-sparse parame-
ters when confronted with grouped uncertainty. The robust risk
functions, resulting from the minimax estimation, are regu-
larized with group structured penalties to accommodate high
dimensional data when the underlying signal is both block-
sparse and measurements are uncertain. A block coordinate
gradient descent with an active shooting speed up algorithm
is presented which exploits the iterative grouped thresholding
conditions.

An interesting relationship between ridge LR and robust
LR (RLR) is presented. The robustness of ridge LR is
established by identifying conditions when the uncertainty
magnitude of robust can be re-parameterized in terms of
the ridge tuning parameter such that both methods yield the
same solution. Conditions on the Hessians of each method
are established such that the RLR approach converges to this
solution faster than ridge LR. We also present an empirical
approach to estimating the uncertainty bounds using quantiles.
We conclude by presenting a illustrative example using gene
expression data and discuss how robust ¢;-regularization
paths recover “robust genes” that were previously over-looked
by standard ¢;-regularization. The worst-case probability of
errors and false alarm rates of RLR are always less than or
equal to those from LR. To the authors knowledge, this is the
first application of a robust classifier being applied to gene
expression data. The results suggest that “robustification” of
logistic classifiers can lead to significant performance gains
in gene expression analysis.

The specific contributions of this paper are as follows. 1)
We extend the penalized robust logistic regression formulation
of [7] to accommodate group structured variable selection (1)
penalties. 2) We give necessary and sufficient conditions for
the solution to this modified robust logistic regression problem
and propose an iterative Newton-type optimization algorithm
with a group thresholding operator. 3) We obtain a relation
between this solution and the solution to ridge logistic regres-
sion that uses a /o squared penalty. 4) We obtain expressions
for the Hessian of the objective functions that are minimized
by robust and ridge logistic regression, respectively, which
can be used to obtain and compare asymptotic convergence
rates of iterative robust and ridge logistic regression. 5) We
show that the bounded error approaches advocated here (and in
[5]1, [7]) are natural for bioinformatics applications, or indeed
any applications where there are technical replicates that can
be used to prescribe estimate error bounds. 6) We illustrate
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concrete benefits of our approach for prediction of symp-
tomatic infection from gene microarray data collected during
a human viral challenge study. In particular, our predictor
suffers significantly less degradation in probability of error
as compared to the standard non-robustified logistic predictor.

The outline of the paper is as follows. In Sec. II we
review the robust logistic regression problem and in Sec. III
we introduce a group penalized version of this problem. In
Sec. IV we describe our active shooting block coordinate
descent approach to solving the associated group penalized
optimization. In Sec. V we propose a quantile-based method to
extract relevant uncertainty bounds when empirical technical
replicates of the training data are available. In Sec. VII
we evaluate the performance of the proposed method using
simulations and a real gene microarray data set collected
by our group. Finally, in Sec. VIII we state our principal
conclusions.

II. ROBUST LOGISTIC REGRESSION

The goal of robust logistic regression (RLR) is to extract
an estimator by minimizing the worst-case errors in measure-
ments on the LR loss function (binomial deviance) subject to
bounded uncertainty. The general case of RLR with spherical
uncertainty, previously explored by [7], involves n measured
training variables {z;,y;}7,, ; € RP, y; € {—1,+1}, and
adopts a minimax formulation

ming g, maxys,n Z]Og (1 + e—yi(ﬁT(m+5i)+go)>

i=1
subject to [|d;lle, < pVi=1,...,n. (1)
Here, the true signals are given by {z; = z; + &},

d; is not observed, and the parameter p is the magnitude
of the worst-case perturbation. The minimax problem in
(1) is solved by first solving the inner maximization step
analytically, resulting in a convex RLR loss function which
is then minimized with respect to 3, Go.

