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Abstract—To generate useful summarizations of data while
maintaining privacy of sensitive information is a challenging
task, especially in the big data era. The privacy-preserving
principal component algorithm proposed in [1] is a promising
approach when a low rank data summarization is desired.
However, the analysis in [1] is limited to the case of a single
principal component, which makes use of bounds on the vector-
valued Bingham distribution in the unit sphere. By exploring the
non-commutative structure of data matrices in the full Stiefel
manifold, we extend the analysis to an arbitrary number of
principal components. Our results are obtained by analyzing the
asymptotic behavior of the matrix-variate Bingham distribution
using tools from random matrix theory.

I. INTRODUCTION

With the advent of large-scale data collection, being able to
generate useful summarizations of the data while maintaining
privacy is a challenging task. When data is collected about
individuals, privacy becomes a crucial consideration. In par-
ticular, machine learning and data mining algorithms are sen-
sitive to the risk of disclosing private information. Dimension
reduction plays an important role in the preprocessing stage of
various machine learning algorithms. Reducing the extrinsic
dimension (say d) of data to its intrinsic dimension (say k,
with k < d) identifies good low-dimensional representations
that facilitate learning, classification, and data mining. One
of the classical and most useful approaches for dimension
reduction is Principal Component Analysis (PCA), which uses
the singular value decomposition to find a low-dimensional
subspace of a data matrix.

The recently proposed differentially private PCA algorithm
in [1] offers a framework for exploring the tradeoff between
privacy and utility of low rank data representations. This
algorithm guarantees differential privacy [2], which is a strong,
cryptographically-motivated definition of privacy that has re-
cently received significant research attention. Algorithms for
differentially private PCA differ in, among other properties,
the privacy guarantees they make, i.e. ε-differential privacy
versus (ε, δ)-differential privacy, where the latter guarantee
is weaker. The first dimension-reduction algorithm for PCA
was the SULQ method [3], which guaranteed (ε, δ)-differential

privacy by adding a Gaussian noise to the data covariance
matrix. In [4], an improved algorithm was proposed with
optimal utility guarantees for a general intrinsic dimension k
by adding symmetric Gaussian noise was proposed. Empiri-
cally and theoretically, the algorithm of [4] outperforms most
(ε, δ) methods [5], [6]. The authors in [5] recently studied an
(ε, δ)-private approach for approximating the covariance with
applications to regression that involved adding a Wishart noise.
In an independent work, [6] proposed an ε-private Wishart-
noise addition method and demonstrated that this method has
favorable empirical performance among ε-private methods.

As an alternative to adding noise, a different approach to
private PCA is to produce a randomized estimate of the PCA
subspace [1], [7]–[9]. In this direction, [1] proposed an ε-
private method for choosing the PCA subspace by the expo-
nential mechanism [10], which corresponds to sampling from
the matrix Bingham distribution [11]. The proposed algorithm
was studied in the special case of one principal component,
i.e. k = 1, where the performance analysis for an arbitrary k
was left open in [1]. In this paper, we continue the study of the
privacy-preserving PCA algorithm proposed in [1]. We extend
the analysis to an arbitrary number of principal components.
Firstly, an exact integral representation of the performance
metric is obtained, which involves the normalization constant
of the matrix-variate Bingham distribution. Using random
matrix theory, the asymptotic normalization of the Bingham
distribution is derived, which leads to the limiting behavior
of the performance metric. The key idea is to interpret the
normalization constant as the moment generating function of
linear spectral statistics of a certain random matrix ensem-
ble. Closed-form expressions for asymptotic performance are
obtained by expanding the generating function in terms of
moments, which we calculate explicitly. The derived asymp-
totic results take simple forms and are reasonably accurate in
regimes of practical interest.

II. PRIVACY-PRESERVING PCA

The differentially private PCA algorithm of [1] consists
of sampling from the matrix Bingham distribution. In their
model, the algorithm takes as input a data matrix X ∈ Rd×n



containing d-dimensional data vectors (columns) correspond-
ing to n individuals, where each column xi satisfies ‖xi‖ ≤ 1.
As a result, the Frobenius norm of the data covariance matrix1

A =
1

n
XX′ (1)

is at most one, i.e. ||A||F ≤ 1. In order to find a low-
rank approximation to the data covariance A, we perform
eigenvalue decomposition A = VΛV′, where Λ is a diagonal
matrix Λ = diag (λ1, . . . , λd) of the ordered eigenvalues
0 ≤ λd ≤ · · · ≤ λ1 < ∞ of A. Assume that the intrinsic
dimension is k with k < d and denote by Vk the subspace of
V corresponding to the eigenvectors of the top k eigenvalues.

