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Abstract

We consider the problem of recognition of a printed
word belonging to a limited dictionary. The main diffi-
culty comes from the fact that this word can be printed
using different fonts, sizes, and positions on the page. In-
variant moment methods for word recognition developed
by Hu [5] and Li [6] are unreliable when the quality of
the word image is degraded by noise. In this paper we
investigate the effectivenes of simple median filter de-
noising for preprocessing noise degraded images prior
to moment based classification using the moment matrix
discriminants introduced by Hero etal [4].

1. Introduction

Recognition of a bit-mapped digitized printed word
is important in many applications, see e.g. the citations
in [4]. Recognition should rely on a method which is
able to capture the essential features of a word while
being invariant to deformations such as font, position
and scale. In the more general context of pattern recog-
nition, several authors have proposed efficient methods
to describe feature maps by using a set of higher-order
moments [6]. In the context of omnifont word recog-
nition, a moment-based approach has been adopted by
Heroetal [4]. Specifically, a word is characterized by a
set of higher-order moments of mixed orders. This de-
scription has been shown to be able to provide an impor-
tant invariance with respect to scale, font and position.
However, numerical calculation of a set of higher-order
moments involves linear operators which are extremely
ill-conditioned. As a consequence, the presence of even

a small amount of noise in an observed image of a word
can make its moment description unreliable.

When word scale and position are known noise sub-
space processing of the matrix of spatial moments is
a very effective way to obtain more reliable moment
descriptions [4] which are robust to noise degradation.
This is because the effect of binary bit-flip noise is
approximately additive in the moment domain. When
scale and position are unknown it is more appropriate to
use a matrix of scale and translation invariant moments.
However, in this case noise subspace processing is less
effective since the noise is no longer approximately ad-
ditive. As a consequence, the capability to discriminate
among words of unknown position and scale is greatly
reduced. In this paper, we focus on an invariant moment
matrix extension of [4] with the addition of an image
domain denoising step to preprocess the images prior to
moment discrimination.

2. Classification via Moment Representation

Assume we are given a dictionary of template
words consisting of bit-mapped binary imagesfp =
ffpm;ng, p = 1; : : : ; P defined over a rectangular lattice
f(m;n); 1 � m � M; 1 � n � Ng, fm;n 2 f0; 1g.
Any imagef can be represented by its set of bivariate
power moments of mixed ordersf�(k; l)g1k;l=0. The
bivariate power moment of order(k; l) is defined as
�k;l =
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This matrix is symmetric non-negative definite [4] for
all integersL � 0. Let g be an observed bit-mapped
word digitized from a document. As explained in [4]
classification ofg can be performed by comparing the
observed moment matrixM(g) to the template moment
matricesM(fp), p = : : : ; P . These moment matrices
are not invariant to scale and translation.

A related symmetric non-negative definite moment
matrix ~M(f) which is invariant can be obtained by re-
placing the entries�k;l inM by
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Unwhitened moment matching This approach is
based on searching for the indexq of the template
word fq which minimizes the weighted distance be-
tween invariant or non-invariant moment matrices:q =
argminp=1;:::;P kM(fp) � M(g)kW , where for any
square matrixA: kAkW =

P
i;j((W

1

2AW
T
2 ))i;j

stands for Frobenius norm with non-negative definite
weighting matrixW. It is necessary to use a weighting
matrixW to equalize the contribution of any repeated
entries in the matrixA, e.g. due to symmetry.

Whitened moment matching To reduce sensitivity
to noise it was proposed by Heroetal [4] to whiten
the moment matrixM(g) and to identify and eliminate
the noise subspace component via eigendecomposition.
What results is a rank reduced moment matrixM̂(g)
which is a better approximation to the noiseless moment
matrix of the observed word. The method is formulated
by assuming the additive mixture model for the normal-
ized image~g, where

PM

m=1

PN

n=1 ~gm;n = 1,

~g = �~fp + (1� �)~fo;

where� 2 [0; 1] and~fp and~fo are normalized word-
alone and noise-alone images. Under this model the
non-invariant moment matrixM(g) has the decompo-
sition

