
Image matching using alpha-entropy measures and entropic graphs

Huzefa Neemuchwala�#, Alfred Hero�y+, and Paul Carson�#

Dept. of Biomedical Engineering�, Dept. of EECSy, Dept. of Statistics+, and Dept. of Radiology#

The University of Michigan Ann Arbor, MI 48109, USA

June 2002

Abstract

Matching a reference image to a secondary image extracted from a database of transformed
exemplars constitutes an important image retrieval task. Two related problems are: speci�ca-
tion of a general class of discriminatory image features and an appropriate similarity measure
to rank the closeness of the query to the database. In this paper we present a general method
based on matching high dimensional image features, using entropic similarity measures that
can be empirically estimated using entropic graphs such as the minimal spanning tree (MST).
The entropic measures we consider are generalizations of the well known Kullback-Liebler (KL)
distance, the mutual information (MI) measure, and the Jensen di�erence. Our entropic graph
approach has the advantage of being implementable for high dimensional feature spaces for
which other entropy-based pattern matching methods are computationally diÆcult. We com-
pare our technique to previous entropy matching methods for a variety of continuous and discrete
features sets including: single pixel gray levels; tag sub-image features; and independent compo-
nent analysis (ICA) features. We illustrate the methodology for multimodal face retrieval and
ultrasound (US) breast image registration.
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1 Introduction

Image retrieval and image registration fall in the general area of pattern matching problems, where

the best match to a reference or query image X0 is to be found in a database of secondary images

X = fXigKi=1. The best match is expressed as a partial re-indexing of the database in decreasing

order of similarity to the reference image using a similarity measure. In the context of image

registration the database corresponds to an in�nite set of transformed versions of a single secondary

image, e.g. rotation and translation, which are compared to the reference image to register the

secondary to the reference.

There are three key ingredients to image matching which can impact matching accuracy and

computational eÆciency: 1. Selection of image features that discriminate between di�erent image

classes yet possess invariance to unimportant attributes of the images e.g. rigid translation, rotation

and scale; 2. application of a matching criterion that quanti�es feature similarity, is capable of

resolving important di�erences between images, yet is robust to image perturbations; 3. query

processing and optimization techniques which allow fast search implementation. This paper is

concerned with item 2. Speci�cally we propose a general class of feature similarity measures that

is based on entropy, can be implemented with entropic graphs, and does not require histogram or

density estimation.

There are many techniques available for image retrieval and image registration [62, 30, 35]. Some

of the most widespread techniques are: histogram matching [32]; texture matching [2]; intensity

cross correlation [49]; optical 
ow matching [40]; kernel-based classi�cation methods [9]; boosting

retrieval methods [11, 36]; information divergence minimization [72, 68, 67, 21]; and mutual in-

formation (MI) maximization [74, 19]. These last two methods can be called "entropic methods"

since both use a matching criterion de�ned as a relative entropy of the feature distributions. The

main advantage of entropic methods is that they can capture non-linear relations between features

in order to improve discrimination between poor and good image matches. When combined with

a highly discriminatory feature set, and reliable prior information, entropic methods are very com-

pelling and have been shown to be virtually unbeatable for some multimodality image registration
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applications [42, 51, 30]. However, due to the diÆculty in estimating the relative entropy for high

dimensional features, the application of entropic methods have been limited to one or two feature

dimensions. The independent successes of relative entropy methods, e.g., MI image registration,

and the use of high dimensional features, e.g., SVM's for handwriting recognition, suggest that an

extension of entropic methods to high dimensions would be worthwhile.

This paper introduces a way to extend entropic methods of image matching to high dimensional

feature spaces using several innovations. First we generalize the framework of entropic methods

to include R�enyi's � entropies. Second we implement a novel and simple �-entropy estimator

using entropic graphs [23] and in particular the MST. The computation/storage complexity of

the MST grows only linearly in feature dimension and its asymptotic bias is independent of the

feature distribution [24, 22]. This is to be contrasted with histogram estimators of entropy whose

complexity increases exponentially in the number of dimensions and whose asymptotic bias depends

on the underlying feature distribution. We illustrate the application of our entropic method to

two applications for which high dimensional features are bene�cial: ultrasound (US) breast image

registration and image retrieval from a multimodality face database.

