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ABSTRACT

As telecommunication networks grow larger and more
complex, it is important to monitor internal link characteris-
tics for operation, monitoring, and diagnosis purposes. Since
router link monitoring is not practical due to high commu-
nication overhead, there has been considerable interest in
monitoring from edge (end-to-end) observations. This pa-
per focuses on the estimation of internal link delay distri-
butions from edge measurements. Discrete and continuous
delay models are introduced and we propose a new mixed
finite mixture model for link delay probability density func-
tions(p.d.f.). When collecting end-to-end unicast packet de-
lays from edge nodes, we are able to estimate internal link
delay distributions using the EM algorithm. Simulation re-
sults are given to illustrate our method.

1. INTRODUCTION

Network tomography is a new area concerned with inference
of internal statistics of a network based on end-to-end mea-
surements at edge nodes. Tomography provides a vital tool
for characterizing network behaviors without cooperating in-
ternal nodes. This is especially useful when either internal
parameters are inaccessible or direct measurement of data
traffic statistics are not supported by internal switches and
routers [1, 2, 3, 5].

Link-level packet delays are important particulars for op-
timizing network performance and evaluating quality of ser-
vice(QoS). While transmission and propagation delays are
usually considered as constant factors, the queueing delays
contribute random packet delays. The inference of link delay
distributions from end-to-end measurements was first pro-
posed by Presti et al[4]. They applied a discrete (binned)
delay model and derived a sample-average based algorithm
using multicast probes. Coates and Nowak[5] suggested an
alternative unicast probing scheme using packet pairs and
developed a maximum likelihood(ML) inference technique
based on the EM algorithm. A unicast approach for estimat-
ing cumulant generating functions of internal link delays was
introduced in [6].

In this paper, our focus is on a mixed discrete and con-
tinuous model for unicast end-to-end packet delays for in-
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Fig. 1. Two-leaf network.

ference of internal link delay distributions. First we review
identifiability conditions for discrete and continuous delay
models. Under a mixed finite mixture model for packet link
delay p.d.f.’s, we show that it is possible to reconstruct con-
sistent estimates of the link delay p.d.f.’s using single packet
unicast. An EM-based algorithm is used to approximate ML
estimates of a Gaussian mixture with a Dirac delta at zero
delay. Computer simulations are reported which demonstrate
the promise of our approach.

2. PROBLEM FORMULATION

As in [5], we consider the network topology as a logical tree
T = (V;E), whereV is the set of nodes andE is the set of
links. Assume the root node has only one child node. As-
sume a total ofL links and number them from1; : : : ; L. As-
sociate the only link connecting the root node as link1. Each
node in the tree has two or more child nodes, except the root
and leaf nodes.

Time stamped unicast packets are sent from the root node
to one of the leaf nodes. The leaf nodes, considered as packet
receivers, collect end-to-end delays for those packets. The
purpose is to identify the packet delay distribution for each
individual internal link from the edge observations at the
packet receivers. Assume there areR receivers andR possi-
ble routes from root to leaf nodes in the network. Note that
all the packet routes include link1.

Let Xl, l = 1; : : : ; L be the packet delay at linkl, and
Yi, i = 1; : : : ; R be the end-to-end delay of a packet along
the path destinated to receiveri. We make the following in-



dependence and stationarity assumptions: (A1)Spatial In-
dependence: Packet delays at different links are statistically
independent, i.e.,Xi andXj are independent fori 6= j. (A2)
Temporal Independence and Stationarity: For a given link,
the delays encountered by different packets at that link are
statistically independent and identically distributed (i.i.d.).

3. DELAY MODELS

3.1. Discrete Delay Model

In the discrete delay model, a universal bin sizeq is used to
discretize link delays at all links. Assume that discrete packet
delays on each link fall in the setf0; q; 2q; � � � ; Dqg, where
D is a positive integer and1 is possibly included to denote
lost packets or large delays which are out of range. Proba-
bility mass function(p.m.f.)Pl = fpl;d : d = 0; : : : ; Dg is
assigned to delays at linkl, wherepl;d = P (Xl = dq) is un-
known and is to be estimated. For a path containingi links,
the end-to-end packet delay can have values from0 to (iD)q.

The identifiability of the p.m.f.’s from edge measurements
can be easily studied for the simple case of a two-leaf tree
network, as shown in Fig.1, with only two bins (D = 1) in
each link delay distribution. We say that the p.m.f.’s are not
identifiable if the Fisher information matrix is singular.