M(g) = �M(fp) + (1� �)M(fo) (1)

Assume that the moment matrixM(fo) is positive def-
inite and known, and letC be its Cholesky factor.
SinceM(fo) = CTC, the model (1) implies that

Mw(g)
def
= C�TM(g)C�1 obeys the equivalent diag-

onal mixture:

Mw(g) = �Mw(fp) + (1� �)I (2)

WhereMw(fp) = C�TM(fp)C�1 is the “whitened”
word moment matrix andI is the(2L+ 1) � (2L+ 1)
dimensional identity matrix. From the whitened mix-
ture model (2) the word and noise subspaces can be
identified from the SVD ofMw(g). The parameter�
can also be identified using the fact that, by construc-
tion, ((CTMw(f)C))1;1 = 1 for any imagef . Since
the sequence of singular values of typical whitened
word moment matrices decay rapidly towards zero, the
SVD can be used to recover a rank reduced approxima-
tion toMw(fp) fromMw(g); the resultant approxima-
tion is denotedM̂(fp) and is called the “SVD cleaned
whitened moment matrix.” Classification of an observed
wordg is then performed by finding the word in the dic-
tionary whose whitened moment matrix is closest to this
rank reduced approximation.

In practice the noise moment matrixM(fo) is not
known exactly. On the other hand, one may have a good
model for the mean noise matrix, e.g. when the noise is
assumed to be i.i.d. uniform (salt and pepper) over the
image. In this case whitening and SVD cleaning is ac-
complished by using the Cholesky factor of the known
mean noise moment matrix in place of the Cholesky fac-
tor of the actual unknown noise moment matrix.

3. Image Preprocessing via Denoising

Optimal denoising of binary images is a difficult
problem which can be addressed by means of binary
Markov random fields [1]. Direct calculation of the re-
sultant estimates requires solving a prohibitive combi-
natorial problem, while approximate methods are often
unreliable [3]. Various suboptimal techniques for de-
noising have been developed which circumvent these
difficulties. Two of the simplest denoising methods are
based on lowpass filtering and rank order statistical fil-
tering, e.g. the median filter, [2]. As contrasted with
rank order statistical filtering, lowpass filtering has the
disadvantage of producing non-binary gray scale images
which introduces additional nuisance parameters (gray
level) into the pattern matching problem. We investigate
the use of median filtering for denoising in the next sec-
tion.

4. Applications

We generated two words “van” and “vax” in various
postscript fonts, font sizes, and positions. Varying lev-
els of spatially homogeneous salt and pepper noise were
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added modulo-2 to the bitmaps of each word. Raw mo-
ments of various mixed orders were computed empir-
ically and sample moments matrices were constructed
using Matlab 5.0. Note that the number of pixels, or
window size, for each word depends on the number of
letters in the word, the presence of capitalization, punc-
tuation, etc. To standardize the computation the bitmap
coordinates for each word were scaled to a square of
length 1 on a side.

van
h
60 vax

h
60

Figure 1. Row 1: van and vax in Helvetica 60.
Row 2: row 1 corrupted with noise. Noise corre-
sponds to maximum noise level of 1 displayed on
horizontal axis of Figures 3 and 6. Row 3: row 2
denoised by median filtering with a7� 7 window.