The �-entropy of a multivariate distribution is a generalization of the better known Shannon

entropy. Alfred R�enyi introduced the �-entropy in a 1961 paper [60] and since then many important

properties of �-entropy have been established [4]. From R�enyi's �-entropy the R�enyi �-divergence

and the R�enyi �-mutual information (�-MI) can be straightforwardly de�ned. For � = 1 these

quantities reduce to the standard (Shannon) entropy, (Kullback-Liebler) divergence, and (Shannon)

MI, respectively. Another useful quantity that can be derived from the �-entropy is the �-Jensen

di�erence, which is a generalization of the standard Jensen di�erence and will be a key player in

our extension of entropic pattern matching methods to high feature dimension. As we will show,

this generalization allows us to de�ne an image matching algorithm that bene�ts from a simple

estimation procedure and an extra degree of freedom (�).

Some additional comments on relevant prior work by us and others is in order. Various forms of

�-entropy have been exploited by others for applications including: reconstruction and registration

of interferometric synthetic aperture radar (ISAR) images [21, 17]; blind deconvolution [16]; and
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time-frequency analysis [3, 75]. Again, our innovation with respect to these works is the extension

to high dimensional features via entropic graph estimation methods. On the other hand, the alpha-

entropy approaches described here should not be confused with entropy-alpha classi�cation in SAR

processing [8] which has no relation whatsoever to our work. A tutorial introduction to the use of

entropic graphs to estimate multivariate �-entropy and other entropy quantities was published by

us in a recent survey article [23]. As introduced in [27] and studied in [24, 26, 28] an entropic graph

is any graph whose normalized total weight (sum of the edge lengths) is a consistent estimator of

�-entropy. An example of an entropic graph is the minimal spanning tree (MST) and due to its low

computational complexity it is the most attractive entropic graph algorithm. This graph estimator

can be viewed as a multidimensional generalization of the Vasicek Shannon entropy estimator for

one dimensional features [73, 6].

The two applications presented in this paper were primarily selected to illustrate the 
exibility

of our method. In the ultrasound breast registration application we adopt two types of high

dimensional features: local tags and local basis projection coeÆcients. Local tags are extracted from

the image by fast and simple adaptive quantization scheme proposed by Geman and Koloydenko

[18]. Local basis projection coeÆcients are implemented by projecting local 8 by 8 sub-images of

the image onto a DCT basis for the face retrieval application and projecting onto an ICA basis for

the image registration application. Local feature extraction via basis projection is a commonly used

technique for image representation [64, 71, 70]. ICA (Independent Components Analysis) features

are somewhat less common but have been similarly applied by Olshausen, Hyv�arinen and others

[43, 33]. The high dimensionality (= 64 for local basis projections) of these feature spaces precludes

the application of standard entropic pattern matching methods and provides a good illustration of

the power of our approach.

The outline of this paper is as follows. Section 2 de�nes the general class of information theoretic

measures which is the subject of this paper. Section 3 presents the methods of extracting tag and

ICA features used in our studies. The MST entropy estimator is presented in Section 4. Section

5 illustrates the MST-based entropy method for registration and retrieval. Conclusions and future

directions are discussed in Section 6.
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2 Entropic Feature Similarity Measures

Let Y be a q-dimensional random vector and let f(y) and g(y) denote two possible densities for

Y . In the sequel Y will be a feature vector constructed from the query image and a secondary

image in an image database and f and g will be histograms or densities. For example, information

divergence methods of image retrieval [66, 13, 70] specify f as the estimated density of the query

image features and g as the estimated density of the secondary image features. When the features

are discrete valued the densities f and g are interpreted as probability mass functions.