For a privacy-preserving matrix V̂k, which can be consid-
ered as a randomly perturbed version of Vk, a natural measure
on the quality of V̂k in approximating Vk is

tr
(
V̂′kAV̂k

)
. (2)

This function is maximized when V̂k = Vk for any given k.
The random matrix V̂k belongs to the Stiefel manifold, i.e.
V̂k ∈ Vd,k with V̂′kV̂k = Ik. By the same line of argument
of the case k = 1 in [1, Th. 6], it follows that sampling from
the matrix Bingham distribution is differentially private [10]
for any k. Moreover, it holds that

φL :=

d∑
i=d−k+1

λi ≤ tr
(
V̂′kAV̂k

)
≤

k∑
i=1

λi := φU, (3)

where the lower and upper bounds are achieved when V̂k

consist of k eigenvectors corresponding to the last k and first k
eigenvalues of A, respectively. As a result, the parametrization
of level sets

Sτ =
{

V̂k : tr
(
V̂′kAV̂k

)
< τ (φU − φL) + φL

}
(4)

implies that τ ∈ [0, 1]. By the well-known exponential mech-
anism [10], the probability density of the quality function is
the matrix variate Bingham distribution2 [1], [11]

Q (U,A) =
1

D(A)
etr (U′AU) , U′U = Ik, (5)

where the normalization constant D(A) is obtained as [12]

D(A) =

∫
U∈Vd,k

etr (U′AU) (dU) = 1F1

(
k

2
,
d

2
,A

)
.

(6)
Here, 1F1 (k/2, d/2,A) denotes the confluent hypergeometric
function of matrix argument.

The matrix Bingham distribution is a natural generalization
of the vector Bingham distribution (k = 1) for modeling
data from unit sphere (a.k.a. directional statistics) to Stiefel
manifold (a.k.a. orientation statistics). The matrix Bingham
distribution, while appealing from a structural view, presents
several computational and analytic challenges. The Stiefel
manifold is a not a convex set, which precludes using standard

1(·)† denotes the matrix transpose operation.
2etr(·) = etr(·) denotes exponential of trace.

arguments used to characterize densities on the manifold.
While the shape of the distribution has an easy interpreta-
tion, the density itself is difficult to compute. Specifically,
efficiently computing the density’s normalizing constant is
known to be difficult [13], [14]. Sampling from the distribution
is also challenging. The only available sampler uses Gibbs
sampling [15], which is without an analytically justified burn-
in time. Moreover, such a sampler only provides approximate
sampling.

We say that an algorithm provides a (τ, η)-close approxi-
mation to Vk if

P
(
S̄τ
)
≥ 1− η, (7)

where

P (Sτ ) =

∫
Sτ
Q
(
V̂k,

nε

2
A
)

(dV̂k) (8)

and S̄τ is the complement of Sτ . The presence of the factor
nε/2 is to cancel the normalization 1/n in the data covari-
ance (1) as well as to compensate the change of exp(2ε) in
the density as a result of the change of a single user’s data by
the exponential mechanism [10, Eq. (5)]

To obtain explicit expressions of (8), one can derive
approximations to the hypergeometric function (6) in the case
‖A‖F ≤ 1. More importantly, the central question posed
by [1] is to characterize the sample complexity. Namely, to de-
termine the number of data points n needed for the algorithm
to be a (τ, η)-close and ε-differentially private approximation
to the top-k PCA subspace. However, the proposed sample
complexity lower bound in [1, Th. 7] is limited to the special
case k = 1. In the next section, we extend the analysis in [1]
to k > 1 by deriving a sample complexity lower bound.

III. PERFORMANCE ANALYSIS VIA RANDOM MATRIX
THEORY

This section presents the main technical contributions of this
paper. Firstly, we reduce the matrix integral (8) that captures
the utility of the produced subspace to a scalar integral. Then,
we derive an asymptotic normalization constant of the matrix-
variate Bingham distribution. Finally, the proposed asymptotic
result is utilized to construct a sample complexity lower bound
valid for an arbitrary number of principal components. The
proofs of the results in this section are omitted due to the
space limitation.