Experiment 1: We first considered denoising for the
case of known font, scale and position of the two words
(see Figure 1 for a representative example). The non-
invariant whitening and cleaning methods of [4] were
applied to the two template words and two noise cor-
rupted words in Helvetica 64 font. Simple median fil-
tering (with7 � 7 footprint) was applied to denoise the
noise corrupted words prior to moment matrix construc-
tion. The same median filter was applied to the tem-
plate words to reduce moment matching bias. The mo-
ment matrices forL = 18 (each corresponding to over
150 different mixed moment discriminants) are shown
in Figure 2 for the representative example of Figure 1.
Note that the denoising has visually improved the match
between the template moment matrices (row 1) and cor-
responding denoised moment matrices (row 3 appears to
be a less noisy estimate of row 1 than row 2). The prob-
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Figure 2. Row 1: whitened moment matrices for
the template words in row 1 of Figure 1. Row 2:
SVD cleaned whitened moment matrices for noisy
words in row 2 of Figure 1. Row 3: SVD cleaned
whitened moment matrices for denoised words in
row 3 of Figure 1.
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Figure 3. Probability of error curves for nonva-
riant moment methods applied to words of known
font, size and position with and without median
filtering as a preprocessing step (200 trials for
each noise level). HereL = 18 and a 2% en-
ergy threshold was used to select signal and noise
subspaces in the SVD clean procedure.
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ability of error shown in Figure 3 indicates the benefit
of applying denoising prior to classification. Both with
and without denoising the use of the whitened sample
moment matrix leads to lower error than the raw mo-
ment matrix and the use of the SVD cleaning procedure
is better yet. These results are consistent with those re-
ported in [4]. Interestingly, at least over the range of
noise power studied, the SVD cleaning procedure does
not seem to benefit from median filter denoising. This is
despite the visual improvement in the quality of the de-
noised moment matrices observed from Figure 2. This
may be due to the fact that the residual noise in the de-
noised image no longer satisfies the i.i.d. uniform as-
sumptions underlying the mixture model underlying the
SVD clean procedure.

van
h
52 vax

h
52

Figure 4. Row 1: van and vax in Helvetica 52.
Row 2: van in Helvetica 64 and vax in Courier 52
with random translation. Row 3: row 2 corrupted
with noise. Noise level corresponds to maximum
noise level of 1 displayed on horizontal axis of
Figures 3 and 3. Row 4: row 3 denoised by me-
dian filtering with a7� 7 window.

Experiment 2: We next considered the case of un-
known font, position and scale. Due to the mismatch
between the template moment matrices and the observed
moment matrices, for no valuesL, 1 � L � 12),
were the non-invariant moment matrices used in exper-
iment 1 sucessful in discriminating between the font-
differentiated words (even with no noise added!). The
moment matrices forL = 3 are shown in Figure 5 for
the representative example of Figure 4. Denoising (row
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Figure 5. Row 1: whitened invariant moment ma-
trices for the template words in row 1 of Figure 4
(L = 3). Row 2: SVD cleaned whitened invariant
moment matrices applied to noisy words in row 3
of Figure 4. Row 3: SVD cleaned whitened mo-
ment matrices applied to denoised words in row 4
of Figure 4.

3) has not appreciably improved the match between tem-
plate and cleaned moment matrices as compared to the
cleaned method applied directly to the noisy image (row
2). While matrix whitening generally appears to im-
prove performance for high noise levels, the SVD clean-
ing procedure does not appear to reduce probability er-
ror. We think this is due to the fact that the invariant
moment matrix no longer satisfies the additive mixture
model due to the scale and position invariance transfor-
mations. In Figure 6 the total probability of error for
the invariant moment matrix discriminants are shown
with median filter denoising. The non-monotonicity of
the curves as a function of noise power is due to the
“dithering” effect: addition of noise can actually bring
two words at different fonts closer together than with-
out noise. The probability of error without median-filter
denoising oscillated wildly and is not shown.

5. Conclusion

This paper provides motivation for applying denois-
ing strategies prior to classification of noisy word im-
ages. Even with simple median filter denoising, sig-
nificant reduction in classification performance was ob-
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Figure 6. Probability of error curves for invari-
ant moment methods applied with median filtering
(denoising) as a preprocessing step (200 trials for
each noise level). HereL = 3 and a2% energy
threshold was used to select signal and noise sub-
spaces in the SVD clean procedure. Non-invariant
methd has error probability of 0.5 for all noise
levels with or without denoising. Invariant meth-
ods without denoising were extremely sensitive to
noise and are not shown.

served for a binary classification of words at different
fonts, scales, and positions. Based on this preliminary
study we think that investigation of more sophisticated
and accurate denoising procedures are justified. Exam-
ples of denoising methods which we will consider in the
future are total variation denoising [8] and binary nons-
mooth regularization [7]
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