The basis for entropic methods of image matching is a measure of similarity between densities f

and g. A very general entropic similarity measure is the R�enyi �-divergence, also called the R�enyi

�-relative entropy, between f and g of fractional order � 2 (0; 1) [60, 10, 4]

D�(fkg) =
1

�� 1
log

Z
g(z)

�
f(z)

g(z)

��
dz

=
1

�� 1
log

Z
f�(z)g1��(z)dz: (1)

When the density f is supported on a compact domain and g is uniform over this domain the

�-divergence reduces to the R�enyi �-entropy:

H�(f) =
1

1� �
log

Z
f�(z)dz: (2)

When specialized to various values of � the �-divergence can be related to other well known di-

vergence measures. Two of the most important examples are the Hellinger aÆnity 2 log
R p

f(z)g(z)dz

obtained when � = 1=2, which is related to the Hellinger-Battacharya distance squared,

DHellinger(fkg) =

Z �q
f(z)�

q
g(z)

�2
dz

= 2
�
1� exp

�
1

2
D 1

2

(fkg)
��

;

and the Kullback-Liebler (KL) divergence [39], obtained when �! 1,

lim
�!1

D�(fkg) =
Z
g(z) log

g(z)

f(z)
dz:
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2.1 Mutual Information Image Matching

The MI similarity measure was introduced for gray scale image registration by Viola and Wells [74]

and has since been applied to a variety of image matching problems [19, 42, 51, 59]. Let X0 be a

reference, or query, image and consider a database Xi, i = 1; : : : ;K of secondary images. We as-

sume that the images are sampled on a grid ofM�N pixels. Let (z0k; zik) be the pair of gray levels

extracted from the k-th pixel location in the query and in the i-th image in the database, respec-

tively. The basic assumption underlying MI image matching is that f(z0k; zik)gMN
k=1 are independent

identically distributed (i.i.d.) realizations of a pair (Z0; Zi) of random variables having joint density

f0i(z0; zi). If the query and the secondary images were correlated, e.g., identical images, then Z0

and Z1 would be dependent random variables. On the other hand if the two images were statis-

tically independent the joint density of Z0 and Z1 would factor into the product of the marginals

f0i(z0; zi) = f0(z0)fi(zi). This suggests using the �-divergence D�(f0i(z0; zi)kf0(z0)fi(zi)) between
f0i(z0; zi) and f0(z0)fi(zi) as a similarity measure. For � 2 (0; 1) we call this the �-mutual infor-

mation (MI) between Z0 and Zi and it has the form

D�(f(Zi; Z0) k f(Zi)f(Z0)) =
1

�� 1
log

Z
f�0i(z0; zi)f

1��
0 (z0)f

1��
i (zi)dz0dzi: (3)

When �! 1 the �-MI converges to the standard (Shannon) MI

MI =

Z
f0i(z0; zi) log

�
f0i(z0; zi)

f0(z0)fi(zi)

�
dz0dzi:

For registering two discrete M �N images, Viola and Wells [74] search over a set of transfor-

mations of the secondary image to �nd the one that maximizes the MI (4) between the query and

the transformed secondary. The MI is de�ned using features (Z0; Zi) 2 fz0k; zikgMN
k=1 equal to the

discrete-valued intensity levels at common pixel locations (k; k) in the query image and the rotated

secondary image. We call this the "single pixel MI" in the sequel. Viola and Wells empirically

approximated the single pixel MI (4) by "histogram plug-in" estimation, which when extended to

the �-MI gives the estimate

M̂I
def
=

1

�� 1
log

255X
z0;zi=0

f̂�0i(z0; zi)
�
f̂0(z0)f̂i(zi)

�1��
: (4)
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In (4) we assume 8-bit gray level, f̂0i denotes the joint intensity level "coincidence histogram"

f̂0i(z0; zi) =
1

MN

MNX
k=1

Iz0k;zik(z0; zi); (5)

and Iz0k;zik(z0; zi) is the indicator function equal to one when (z0k; zik) = (z0; zi) and is equal to

zero otherwise.

