
CLASSIFICATION OF MULTIPLE TIME-SERIES VIA BOOSTING

Patrick L. Harrington Jr.∗(1,2), Arvind Rao†(3), and Alfred O., Hero III.‡(1,2,4)

(1) Bioinformatics Graduate Program, University of Michigan, Ann Arbor, MI 48109-2218, USA
(2) Department of Statistics, University of Michigan, Ann Arbor, MI 48109-1107, USA

(3) Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
(4) Department of EECS, University of Michigan, Ann Arbor, MI 48109-2122, USA

ABSTRACT

Much of modern machine learning and statistics research
consists of extracting information from high-dimensional
patterns. Often times, the large number of features that com-
prise this high-dimensional pattern are themselves vector
valued, corresponding to sampled values in a time-series.
Here, we present a classification methodology to accom-
modate multiple time-series using boosting. This method
constructs an additive model by adaptively selecting basis
functions consisting of a discriminating feature’s full time-
series. We present the necessary modifications to Fisher
Linear Discriminant Analysis and Least-Squares, as base
learners, to accommodate the weighted data in the proposed
boosting procedure. We conclude by presenting the perfor-
mance of our proposed method against a synthetic stochastic
differential equation data set and a real world data set involv-
ing prediction of cancer patient susceptibility for a particular
chemoradiotherapy.

Index Terms— Boosting, Time-Series, Additive Models

1. INTRODUCTION

Modern scientific problems are increasingly confronted with
high-dimensional data containing subtle patterns that can pro-
vide a wealth of information for explaining the variation be-
tween the classes that produced it. For example, in predicting
breast cancer patient prognosis/survival, researchers derived
a 70-dimensional molecular ”signature” that was more pre-
dictive of future patient status than traditional clinical meth-
ods [1]. From this motivating example, properly predicting
a patient’s future disease status would allow for more tai-
lored therapeutic options that minimize the cost associated
with mistreatment and more importantly, maximize patient
survival/recovery.
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Increasingly often, these high-dimensional patterns, con-
taining thousands of different features, have been observed
at multiple time-points or are themselves multivariate. In the
former case, a physician may monitor a patient’s gene ex-
pression activity over a sequence of visits before determining
the most appropriate therapy. Since microarray gene expres-
sion measurements consist of a snapshot of thousands of dif-
ferent genes, we are presented with a high-dimensional data
set of features over different observed time points [2]. An-
other example is in surveillance, where a satellite may acquire
many different images of a particular ground surface or poten-
tial enemy target taken under different spectral bands and the
goal is try classify these surfaces or objects [3]. In addition
to performing classification, it also of interest in many prob-
lems to extract which of these features, e.g., genes or images,
are important in capturing the variation between the classes
and what subspace is responsible for this variation, e.g., time-
points or regions of an image.

In this report, each time-series or multivariate feature will
be represented by a vector. The modified boosting algorithm
will selects a basis function consisting of the most discrim-
inating feature at the mth boosting iteration with respect to
one of the two modified base learners: Fisher Linear Discrim-
inant Analysis and Least-Squares. The resulting classifier will
consist of different features where each member to the addi-
tive model attempts to linearly partition this selected feature’s
vector-space. Our discussion will be restricted to the Discrete
AdaBoost algorithm and the extension of the proposed base
learners to weighted data is presented. We present numerical
results of the proposed method on both a synthetic data set of
stochastic differential equations and a real data set involving
patients with rectal cancer. We conclude with a discussion of
future work.