Note that the maximization over each of the n perturbations,
d; can be moved within the sum loss function in (1)

ming_g, Z maxs, log (1 + efyi(ﬁT(ziJr&)Jrﬁo))
i=1
subject to [|d;lle, < pVi=1,...,n. (2)
We would like to reduce the minimax problem in (2) to a

closed form minimization problem over (3 as performed in
[5]. We begin by noting the following

~yiB8T 8 < 1Bllesl1dille. < 18]lecp- )

Given that the loss function is monotonic in —y;37'§;, we have
the following upper-bound on the binomial deviance for the
ith sample:

P

log (1 + e_yz(ﬁT(l'i“r(st)“v‘BO))

< log (1 + e—yz(BTaci+ﬂo)+PH5Hz2) ) 4)

The upper-bound in both (3) and (4) is achievable for J;
collinear with 3, i.e., §; = ;0 for some alignment parameter
v;, thus yielding the solution to the constrained maximization
step for the i*" observation

maxs, |6 |le, <p log (1 + e*yi(ﬁT(xHréi)vLﬁo))
= log (1 + e—yz(ﬂT-TH-ﬂo)-i-PHﬁHzQ) ) (5)

We may now proceed with obtaining the robust estimated
normal vector (3 corresponding to the binomial deviance via
the following unconstrained minimization problem:

ming g, Zlog (1 + efyi(ﬁTziJ“Bo)*””B“Q) . (6)
i=1

Geometrically, the robust binomial deviance penalizes points
based upon their distance to the “uncertainty margins”
+p||8]|2, i-e., a point is penalized more for being the same dis-
tance away from the hyperplane under the robust formulation
than standard LR. This pessimism is intuitive as observations
that are close to the decision boundary could have their
true value lying on the misclassified side under worst-case
perturbations (see Figure 1).

‘,3TX + Bo = —pl|Blle,
’ ﬂTX +Bo=0
BT+ o = Bl

Fig. 1. Bounded uncertainty modification penalizes based on potentially
mis-classified points translating logistic regression loss to penalize based on
margins

III. ROBUST LOGISTIC REGRESSION WITH GROUP
STRUCTURED UNCERTAINTY SETS

In practice, joint spherical uncertainty may be inappropriate
for modeling real data. A more appropriate form of uncertainty
occurs when it affects groups of variables. Here, we assume
that perturbations have group structure and are applied to G
disjoint subsets of the p variables. These assumptions produce
the following robust optimization problem

ming g, Zmax(gi log (1 + e*yz‘(ﬁT(miHi)Jrﬁo))
i=1
subject to {||0; g

where §; = {51‘,9}?:1 with 6;, € RZsl and 7, ¢ 7, T =
{1,...,p}, are the set indices corresponding to the variables

6 <pgtga Vi=1,....,n (]
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in group g. We will assume that Z, NZ, = () for g # ¢’. Note
that that loss function is monotonic in Z?zl fyiﬁgle—g, and
therefore, under worst-case perturbations, we have

G G
D iy 81 <D |IBsllex 185

g=1 g=1

G
e <Y pgllBglles- (®)
g=1

The inner maximization step in (7) is achieved when the upper
bounds in (8) is tight, which is when f, is colinear with J; 4.
Therefore, as in (5), we have analytically computed the inner-
maximization step, and thus, our problem reduces to solving
the following:
ming g, Z log (1 + e_l‘!i(ﬁTm+ﬁo)+Z?=1 /’gHﬁg”ez) .9
i=1
The term within the argument of the RLR loss function is the
“group lasso” penalty (9) which tends to promotes spareness
in the groups (or factors) when used to regularize convex risk
functions [12], [13].

When the number of groups is G = p (each variable in its
own group), the perturbations are interval based, and the group
lasso penalty is equivalent to the ¢;-penalty. In this case the
optimization problem (9) becomes, when pg, = p, for all g =
1,...,p,

ming,go Z 10g (1 + e_yi(BTxi'f'ﬁo)-‘rpHﬁHgl) .
=1

(10)

The minimization problem in (10) was previously treated in
the context of interval perturbations in [7].

A. Regularized Robust Logistic Regression

Penalties such as the ¢;-norm are used in high-dimensional
data settings, as they tend to zero out many of elements in
[, which may better represent the structure of the underlying
signal. Many fields of research increasingly involve high-
dimensional data measurements that are obtained under noisy
measurement conditions, such as gene expression microarrays
that measure the activity of thousands of genes by assaying
the abundances of mRNA in the sample. Here we develop
new logistic classifiers that have the combined advantages
of sparsity in variables and robustness to measurement
uncertainty.