Lemma 1. The delay p.m.f. with two bins at each link is
uniquely identifiable from end-to-end packet delays, except
when the delay p.m.f.’s at all links are identical.
proof: Let the true delay p.m.f.’s for link 1 to 3 beP1 =
fp1; 1 � p1g, P2 = fp2; 1 � p2g, andP3 = fp3; 1 � p3g,
respectively. Define the parameter vector� = fp1; p2; p3g.
Let y1, y2 be the sets of end-to-end packet delays observed at
receiver 1 and 2, respectively. Assume both receivers haven

observations. The Fisher information matrixA = E[r� log
P (y1;y2; �)] is shown in next page, whereQ1 = p1(1 �
p2) + p2(1 � p1), andQ2 = p1(1 � p3) + p3(1 � p1). A
becomes singular whenp1 = p2 = p3.(Q.E.D.)

The identifiability conditions of delay p.m.f.’s with more
bins can also be derived from corresponding Fisher informa-
tion matrix. For a network topology containing more than
two leaf nodes, every pair of packet routes can be viewed as
a two-leaf tree and conclusions of Lemma 1 can be accord-
ingly extended.

Discrete delay model has two main drawbacks. First, the
proper bin size should be known before application of such
algorithms, which is impossible when statistics of internal
links are not available. Second, a universal bin size may not
be suitable in practice due to large variation of packet delay
ranges among different links. Although in [4] it was pro-
posed to adopt different bin sizes for different links, those
bin sizes still need to be chosen in advance.

3.2. Continuous Delay Model

To avoid the use of binning, an alternative would be to as-
sume link delays are continuous random variables. Although
queueing delay distributions have been derived for single link
queues such as M/M/1, there are no known forms of proba-
bility distributions suitable for end-to-end queueing delays in
most of today’s telecommunication networks. Furthermore,
for the internet, the simple M/M/1 queue is an inadequate
model [8]. An alternative is the class of Gaussian mixture
densities, which describes arbitrary shapes of the link delay
distributions [9]. Letfl(x) be the link delay p.d.f. at linkl
for l = 1; : : : ; L. The Gaussian mixture model

fl(x) =

klX
m=1

�l;m�(x; �l;m); (1)

wherekl denotes the number of mixture components,�l;m,
m = 1; : : : ; kl, denotes the mixing probability for themth
component with0 < �l;m < 1,

Pkl
m=1 �l;m = 1, and

�(x; �l;m) is the Gaussian density function given by mean
and variance�l;m = f�l;m; �

2
l;mg.

However, the use of a pure continuous Gaussian mix-
ture density function causes a serious identifiability problem.
Consider the simple two-leaf tree of Fig.1 as before and as-
sume thatk1; k2; k3 = 1. The joint p.d.f. of(Y1; Y2) is
f(y1; y2) = �(y1; f�1 +�2; �

2
1 +�22g)�(y2; f�1+�3; �

2
1 +

�23g). Even if the p.d.f’s were exactly known, their parame-
ters give only 4 equations for 6 unknowns (�1; �2; �3; �1;

�2; �3) and hence no unique solution exists.
One can also consider the packet pair/stripe schemes sug-

gested in [5] and [7], in which a pair or a stripe of uni-
cast packets with distinct destinations are sent back-to-back
from the root node. These packets experience the same (or
highly correlated) delays on shared links among their paths.
As shown in [10], this kind of schemes allows identification
of variances or higher order moments of internal link de-
lays with branching ratio larger than 2 in the case of packet
stripes. However, packet stripes cannot identify the link de-
lay means.

4. MIXED FINITE MIXTURE MODEL AND EM
ALGORITHM

4.1. Mixed Finite Mixture Model

In analysis of queueing systems, the utilization factor� is
an important parameter in describing system behavior.� de-
notes the probability that the system is busy in serving cus-
tomers. For a stable system,0 � � < 1 (e.g. [11]). As� < 1
there is a nonzero probability for a packet passing through
a link without any appreciable queueing delay. This moti-
vates us to put a delta component at (or near) 0 in the link
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delay mixture model, in addition to the continuous Gaus-
sian mixture components, making link delay a mixed dis-
crete/continuous random variable. The discrete part will be
assigned probability mass�0 = 1� �. Hence, similar to (1),
we have the modified model

fl(x) = �l;0Æ(x) +

klX
m=1

�l;m�(x; �l;m) (2)

with all other parameters defined as in (1), except that in ad-
dition

Pkl
m=0 �l;m = 1, �l;m � 0. This discrete component

not only makes the delay distribution more precisely model
the behavior of a link queue, but as shown below also buys
us identifiability of the link delay distribution parameters.