2. METHODS

2.1. Additive Models

Additive models for regression and classification have re-
ceived a significant amount of attention in the statistics and
machine learning community as powerful tools for explain-
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Fig. 1. Upper Left: Time-series of features i and j sampled at
3 time points. Lower Left: Traditional approach isolates indi-
vidual time-slices and produces three distinct learners (shown
are decision stumps that partition space based on scalar split
at mth boosting iteration - yellow lines) Right:For feature i
and j, their time-series is a 3-dim vector and a linear classi-
fier is used to partition this space.

ing the data [4, 5, 6, 7, 8, 9]. In classification, the additive
model may be represented as a basis function expansion of
individual learners

FM (x) =
M∑
m=1

αmfm(x; γm) (1)

with expansion coefficient αm, base learner fm(x; γm), and
basis function dictionary parameter γm. Here, x ∈ Rp, is
the p-dimensional feature vector, e.g., pixels in an image or
transcripts on a microarray platform. The canonical statis-
tical method for constructing (1) is to adopt a loss function,
e.g., quadratic, binomial deviance, hinge, etc, and proceed
with the estimation. However, since the basis functions are
not fixed a priori, obtaining (1) requires a combinatorial
search over all possible basis function dictionary parame-
ters {γm}Mm=1, which quickly becomes infeasible with the
size of the dictionary and expansion number M . Thus, ap-
proximate methods must be used to obtain (1) [4, 5, 6, 7].
For this report, we will focus on a greedy forward stage ap-
proach known as boosting [4, 6], and restrict our attention
to the exponential loss L(y, f) = exp(−yf) under train-
ing data D = {(x1, y1), . . . , (xn, yn)} with binary response
y ∈ {−1,+1}.

2.2. Boosting

Boosting is notably one of the most powerful off-the shelf
classification algorithms [10] and constructs (1) via a greedy

forward stage method (under an exponential loss) :

{αm, fm} = arg minα,f

n∑
j=1

exp (−yj (Fm−1(xj + αf(xj)))

= arg minα,f

n∑
j=1

wjexp (−αyjf(xj)) (2)

for f ∈ {−1,+1}. There exists many boosting algorithms,
accounting for different loss functions and constraints on f ,
and all can be extended to the methods proposed in this re-
port. However, we will limit our discussion to the Discrete
AdaBoost algorithm and delay the generalization to other loss
functions for future work [6, 4, 10]. The solution to (2.2), for
all m, is given below in Algorithm 1:

Algorithm 1: Discrete AdaBoost

1. Initialize the observations weightsw(0)
j = 1/n, j = 1, . . . , n.

2. For m = 1 to M

(a) Fit a classifier fm(x) to the training data using weights
w

(m)
j :

(b) fm(x) = arg minf∈F P̂w (y 6= f(x))

(c) Note: P̂w (y 6= fm(x)) =
Pn

j=1 w
(m)
j I{yj 6=fm(xj)}

with
Pn

j=1 w
(m)
j = 1

(d) If P̂w (y 6= fm(x)) > 1/2, flip polarity of fm(x)

(e) Compute αm = log ((1− errm)/errm) with errm =
P̂w (y 6= fm(x))

(f) Set w(m)
j = w

(m−1)
j exp

ˆ
αmI{yj 6=fm(xj)}

˜
, j =

1, . . . , n

3. Output FM (x) =
PM

m=1 αmfm(x) with ŷ = sign [FM (x)].

It was shown in [4] that under the exponential loss, the fi-
nal classifier FM in (1) is estimating half the log-odds of the
posterior probability of class assignment. Thus, the posterior
probability of class labels can be recovered from the final FM .

2.3. Extension to Multiple Time-Series

Often times, the signals are high dimensional which jointly
evolve according to some stochastic process, sampled at dis-
crete time points. Since distribution information regarding
is usually unavailable, we must proceed using training data.
The goal is to extract predictive patterns on a subset of fea-
tures that explain the variation between multiple class labels.
From the supervised learning perspective, we no longer have a
p-dimensional vector, x but a set of p random variables corre-
sponding to the sampled values for each of the p features, i.e.,
xi = [xi(t1), . . . , xi(td)]T with xi(tk) corresponding to the
sampled value of feature i at time tk (dependent on class label
y). Thus, our training data is of the form D = {{Xi}pi=1, y},
with n by d design matrix for the ith feature Xi and response
column vector y = [y1, . . . , yn]T . The goal is to construct (1)



according to Algorithm 1 where the mth basis function is a
function of one of the p features with basis function dictio-
nary parameter im = γm ∈ {1, . . . , p}:

{im, fm} = argmini∈{1,...,p}

n
argminf{−1,+1}P̂w(y 6= f(xi))

o
.