A. An Exact Representation

The first result is an exact scalar integral representation of
the matrix-variate integral (8).

Proposition 1. The integral over Stiefel manifold (8) admits
the following one-dimensional integral representation

P(Sτ ) =
(D(βΛ))

−1

2π

∫ ∞
−∞

ı

ν
e
ıν

φL
φU−φL (1− eıτν)D(Θ) dν,

(9)
where β = nε/2 and the matrix-variate hypergeometric
function D(·) is defined in (6). Here, Θ is a diagonal matrix



with the i-th diagonal entry

θi =

(
β − ıν

φU − φL

)
λi, i = 1, . . . , d. (10)

In principle, Proposition 1 allows us to compute the exact
probability P(Sτ ) via, e.g. the software package developed
in [16] for hypergeometric functions of matrix argument.
In practice, an exact evaluation of the matrix-variate hyper-
geometric functions in (9) that involve a slow converging
infinite sum over partitions is rather difficult [14], [16]. This
motivates the search for simple and accurate closed-form
approximations to the hypergeometric functions when the
eigenvalues of the matrix arguments are small.

B. Approximating the Matrix-variate Hypergeometric Func-
tion

We define two asymptotic regimes for our analysis. The
asymptotics we consider are as d (and possibly k) tend to
infinity. Such scaling results are common in the random matrix
theory literature and allow us to use those tools to analyze the
Bingham distribution in high dimensions. We further show
empirically in Section IV that our results are reasonably
tight for more modest d and k. The asymptotic regime D1

corresponds to a scenario when all eigenvalues of A approach
each other as d → ∞. An example of D1 is the case where
|λi − λj | ≤ 1/d, ∀i, j, i 6= j. The asymptotic regime D2

corresponds to the case where D1 holds and in addition the
target dimension k →∞ as well.

It can be seen from (9) that the key to analysis of the
asymptotic behavior of P(Sτ ) is specification of an asymptotic
form for the normalization constant (6) of matrix Bingham
distribution. Such a result is given in the following lemma.

Lemma 1. In the regime D1 as defined above, we have

1F1

(
k

2
,
d

2
,A

)
D1= exp

(
k
∑d
i=1 λi
d

−

k(d− k)
(∑d

i=1 λi

)2
d2(d+ 2)(d− 1)

+
k(d− k)

∑d
i=1 λ

2
i

d(d+ 2)(d− 1)

)
(11)

for the confluent hypergeometric function of matrix argument.

The asymptotic approximation (11) to the normalization
constant of matrix-variate Bingham distribution seems new.
In the special case k = 1, an expansion of the distribution in
the regime when all λi approach infinity was derived in [17].
A Laplace approximation for the distribution was proposed
in [14], which, however, involves numerically solving a non-
trivial algebraic equation for every k and d.

Based on Lemma 1, in the following we construct an
accurate estimate of P(Sτ ).

Proposition 2. Under the asymptotic regime D1, we have

P(Sτ )
D1=

1

2

(
erf

(
τ − b
a

)
+ erf

(
b

a

))
, (12)

where

a =
2

φU − φL

√√√√ k(d− k)

d2(d+ 2)(d− 1)

∑
1≤i<j≤d

(λi − λj)2, (13)

b =
1

φU − φL

(
− φL +

k

d

d∑
i=1

λi +

2βk(d− k)

d2(d+ 2)(d− 1)

∑
1≤i<j≤d

(λi − λj)2
)
, (14)

and

erf(x) =
2√
π

∫ x

0

e−t
2

dt (15)

is Gauss error function.

Though Proposition 2 greatly simplifies the evaluation of
the probability P(Sτ ), analytically solving β (thus the sample
complexity n) for a given P(Sτ ) is still not possible. This
is due to the presence of β in both error functions (12). To
address this issue, some further asymptotic analysis is needed.

C. Asymptotic Sample Complexity of Private PCA

With the above preparations we are ready to state the
main result of this paper. The key observation is that in the
asymptotic regime D2, the term erf (b/a) in (12) approaches
a constant. This enables us to obtain the sample complexity
as a function of P(Sτ ).

Corollary 1. Under the asymptotic regime D2, the number of
samples needed to satisfy the (τ, η)-close approximation (7)
is given by

n
D2

≥ 1

g

(
(φU − φL)

(
τ − a× erf−1 (2η − 1)

)
− k

d

d∑
i=1

λi + φL

)
,

(16)
where a is as defined in (13). Here,

g =
εk(d− k)

d2(d+ 2)(d− 1)

∑
1≤i<j≤d

(λi − λj)2 , (17)

and erf−1(·) denotes the inverse Gauss error function.