For a single path, the end-to-end packet delays are also
mixed random variables with continuous Gaussian mixtures.
Due to the discrete components in link delay p.d.f.’s, the end-
to-end delay distribution includes Gaussian components with
exact the same parameters�l;m as those in delay p.d.f’s for
each link in the path. Hence, the identification problem is
in fact a problem to uniquely identify such Gaussian compo-
nents and assign them to individual link p.d.f.’s. Obviously, if
the network has only a single path, there is no way to assign
the components to specific links. For a logical tree network
topology, if the packets are sent through all theR possible
routes, a simple sufficient condition for identifiability is the
following:
The delay distribution defined in (2) is identifiable from end-
to-end measurements if (1)�l;0 > 0 for all l. (2) All the
Gaussian components in link delay distributions have dis-
tinct means and variances.

4.2. EM Algorithm

Assume that we have prior knowledge of all the link mix-
ture ordersfklg. LetNi be the number of packets sent from
root to receiveri andMi be the set of links intersecting that
path, and let� denote the set of unknown parameters. Define
x
(i;n)
l as the delay at linkl encountered by thenth packet sent

to receiveri, and the binary vectorz(i;n)l = fz
(i;n)
l;0 ; : : : ; z

(i;n)
l;kl

g

as the component indicator vector, wherez
(i;n)
l;m = 1 if x(i;n)l

is generated by themth mixture component andz(i;n)l;m = 0

otherwise. Letx = fx
(i;n)
l g andz = fz

(i;n)
l g for all l; i; n.

fx; zg is unobserved data. Definey(i;n) as the end-to-end
delay of thenth packet received by receiveri. The sety =
fy(i;n)g is called incomplete data, and the setfx; z;yg is

thecomplete data. As shown in [5], the likelihood of com-
plete data will be proportional to that of the unobserved data,
which is

logL(x; zj�) =

LX
l=1

X
i:l2Mi

NiX
n=1

n
z
(i;n)
l;0 log�l;0+

klX
m=1

z
(i;n)
l;m

�
log�l;m + log�(x

(i;n)
l ; �l;m)

�)
: (3)

The EM algorithm is similar to that for a single Gaussian
mixture model[12], which is the following:
E-step
Let

!
(i;n)
l;m = E

h
z
(i;n)
l;m jy(i;n); �̂

i
Q

(i;n)
l;m (�l;m) = E

h
z
(i;n)
l;m log�(x

(i;n)
l ; �l;m)jy(i;n); �̂

i
:

Then

E
h
logL(x; zj�)jy; �̂

i
=

LX
l=1

X
i:l2Mi

NiX
n=1(

klX
m=0

!
(i;n)
l;m log�l;m +

klX
m=1

Q
(i;n)
l;m (�l;m)

)

M-step

��l;m =

P
i:l2Mi

PNi

n=1 !
(i;n)
l;mP

i:l2Mi
Ni

��l;m = argmax�

X
i:l2Mi

NiX
n=1

Q
(i;n)
l;m (�)

5. EXPERIMENTAL RESULTS

We simulated of a network with topology shown in Fig.2.
Throughout we assume that the number of componentskl’s
are known. We generated 15000 i.i.d. end-to-end delays by
MATLAB for each of the four packet routes and applied EM
algorithm to find ML estimates of the Gaussian components
and the Dirac delta component at zero. Tab.1 lists the num-
ber of Gaussian mixture components for each link and the
true/estimated probability�l;0 of link delay being 0. Fig.3
compares the estimated Gaussian mixture components to the
ideal ones. Both reveal that accurate estimates are obtained
from our computer simulation.
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Fig. 2. Network used in simulation.

Table 1. List of numbers of Gaussian mixture components
and true/estimated�l;0 for simulation in Section 5

Link 1 2 3 4 5 6 7
kl 3 2 2 2 2 2 2
�l;0 0.25 0.3 0.1 0.2 0.15 0.3 0.2
�̂l;0 0.253 0.304 0.099 0.199 0.152 0.313 0.201

6. CONCLUSION AND FUTURE WORK

This paper focuses on the estimation of internal link delay
distributions from end-to-end unicast packet delay measure-
ments where there is a positive propability of zero queueing
delay. We discussed two possible delay models, discrete and
continuous, and proposed a new mixed finite mixture model.
This new model can describe arbitrary shapes of delay p.d.f.’s
and can allow identifiability of link delay p.d.f.’s from edge
observations. In a future paper we will apply unsupervised
techniques to estimate mixture orderkl’s. This technique
will also be extended to adaptively capture changes in net-
work statistics.
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