We will assume that the group structure of the regularization
penalties coincide with the structure of uncertainty sets. For
an arbitrary set of GG disjoint groups, the following regularized
robust solution is

n

G
f G
mingg,go Z log (1 + e_y’f”+29:1 P'qHﬁgHb) + Z Ag”ﬁgHb

i=1 =1
a1

with f; = #Tx; + Bo. The presence of the additional group-
lasso penalty should promote block-sparsity in 3 while being
robust to measurement error affecting the same variables in
the group.

IV. COMPUTATIONS FOR REGULARIZED ROBUST
LOGISTIC REGRESSION

Here, we present a numerical solution to the general regular-
ized RLR problem based on block co-ordinate gradient descent
with an active shooting step to speed up the convergence
time when confronted with sparse signals or many groups.
Since the penalized loss function in (11) is convex, denoted
by L, , we can iteratively obtain (3, via block coordinate
gradient descent. However, the gradient of (11) does not exist
at 3, = 0, and thus we must resort to sub-gradient methods to
identify optimality conditions [14], [13], [15]. The necessary
and sufficient conditions for 3, to be a valid solution of (11)
require

g
7X31Apy+ (g tr(Ap) + Ag) W =0,8,#0
glita
||XTA7ﬁgaﬂyH52 < (pgtr(A—gp,,p) +Ag) . By =0
g
with A, = I+K,)", K, =
diag evi (BT witf0) =S Ly pollfalles ) Note  that A_p, .,

means that 3, is set to 0 in K,. The group thresholding
that arises from these optimality conditions appears in group
lasso regularized problems [12], [13], [15] and to the authors
knowledge, has not been previously extracted in the context
of RLR [7]. While RLR uses a different loss function than
the binomial deviance, the thresholding conditions (above)
establish the relationship between regularizing a standard
convex risk function with a non-differentiable penalty and
the sparse solutions that tend to appear when applying robust
linear classifiers to uncertain data [7]. It is intuitive that
the thresholding conditions depend on both the uncertainty
magnitude p, and the sparseness penalty parameter )\,.

The proposed block co-ordinate gradient descent consists of
updating the g** group parameters by initially computing a
Newton-step

S Lo (12)

-1
68y = — |3 L% v, L)
followed by performing a backtracking line search ([16]) for

appropriate step size »(™) > 0, and then updating B,SWH)

BImHY e gl 4l 5a(m). (13)

The numerical solution to solving (11) is outlined below
in Algorithm 1. The active shooting [17] step updates the
parameters that were non-zero after the initial step until
convergence. After this subset has converged, gradient descent
is performed over all the variables. This preferential update
tends to reach the global minima faster when confronted with
many groups.

Algorithm 1:
Active Shooting Block Coordinate Descent
with Group Thresholding

1) Initialize:

a) ﬁ(l) — Véo)éﬁéo) with all parameters set to zero

b) 53” — VB for g = 1,...,G, with B

evaluated at B((]Og and all other parameters set to

Zero
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2) Define the active set A = {g: B!(JO) # 0}

3) 5%’”)*1) — B 4 u{msaim with 68™ via (12),

vy by performing backtracking, and 3 held at previous
value
4) Forge A
a) if |‘X31A*Bg’l7y||e2 < pgtr (A*Bg,p) + Ags
6{(]m+1) 0

b) else, evaluate 655(,7”) from (12) while holding all
other parameters at previous values, compute step
size Vém) via backtracking, and update @m“) —
8™ + vy o™

5) Repeat steps 3 and 4 until some convergence criteria met
for active parameters in A.

6) If convergence criteria satisfied, define A = {1,...,G}
and repeat 3 and 4 until convergence in all parameters.

V. EMPIRICAL ESTIMATION OF UNCERTAINTY

The magnitude of the potential uncertainty is determined
by pg. There are situations when a researcher has prior
knowledge on the value of p, but more often this parameter
must be estimated empirically, In modern biomedical
experiments, in which gene expression microarrays are used
to assay the activity of tens of thousands of genes, technical
replicates are frequently obtained to assess the effect of of
measurement uncertainty.