(3)

Here, we will restrict our class of basis functions f to be the
class of linear classifiers that, for the ith feature, linearly par-
tition the d-dimensional vector space corresponding to the
d sampled values of process xi(t). In other words, at the
mth boosting iteration, the decision region for positively as-
sign points is given by X+

im
= {xim : βT

im
xim + βim,0 >

0} whereas the decision region for the negative class assign-
ments is X−im = {xim : βT

im
xim + βim,0 < 0} (see Fig.1).

In this report, we will restrict our attention to the following
linear classifiers: Fisher Linear Discriminant Analysis and
Least Squares. We present the necessary modifications to
both methods to accommodate the weighted data associated
with the boosting procedure below.

2.3.1. Weighted Fisher Linear Discriminant Analysis

Fisher posed the following problem for linearly discriminat-
ing different classes of data in the following way: ”Find the
linear combination of original data such that the between-
class variance is maximized relative to the within-class vari-
ance”. This reduces to finding the vector β

i
, for the ith fea-

ture, which maximizes the following objective function (sub-
script i removed for clarity):

maxβ
βTBβ
βTWβ

(4)

Since the objective function is invariant to rescaling of β, we
can reformulate this as the following constrained optimization
problem:

maxβ
1
2
βTBβ s.t βTWβ = 1 (5)

Here, the between and within class covariance matrices, B and
W, respectively. Given the constrained optimization problem
in (5), we can write the Lagrangian,

LP =
1
2
βTBβ − 1

2
λ(βTWβ − 1). (6)

Differentiating with respect to β and equating to zero, we ar-
rive at the following generalized eigenvalue equation:

W−1Bβ = λβ. (7)

The problem now reduces to solving an eigen-decomposition
of W−1B and selecting the eigenvector corresponding to
largest eigenvalue, the maximizer of (4). However, in the
boosting framework, our training data have corresponding
weights and our estimation of the common/class centroids

and covariance matrices must account for these. The esti-
mation of these parameters under potentially weighted data
points for the ith feature are given by:

Estimation of Parameters for Weighted Fisher LDA

1. x̄i =
PN

j=1 wjxj
i

2. µ̂k

i
=
P

j:yj=k wjxj
i/
P

j:yj=k wj , k ∈ {−1,+1}

3. Bi =
P

k Wk(µ̂k

i
− x̄i)(µ̂

k

i
− x̄i)

T ,Wk =
P

j:yj=k wj

4. Wi =
P

k

P
j:yj=k wj(xj

i − µ̂
k

i
)(xj

i − µ̂
k

i
)T

5. Note: if wj = 1/n for all j ∈ {1, . . . , n}, these reduce to the
unweighted sample mean and sample covariance matrix.

Given these estimates, we can proceed with the eigen-
decomposition of W−1

i Bi and obtain the normal vector, β
i
.

2.3.2. Weighted Least Squares

The second linear classification method explored through-
out this paper is weighted least-squares of a binary response
variable. Least-squares easily accommodates the boosting
weights by assigning importance to the residuals that ”matter
the most”:

β̂
i
= arg minβ

n∑
j=1

wj

(
yj − βT xji

)2

(8)

or gathering all n terms into vector and matrix notation:

β̂
i
= arg minβ

(
y− Xiβ

)T W
(
y− Xiβ

)
(9)

with n by d design matrix Xi for the ith feature, diagonal
matrix W = diag (wj), and the response column vector y.
Here, we have assumed that the intercept term β0 has been
absorbed into y (implies that Xi is centered). The normal
vector β that minimizes (9) is given by:

β̂
i
=
[
XTi WXi

]−1
XTi Wy. (10)

The mth basis function, or base learner, for the ith feature is
then given by fm(xi) = β̂

T

i
xi + β̂0, producing a signed dis-

tance from some test point xi to the linear decision boundary.