Corollary 1 extends Theorem 7 in [1] from a single to an
arbitrary number of principal components. The result shows
the tradeoff between the sample complexity and the other
parameters. The anticipated tradeoff between the privacy pa-
rameter ε and the approximation quality τ , η is also captured
in (16) via a non-trivial relation. The derived lower bound (16)
is a function of all the eigenvalue gaps λi−λj , 1 ≤ i < j ≤ d.
On the contrary, the corresponding result in [1] depends only
on the largest eigenvalue gap λ1 − λ2. Intuitively, the ability
of the proposed result (16) to capture all the eigenvalue gaps
may explain the reason for the high approximation accuracy
shown in the next section.



IV. NUMERICAL RESULTS AND DISCUSSIONS

Implementing the considered privacy-preserving PCA
algorithm amounts to sampling from the matrix Bingham
distribution (5) for a given privacy parameter ε. The sampling
is typically implemented by a Gibbs sampler [15]. Gibbs
sampling is an MCMC technique in which samples are gen-
erated by a Markov chain whose stationary distribution is
the Bingham distribution (5). Using the MCMC procedure,
implementation of the algorithm (for an arbitrary k) has been
extensively discussed in Section 6 of the original work [1].
Rather than reproducing their results, in this section we focus
on illustrating the accuracy of our derived results as well as
studying the sample complexity for random data matrices.
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Fig. 1. Finite size accuracy of Corollary 1: data matrices with d = 8, k = 3,
ε = 0.1, and Λ = diag(0.32, 0.21, 0.17, 0.03, 0.02, 0.01, 0.001).

In Figure 1, we plot the lower bound of the number of
samples nLB needed to satisfy the (τ, η)-close approximate
PCA as a function of the accuracy parameter 1 − η. We
consider different values of the utility parameter τ , where
the privacy parameter is set at ε = 0.1. We focus on the
more interesting regime when 1 − η is high. The analytical
curves are obtained by the asymptotic approximation (16) and
the exact curves are drawn by numerical integration of (8)
with the normalization constant (6) computed via the software
package in [16]. As observed in Figure 1, the proposed
approximation (16) already attains good accuracy for not-so-
large k and d, although it is formally valid when both k and
d approach infinity.

In Figure 1, the data matrix is assumed to be fixed. For
utility guarantee in practice, it is often important to formulate
a statistical guarantee rather than a deterministic one valid only
for a specific data matrix. This requires the underlying data
matrices being assumed random. As a result, the induced sam-
ple complexity becomes a random variable. The knowledge of
the statistics of the sample complexity could then be used to
set up a statistical guarantee. As a first step to understanding
its statistical behavior, we plot in Figure 2 the average sample
complexity by Monte Carlo simulations. We assume the entries
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Fig. 2. Simulation of average sample complexity: Gaussian data matrices
with d = 5, ε = 0.1, and eigenvalues of population covariance matrix
(0.5, 0.4, 0.01, 0.001, 0.0001).

of the data matrix X follow an i.i.d. standard Gaussian
distribution, which is a reasonable choice when one has no
prior information of the distribution of the data matrix. The
eigenvalues of the population covariance matrix E

[
XX′

]
/n

are chosen to be (0.5, 0.4, 0.01, 0.001, 0.0001) with d = 5 and
the privacy parameter is set at ε = 0.2. Each curve is drawn
by averaging over 104 realizations of the data matrices. Each
realization is normalized by

√
ρ/
√

tr
(
XX′

)
, where ρ equals

the sum of eigenvalues of the population covariance matrix.
The normalization ensures that the condition ||A||F ≤ 1 is
satisfied. It is observed that the shape of the average sample
complexity curves is similar to the deterministic case in
Figure 1. On the other hand, an analytical approximation to
these simulated curves remains an interesting open problem.

V. CONCLUSION

In this paper, we studied the performance of a private PCA
algorithm for an arbitrary number of principal components. In
particular, we derived a sample complexity bound that extends
a recent result that is valid for a single principal component.
The proposed result takes a simple form and is accurate in the
regimes of practical interests as demonstrated by empirical
simulations. The main tools leading to the analytical results
are matrix-variate hypergeometric functions and asymptotic
analysis via random matrix theory.
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