To illustrate the general procedure, the coincidence histogram is shown in Fig. 1 for the case

of registration of US breast images X0;X1 (Fig. 2). Fig. 1 shows two cases. At top left is the

coincidence histogram when the reference and secondary images are taken from the same two-

dimensional slice of the US breast volume and are in perfect alignment (X0 = X1). At bottom

left is the same histogram when the secondary image is rotated by 8o. The top right and bottom

right panels in Fig. 1 are analogous except that the secondary images is extracted from a di�erent

two-dimensional slice separated from the reference (query) by 2mm. At this separation distance

along the depth of the scan, the speckle in the images is decorrelated, but the anatomy in the

images remains largely unchanged. In both cases the spread of the histogram is greater for the

bottom panels (out of alignment) than for the top panels (in alignment) of the �gure. The �-MI

will take on greater values for the less spread top panels than for the more spread bottom panels.

2.1.1 Relation of �-MI to Cherno� Bound

�-MI (3) can be motivated as an appropriate registration function by large deviations theory

through the Cherno� bound. De�ne the average probability of error Pe(n) associated with a decision

rule for deciding whether Zi and Z0 are independent (hypothesis H0) or dependent (hypothesis H1)

random variables based on a set of i.i.d. samples fz0k; zikgnk=1, where n = MN . For any decision

rule, this error probability has the representation:

Pe(n) = �(n)P (H1) + �(n)P (H0);

where �(n) and �(n) are the probabilities of Type II (say H0 when H1 true) and Type I (say

H1 when H0 true) errors, respectively, of the decision rule and P (H1) = 1 � P (H0) is the prior

probability of H1. When the decision rule is the optimal minimum probability of error test the
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Cherno� bound implies that [12]:

lim inf
n!1

1

n
logPe(n) = � sup

�2[0;1]
f(1� �)D�(f0i(z0; zi)kf0(z0)f1(zi)g : (6)

Thus the mutual �-information gives the asymptotically optimal rate of exponential decay of the

error probability for testing H0 vs H1 as a function of the number n = MN of samples. In

particular, this implies that the �-MI can be used to select optimal features Z0; Zi de�ned as those

features that maximize the right side of (6). The appearance of the maximization over � implies the

existence of an optimal parameter � ensuring the lowest possible registration error. This optimal

value � is not generally equal to 1 so that the MI criterion is generally suboptimal in the sense

of minimizing the asymptotic probability of error. For a more detailed discussion on the issue of

optimal selection of � we refer the reader to [24].

2.2 �-Jensen Similarity Measure

An alternative entropic similarity measure between two distributions is the �-Jensen di�erence.

This function has been independently proposed by Ma [25] and He et al [21] for image registration

problems. It was also used by Michel et al in [52] for characterizing complexity of time-frequency

images. For two densities f and g the �-Jensen di�erence is de�ned as [4]

�H�(�; f; g) = H�(�f + (1� �)g) � [�H�(f) + (1� �)H�(g)]; (7)

where � 2 (0; 1) and � 2 [0; 1]: As the �-entropy H�(f) is strictly concave in f Jensen's inequality

implies that �H�(�; f; g) > 0 when f 6= g and �H�(�; f; g) = 0 when f = g (a.e.). Thus the

�-Jensen di�erence is a bone �de measure of dissimilarity between f and g.

The �-Jensen di�erence can either be applied as a surrogate for the �-MI or the �-divergence.

When applied as a surrogate for �-divergence one identi�es f = fi(zi) and g = f0(z0) in (7). In this

case an image match occurs when the �-Jensen di�erence is minimized over i. This is the approach

taken by [21, 47] for image registration applications and discussed in more detail below.