3. NUMERICAL RESULTS

3.1. Synthetic Data

Here we present the results of our proposed method on a syn-
thetic time-series training data set, consisting of 100 differ-
ent features, evolving over 100 time points (sampled at 20
evenly spaced time points). There are three different fea-
tures that contain a signal (shown in Fig.2 as green, red, and
blue) for class y = −1 while the rest are noise. All of the
features evolve according to different stochastic differential



equations with common volatility but the three signal fea-
tures having different non-zero drift terms, yielding the peaks
shown in Fig.2. The 50 iid samples of the three signal fea-
tures (y = −1), along with 50 more of these features with no
drift term (y = 1), are both depicted in Fig.2.

Fig. 2. Full synthetic time-series of 100 different features
(only 3 signal features, solid lines, and corresponding noise
shown, dashed lines ), sampled every 5 time-points. The 100
different features are generated from different stochastic dif-
ferential equations

Training the classifier on this 100 feature data set, we have
extracted the three signal features as the only discriminating
features in the data set (see Fig.3 ). The remaining noise fea-
tures have importances of zero since they were not selected
throughout the boosting procedure.
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Fig. 3. Feature Importance: The boosting method selects only
the three signal features (all equally ”important”) whereas the
remaining noise features (not all listed) have importance of
zero because they were not selected as discriminators in any
of the M boosting iterations.

It is obvious from Fig.2 that the maximal variation be-
tween the two classes is captured at the respective peaks of the
three signals shown (features green, red, and blue). Hence, we
would expect that within this 20-dimensional space, there ex-
ists a subspace that is responsible for this variation. Both lin-
ear classifiers used within the boosting framework have penal-

ized counterparts, which can extract a sparse normal vector β
that determines this linear subspace based upon the non-zero
elements of β [11, 12]. By varying the shrinkage factor s be-
tween 0 (total shrinkage) and 1 (no shrinkage) using weighted
least-squares, formulated as LASSO [12], we extract the im-
portance of the features, as depicted in Fig.3, and the discrim-
inating linear subspace Fig.4. Based upon the first coefficient
to appear non-zero under small s in Fig.4a, we see for feature
1 (green), the most discriminating time-point is t = 25, which
corresponds to the sampled point closest to the peak in Fig.2.
The same follows for features 2 and 3 which yield the most
discriminating time points of t = 50 and t = 75, respectively.
We see that the magnitude of all the normal vector coefficients
for feature 3 (blue) are larger than those for features 2 and 3.
This is explained because the noise term for all features is a
Wiener process, which has variance linear in t.

Plotting both the process of the three signal features and
the absolute value of the normal vector coefficients, at a
shrinkage factor of s = 0.2, we see that the mass of the co-
efficients is being assigned to the time-points which are most
discriminating in the process (see Fig.5 ).

The method described throughout this paper allows for
a simultaneous execution of three important tasks in a ma-
chine learning problem: classification/prediction, relative fea-
ture importance, and subspace importance. Here, the sub-
space corresponds to sampled time-points but can can be ex-
tended to any problem containing multiple random-vectors,
e.g., satellite image data under different spectral bandwidths
taken under a variety of conditions.

3.2. Cancer Data

In bioinformatics research, physicians are increasingly faced
with developing personalized therapies for groups of patients
who are susceptible to a particular treatment while avoiding
mis-treatment of those who are not receptive to such treat-
ments. Often times, the data is generated from a series of pa-
tient visits, thus forming a time-series, and the physician is in-
terested in predicting whether a patient will respond desirably
to a proposed treatment strategy. In [2], Luminex proteomic
data and Affymetrix gene expression data was acquired from
36 rectal cancer patients at three distinct time points where
the phenotypes have been labeled RCRG positive (y = +1 -
good responsiveness) or RCRG negative (y = −1 - moder-
ate/poor responsiveness). In this study, the researchers were
interested in predicting the phenotype at the third time point
given the previous two using least-squares support vector ma-
chines (LS-SVM) [13, 2].