We will estimate p, using a generalization of the method
in [18] based on quantiles. For grouped uncertainty sets, we
estimate pg via the following

pgla) = inf,P(y/2lz, <7)=a

where the distribution in (14) is taken with respect to a data set
independent of the training data, such as technical replicates
of a biological experiment. Note that (14) reduces to interval
based quantile estimates when the number of groups G = p.
As the cumulative distribution function (CDF) in (14) does
not depend on class label y, we obtain (14) by

(14)

P(zg<7)= > Pl <7V =yPY =y) (5
ye{—1,+1}
with 2z, = xgxg and data centered about their respective

class centroids. The class priors are estimated empirically by
P(Y = y) = m,/m, where m, and m are the number of
replicate samples with label y and total number of replicate
samples, respectively. The estimation in (14) can be assessed
with respect to the empirical CDF of the data {z; 4}7; or
approximated by the inverse-CDF of the X, distribution [18]
with p, = |Z,| degrees of freedom. The application of the
proposed estimation of uncertainty bounds is presented below
in the context of high-dimensional gene expression data in
which technical replicates are available.

VI. ROBUST VS. RIDGE REGRESSION
A. Robustness of Ridge Logistic Regression

One important question is how the proposed RLR formula-
tion relates to Ridge LR. Ridge LR involves adding a squared

{o-penalty to the binomial deviance loss function:

o I A
ming ;log (1 + Vil ’”1) + 5\\5”%2. (16)
Our goal is to identify values of p as a function of A for which
both robust (1) and ridge (16) produce approximately identical
estimates of 3. We begin by inspecting the optimality condi-
tions for 3. The gradients for ridge and robust, respectively,
are given as (intercept removed for clarity):

VsLly = —XTWy+ A8 (17)
VgL, = —XTWpy—I—ptr(Wp)L. (18)
1Blle
. efyiﬁTwi
where W = dlag(m) and W, =
—viB w4018l
diag(—= P ritolple ). If we linearize the sigmoidal terms

—?/i[’TfEi‘f'PHﬁHez
in W and W, the scaled gradients can be approximated by
the following:

1 1
-1 ~ (—XTXx — 6%
n~VgLy <4n + ()\/ﬂ)[) Ié] 25?[}”
1
with 62, =n~! (ny 24 —n_7_)

1 1 1
—XTXB— =6z, + ~p?
in f= 308+

P Bréz, 1,
(20)

= cg+ agp2 + bgp.

n_1V5Lp P~

Since the gradient for ridge regression can be approximated
by the linear system of equations in (19), we can approximate
B via 1

B ~ 3
Inserting (21) into (20), summing (20) over its elements by an
inner product with a vector of 1’s, and solving for p, produces
the following quadratic equation of p in terms of A

2
Ty . T . _ 1T 4. 1T,
—1Tby, :t\/(l bm) 4-1Ta; -1Tcy
— .
2.1 as,

H, 0Ty, (21)

P~ (22)
The positive value of py is the uncertainty magnitude. This
establishes equivalence between the solutions of ridge and
robust logistic regression for a given .

B. Convergence Rates of Ridge and Robust

We established conditions of equivalence between ridge
and robust LR estimators through a re-parameterization of
p in terms of A (22). It is also of interest to investigate the
rate at which these methods converge under the proposed
conditions of equivalence. For ease of exposition in the
analysis, we will assume that the data has been centered and
there are balanced sample sizes (ny = n_).

We begin by assuming that the gradients of both ridge LR (19)
and RLR (20) are in some neighborhood about 0. The structure
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of the Hessian specify rates of convergence through the
eigenvalues. Under the assumptions detailed above, the scaled
Hessian for the ridge case is obtained from differentiating (19)
is given by
_ 1
n~'V3Ly ~ EXTX + (\/n)I. (23)

By differentiating (20) and noting that %ﬂTéi”n < %, we
obtain the scaled Hessian for robust logistic regression

1 1
n~'V3L, ~ (MXTX + 4,02.7) +p(A-=B) (24

with positive semi-definite matrix A

1 1
A= I-— Ba" (25)
2141, ( 18T,
and positive semi-definite matrix B
1
= — 6z,8%. (26)
818, "

We are interested in extracting conditions on p such that
the Hessian corresponding to the robust binomial deviance
is “larger” than that corresponding to ridge, i.e., AH =
V%Lp — V%L,\ > 0, when both methods yield the same 3, or
equivalently

w'AHw > 0, V. (27)

One can directly derive necessary conditions that must be
satisfied by AH by enforcing that (27) holds for some choice
of w. We take w = §Z, which is the right eigenvector of B,
and substitute BA (21) and py (22) for B and p, respectively
in (27). The conditions such that robust logistic regression
converges faster to the solution of ridge logistic regression are