On the other hand, the �-Jensen di�erence can also be used as a surrogate for the �-MI if

one identi�es f = f0i(z0; zi) and g = f0(z0)fi(zi) in (7). In this case to �nd a matching image to
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a query the �-Jensen di�erence is maximized over i. Asymptotic comparison between the �-MI

and the �-Jensen di�erence can give useful insight [24]. It can be shown that when the features

Z0; Zi are nearly independent than the most discriminating value of � is 1/2 for the �-MI. For the

�-Jensen di�erence the best value of � is 1 and the best value of � is 1/2. While use of �-Jensen

as a surrogate for �-MI is certainly worthy of additional study, its computational requirements and

its performance appear similar to that of �=MI and therefore we do not consider it further in this

paper.

3 Feature-based Matching

Scalar single pixel intensity level is only one possible feature that can be used to perform image

matching. As pointed out by Leventon and Grimson [42], MI does not take into account joint spatial

behavior of the coincidences and this can cause poor registration, especially in multi-modality

situations. Alternative vector valued features have been investigated by many image retrieval

and registration researchers. We will focus on two types of vector features which generalize pixel

intensity levels: local tag features and local basis projection features.

3.1 Local Tag Features

Tag features were introduced by Amit and Geman [1] and used for shape recognition. A set of prim-

itive local features, called tags, are selected which provide a coarse description of the topography of

the intensity surface in the vicinity of a pixel. Local image con�gurations, e.g. 8�8 pixel neighbor-

hoods, are captured by coding each pixel with labels derived from the tags. For gray scale images,

the number of di�erent tag types can be extremely large. For example, if the image intensities are

quantized to an 8-bit plane then there would exist (256)64 di�erent 8 � 8 tag types. Therefore,

methods for pruning the tag types are essential for practical implementation. Randomized feature

selection and adaptive thresholding are methods of pruning which were described by Geman and

Koloydenko [18] and which we adapted to the US image registration application described below.

For more details on our implementation of tag features see [54].
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To illustrate we show in Fig. 3 tag features at a given pixel location for two US breast images in

the same 2D slice but at two rotation angles. Coincidences of tag types are calculated by counting

joint occurrences of feature types at identical spatial locations in the two images. The ampli�ed

tag pattern in the image on the left captures the edge of the tumor. A similar tag type will be

observed in the secondary image on the right if it nearly aligned. These tags capture the local

intensity pattern in the neighborhood of the pixel. The advantage of tags for matching US breast

images is that they can more easily discriminate between speckle and tissue echos than can single

pixel intensity levels.

3.2 Local Basis Projection Features

Basis projection features are extracted from an image by projecting local sub-images onto a basis

of linearly independent sub-images of the same size. Such an approach is widely adopted in image

retrieval applications, in particular with DCT or more general 2D wavelet bases [71, 70, 13, 64, 41,

48, 14]. Others have extracted a basis set adapted to image database using principal components

(PCA) or independent components analysis (ICA) [43, 33].

The ICA basis is especially well suited for our purposes since it aims to obtain vector features

which have statistically independent elements that can facilitate estimation of �-MI and other

entropic measures. Speci�cally, in ICA an optimal basis is found which decomposes the image Xi

into a small number of approximately statistically independent components (sub-images) fSjg:

Xi =
pX

j=1

aijSj: (8)

In the sequel we select basis elements fSjg from an over-complete linearly dependent basis using

randomized selection over the database. For image i the feature vectors Zi are de�ned as the

coeÆcients faijg in 8 obtained by projecting the image onto the basis.

In Fig. 4 we illustrate the ICA basis selected for the US breast image database. ICA was

implemented using Hyvarinen and Oja's [33] FastICA code (available from [34]) which uses a

�xed-point algorithm to perform maximum likelihood estimation of the basis elements in the ICA

data model (8). Figure 4 shows a set of 64 8 � 8 basis vectors which were learned from over 5000
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8�8 training sub-images randomly selected from 10 consecutive image slices of a single ultrasound

volume scan of the breast (Case 151 in Fig. 5). Given this ICA basis and a pair of to-be-registered

M�N images, coeÆcient vectors are extracted by projecting each 8�8 neighborhood in the images

onto the basis set. For the 64 dimensional ICA basis shown in Fig. 4 this yields a set ofMN vectors

in a 64 dimensional vector space which will be used to de�ne features.