We present the generalized performance of the proposed
boosting multiple time-series (BMTS), with Fisher LDA and
LS as the base learners, compared with the approach taken
in [2]. In both studies, the genes and proteins were rank-
ordered in terms of their statistical significance using a rank-
sum test, and the structure of the classifiers were constructed
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(c) Shrunken Normal Vector Coefficients for Feature 3 (blue)

Fig. 4. Subspace Importance (time-points): Normal Vector
Coefficients As a Function of Decreasing Degree of Shrink-
age

using a subset of significant features. The generalized perfor-
mance was assessed using a leave-one-out cross validation.
While data fusion was an additional motivation in [2], simply
forming a master kernel, which was a convex combination
of kernels trained on individual time-points and data sources,
we treated each data modality separately and present the re-
sults in Table 1. We see that our proposed method performs
equally well against the LS-SVM method when using 5 pro-

Fig. 5. Estimated Normal Vector Coefficients Capture the
Maximal Variation Between Classes at Respective Peaks for
s = 0.2

Table 1. Performance Results
Method Ng Np Sens. Spec. Accuracy

LS-SVM t2 - 5 0.885 0.8 0.861
BMTS-FLDA - 5 0.885 0.8 0.861

BMTS-LS - 5 0.885 0.8 0.861
LS-SVM t1 and t2 - 25 0.808 0.7 0.778

BMTS-FLDA - 25 0.923 0.6 0.833
BMTS-LS - 25 0.846 0.6 0.778

BMTS-FLDA 5 - 0.885 0.8 0.861
BMTS-LS 5 - 0.923 0.7 0.861

BMTS-FLDA 25 - 0.846 0.8 0.833
BMTS-LS 25 - 0.846 0.7 0.801

teins while the FLDA base learner outperforms the LS-SVM
when 25 proteins were used. The authors in [2] inspected
1000 and 3000 genes obtaining significantly poorer perfor-
mance than the BMTS approach using far fewer genes Table
1. We believe performance could be further enhanced by ex-
tending the basis functions used in BMTS to include quadratic
classifiers, e.g., quadratic discriminant analysis, a considera-
tion for future-work.

4. DISCUSSION AND FUTURE WORK

While the work within this paper has been confined to the
Discrete AdaBoost algorithm, the extension to multiple time-
series can be generalized to accommodate other loss func-
tions within the forward stage additive modeling framework.
We have presented the necessary modifications to a restricted
class of linear classifiers to accommodate the weights asso-
ciated with boosting training data. Fisher LDA and Least-
Squares are desirable linear base learners for our boosting
procedure as they both can be formulated as penalized op-
timization problem, producing a shrunken β, corresponding
to a discriminating linear subspace [11, 12]. The authors be-
lieve that support vector machines are a strong candidate for



base learners within BMTS given their natural ability to ex-
tend to accommodate nonlinear data, individual penalization
of the slack variables (needed to handle different boosting
weights), and sparse formulations, necessary for subspace se-
lection [14, 15]. Since the sampled data points for each of the
p features most likely lives on some lower-dimensional man-
ifold, we will extend our proposed method to exploit such
possible structure for classification and subspace selection.
Given the relationship between boosting and additive models,
our next step is to provide theoretical performance results for
boosting multiple time-series under different loss functions.
In many problem domains, especially bioinformatics, the no-
tation of simultaneously performing classification/regression,
feature selection, and subspace selection is important, and we
believe our proposed BMTS method, which utilizes selection
and regularization, we believe BMTS is an attempt to satisfy
these requirements.

5. SUPPLEMENTAL MATERIAL

The MATLAB toolbox accompanying this report, Boosting
Multiple Time-Series (BMTS), is available for download at
http://www.umich.edu/∼plhjr/Software.html. Special thanks
to Mark Schmidt for making his MATLAB lasso solver avail-
able for download at
http://www.cs.ubc.ca/∼schmidtm/Software/lasso.html. The
authors also thank Mark Kliger for making his Sparse Eigen-
Methods toolbox available as well (embedded within the
BMTS toolbox).
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