2 2(1—¢€))

AT —= px > 4A/n (28)
[[8xlle
where €} is given by
R 2 1 1
! TS~
¢\ = (@ 5x) (_ + ) .9
182117, 185117, 4

VII. NUMERICAL RESULTS
A. Recovery of Regularization Path Under Signal Corruption

Many researchers in machine learning and bioinformatics
assess importance of various biomarkers based upon the
ordering of ¢;-regularization paths. Thus, it is worthwhile
to explore how the ordering of the wvariables within
the regularization path change as uncertainty is added.
We first show a simple synthetic example there are
n = 100 samples in each class with x € RP, p = 22,
with z ~ MN(uy,X). The class centroids are given
by M1 = [_%7%a_%v_%7_%7_%a07”' aO]T and
p-1 = [3,—%,0,---,0,0,0,0,0]". The structure of %
is block diagonal, where diagonal components {c;;}’_; are
equal to one and the block structure affects only the variables
1, T2, T3, X4, L5, Te, Where the off-diagonal elements in this
block {oij}gzl,#i are equal to 0.1. The other off-diagonal

elements have covariance of zero.

Figure 2(a) represents the ¢;-regularization path as a function
of log;, A on the original data. In Figure 2(b), x5 has been per-
turbed such that z3 « x3+d3 with —p < d3 < p, which leads
to a shift in the ordering within the regularization path under
normal ¢1-LR. Using the perturbed data set and knowledge
that p = 0.1 for z3 and presented with interval uncertainty, the
{1 -regularized robust logistic regression recovers the original
ordering of the variables (see Figure 2(c)).

B. Human Rhino Virus Gene Expression Data

Here we present numerical results on peripheral blood
gene expression data set from a group of n = 20 patients
inoculated with the Human Rhino Virus (HRV), the typical
agent of the common cold [19]. Half of the patients responded
with symptoms (y = +1) and the other half did not (y = —1).
The original 12,023 genes on the Affymetrix oligonucleotide
microarray were reduced to p = 129 differentially expressed
genes controlling for a 20% False Discovery Rate (FDR)
using the same methodology as applied in ([20]). We will
regularize both the robust binomial deviance and standard
binomial deviance with an ¢;-penalty to control the sparsity
of the resulting model forcing many elements in 3 to be zero.
In this experiment there were approximately 20 microarray
chips that were technical replicates. The technical replicates
were used to estimate the interval uncertainty bounds using
(14).

Since oligonucleotide microarray devices detect the presence
of mRNA abundance by including thousands of different
probe sets (short sequences) that bind to a particular mRNA
molecule, produced from a specific gene, we will adopt
interval uncertainty across the p genes. The estimated interval
uncertainty bounds, {p;(a)}l_,, were obtained from (14)
using the empirical CDF of the independent technical replicate
data with linear interpolation between sampled data. The CDF
in (14) was computed by (15) with each conditional CDF
centered about their class dependent sample mean and equal
class priors P(Y = +1) = P(Y = —1) = 1/2. Technical
replicates are generated from the blood sample used to assess
gene expression activity in the training data and thus, are
commonly used to isolate the effect of measurement error.

We explored the effect of interval uncertainty
bounds resulting from quantiles of (14) at levels of
a = {0.25,0.50,0.75,0.95,0.99}. Figure 3 shows the
{y-regularization paths obtained by solving (11) on the
training data for different interval uncertainty (including no
uncertainty corresponding to standard ¢;-LR) and illustrates
how robustness affects the ordering of the genes. We
see from Figure 3(a) that the first gene to appear in the
regularization path is the anti-viral defense gene RSAD?2.
RSAD2 persists at the first gene in the regularization path
for « = {0,0.25,0.50,0.75} (latter three not shown) but
disappears from the regularization path completely, along with
a few other genes, in Figure 3(a), when o = {0.95,0.99}.
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(a) ¢1-Regularization path on original data
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(b) ¢1-Regularization path with bounded perturbations in
z3 and p3 = 0.1

15
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15 L L L L
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(c) ¢1-Robust regularization path with p3 = 0.1

Fig. 2. Regularization paths as a function of log,, A: robust recovers original
ordering after perturbation

The three “robust genes” that persist across all explored
values of o are ADI1, OAS1, and TUBB2A. Of these three,
OAS1 (codes for proteins involved in the innate immune

response to viral infection) barely appears in Figure 3(a), yet
is the first gene to appear in the robust regularization paths
that is common to both a = {0.95,0.99} (see Figures 3(b)
and 3(c)). These results suggest that when assessing variable
importance via regularization paths, one should be aware of
the effect of measurement uncertainty on the ordering of the
variables.