3.3 Discrete vs. Continuous Features

While adaptive thresholding yields tag features that are discrete valued, ICA and other basis

projection features are continuous valued. The potentially high dimension of the basis projection

feature space makes estimation of the �-MI and �-Jensen similarity measures problematic. A

brute force method would be to discretize the vector of projection coeÆcients, e.g. using vector

quantization [44], and generate histograms over the Voronoi cells. These histograms could then be

used in the formula for �-MI or �-Jensen di�erence to yield plug-in estimators of these quantities.

This presents diÆculties for image matching applications since the reference and secondary images

must all use the same cell partition in order to maintain consistency. For high dimensional feature

space this brute force method also su�ers from large bias unless one uses an impractically large

number of cells. An alternative that can be applied to directly estimating the �-Jensen di�erence

is explored in the next section.

4 Minimum Spanning Trees for Entropy Estimation

Implementation of the �-Jensen registration criterion can be accomplished by plugging in the

feature histogram estimates to (7) analogously to the �-MI plug-in estimator (4). However, when

the number of feature dimensions increases histogram methods become impractical due to the

curse of dimensionality: for �xed resolution per coordinate dimension the number of histogram

bins increases geometrically in feature vector dimension. For example, for a 32 dimensional feature

space, only 10 cells per dimension would require keeping track of 1032 bins in the histogram, an

unworkable and impractically large burden for any current computer. As high dimensional feature
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spaces can be more discriminatory this creates a barrier to performing histogram-based entropic

registration. We circumvent this barrier by applying a novel technique for estimating the �-entropy

using entropic graphs whose vertices are the locations of the feature vectors in feature space [23, 24].

As explained in [23] the most computationally attractive entropic graph method known today

is the minimal spanning tree (MST). Given a set Zn = fz1; z2; ::::; zng of n i.i.d vectors in a d-

dimensional feature space Rd a spanning tree is a connected acyclic graph which passes through

all n points in Zn. The MST spans all n points and connects them with n� 1 edges denoted feig.
More speci�cally, for a given edge weight exponent 
 2 (0; d) the MST is de�ned as the spanning

tree which minimizes the (total) length:

L(Zn) = min
e2T

X
e

kek
 ; (9)

where kek denotes the Euclidean (L2) length of the edge. See Fig 6 for an illustration for points in

the plane. In the sequel we adopt 
 = 1 for all experiments.

The MST length Ln = L(Zn) is plotted as a function of n in Fig. 7 for the case of an i.i.d.

uniform sample (right panel) and non-uniform sample (left panel) of n = 100 points in the plane. It

is intuitive that the length of the MST spanning the more concentrated non-uniform set of points

increases at a slower rate in n than does the MST spanning the uniformly distributed points.

This observation has motivated the MST as a way to test for randomness in the plane [31]. More

precisely, with �
def
= (d� 
)=d the Beardwood, Halton, Hammersley theorem [5] and its extensions

[77, 65] imply that the log of the length function normalized by n� converges (a.s.) within a constant

factor to the alpha-entropy. Thus we can identify the di�erence between the asymptotes shown on

the left Fig. 7 as the di�erence between the �-entropies of the uniform and non-uniform densities

(� = 1=2). Thus, if f is the underlying density of Zn, the �-entropy estimator

Ĥ�(Zn) = 1=(1 � �) [logL(Zn)=n
� � log �d;
 ] ; (10)

is an asymptotically unbiased and almost surely consistent estimator of the �-entropy of f where

�d;
 is a constant which does not depend on the density f .