The robust formulation within this paper aims at minimizing
the worst-case configuration of perturbations on the logistic
regression loss function. As our goal is discriminating between
two phenotypes, it is of interest to compare the worst-case
probability of error for LR and RLR on perturbed data sets,
ie., x; < x; + 0;, |0;] < pi(«), after training on the original
data. The ¢;-tuning parameter A for both standard ¢;-LR and
£1-RLR was chosen to minimize the out-of sample probability
of error via 5-fold cross validation. Given the cross validated
value of \ for both methods, the models were then fit to
the entire set of training data. 50,000 perturbed data matrices
were then generated subject to interval uncertainty bounds
{pi(a)}f_, for & = {0.25,0.50,0.75,0.95,0.99}. The best-
case and worst-case probability of error were recorded in
Table I. We see for all values of « explored, the worst-case
probability of error corresponding to ¢;-RLR is always less
than or equal to that of ¢;-LR. When o = {0.95,0.99}, the
worst-case probability of error for ¢;-LR is 0.30 but reduces to
0.20 when using ¢;-RLR with interval uncertainty estimated
from the data using (14). Corresponding to the worst-case
probability of errors are the sensitivity and 1-specificity, given
in Table II. We see that /1-RLR achieves the same power
as /1-LR at false alarm rates less than or equal to that of
the non-robust method. The proposed method can be used to
reduce classifier error sensitivity in large scale classification
problems. This can be important in practical applications such
as biomarker discovery and predictive health and disease.

TABLE I
BEST AND WORST CASE PROBABILITY OF ERROR, P., FOR THE HRV DATA
SET
« ¢1-LR ¢1-Robust LR
min P, max P, min P, max P,
0.25 0.10 0.15 0.10 0.15
0.50 0.05 0.20 0.10 0.20
0.75 0.10 0.25 0.10 0.25
0.95 0.00 0.30 0.05 0.20
0.99 0.00 0.30 0.00 0.20

VIII. CONCLUSION

Building on the results of [7] and [5], we have formulated
the robust logistic regression problem with group structured
uncertainty sets. By adding regularization penalties, one can
enforce block-sparsity assumptions of the underlying signal.
We have presented a block co-ordinate gradient method with
iterative grouped thresholding for solving the penalized RLR
problems. The group thresholding is affected by both the
group-lasso penalty and the magnitude of the worst-case un-
certainty. Thus, RLR tends to promote thresholding of highly
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Fig. 3. Regularization paths on the HRV data set as a function of
log,y A/Amagz for different magnitudes of interval uncertainty, as determined
by the o quantile

uncertain variables, essentially performing an initial step of
variable selection. We have proposed an empirical approach
to estimating the uncertainty magnitude using quantiles. This

TABLE 11
SENSITIVITY AND 1-SPECIFICITY CORRESPONDING TO WORST CASE
PROBABILITY OF ERROR FROM HRV DATA

« /1-LR ¢1-Robust LR
Sens. 1-Spec.  Sens. 1-Spec.

0.25 0.70  0.00 0.70  0.00
0.50 0.70  0.10 0.70  0.10
0.75 0.70  0.20 0.70  0.20
0.95 070 0.20 0.70  0.10
0.99 0.70  0.30 0.70  0.10

approach was applied to a real gene expression data set
where quantile estimation was applied to a set of technical
replicates. The numerical results on this data set establish that
the proposed approach can yield lower worst-case probability
of error and lower false alarm rates. Such a gain in worst-
case detection performance can improve the performance for
predictive health and disease, and in particular for predicting
patient phenotype. It will be interesting to explore the situation
when the group-structure of the uncertainty differs from that
of the regularization penalty. This situation could potentially
be solved by modifying the sparse group-lasso solution as in
[21]. Tt is also of interest to explore the kernelization of this
method in which one can study the propagation of bounded
data uncertainty in a reproducing kernel Hilbert space.
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