Using the above fact, the MST approach to estimating the �-Jensen di�erence between the

feature densities of two images is implemented as follows. Assume two sets of feature vectors

12



Z0 = fz(i)0 gn0i=1 and Z1 = fz(i)1 gn1i=1 are extracted from images X0 and X1 and are i.i.d. realizations

from multivariate densities f0 and f1, respectively. In the applications explored in this paper

n0 = n1 but it is worthwhile to maintain this level of generality. De�ne the set union Z = Z0 [Z1

containing n = n0 + n1 unordered feature vectors. If n0; n1 increase at constant rate as a function

of n then any consistent entropy estimator constructed from the vectors fZ(i)gn0+n1i=1 will converge

to H�(�f0 + (1 � �)f1) as n ! 1 where � = limn!1 n0=n. This motivates the following �nite

sample entropic graph estimator of �-Jensen di�erence

�Ĥ�(�; f0; f1) = Ĥ�(Z0 [ Z1)� [�Ĥ�(Z0) + (1� �)Ĥ�(Z1)]; (11)

where � = n0=n, Ĥ�(Z0 [ Z1) is the MST entropy estimator constructed on the n point union of

both sets of feature vectors and the marginal entropies Ĥ�(Z0), Ĥ�(Z1) are constructed on the

individual sets of n0 and n1 feature vectors, respectively. We can similarly de�ne a density-based

estimator of �-Jensen di�erence. Observe that for aÆne image registration problems the marginal

entropies fH�(fi)gKi=1 over the set of image transformations will be identical, obviating the need to

compute estimates of the marginal �-entropies.

As contrasted with histogram or density plug-in estimator of entropy or Jensen di�erence, the

MST-based estimator enjoys the following properties [24, 22, 29]: it can easily be implemented in

high dimensions; it completely bypasses the complication of choosing and �ne tuning parameters

such as histogram bin size, density kernel width, complexity, and adaptation speed; as the topology

of the MST does not depend on the edge weight parameter 
, the MST �-entropy estimator can be

generated for the entire range � 2 (0; 1) once the MST for any given � is computed; the MST can

be naturally robusti�ed to outliers by methods of graph pruning. On the other hand the need for

combinatorial optimization may be a bottleneck for a large number of feature samples for which

accelerated MST algorithms are necessary.

4.1 Computational Acceleration of the MST

Two principal algorithms exits for computing the MST, the Prim algorithm [58] and the Kruskal

algorithm [38]. For sparse graphs the Kruskal algorithm is the fastest general purpose MST com-
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putation algorithm. Kruskal's algorithm maintains a list of edges sorted by their weights and grows

the tree one edge at a time. Cycles are avoided within the tree by discarding edges that connect

two sub-trees already joined through a prior established path. The time complexity of the Kruskal

algorithm is of order O(E logE) and the the memory requirement is O(E), where E is the initial

number of edges in the graph.

The most simple-minded construction of the MST is to include all the possible edges within the

feature set. This results in N2 edges for N points; a time requirement of O(N2) and a memory

requirement of O(N2 logN). The number of points in the graph is the total number of pixels

participating in the registration from the two images. If each image has M � N pixels, the total

number of points in the graph is 2�M �N � 150,000 for images of size 256 � 256. This is beyond

the capabilities of even the fastest available desktop processors.

Signi�cant acceleration can be obtained by sparsi�cation of the initial graph before tree con-

struction. We have implemented a method for sparsi�cation that allows us to construct MST's for

several hundred thousand points in seconds of desktop computing time. This implementation uses

a disc windowing method for constructing the edge list. Speci�cally, we center discs at each point

under consideration (See Fig. 8 for illustration). We also use a list intersection approach similar

to [56] to prune unnecessary edges within the disk. The two methods greatly reduce the number

of edges that must be sorted for each point. We have empirically found that for approximately

uniform distributions, a constant disc radius is optimal. For non uniform distributions, the disc

radius is better selected as the distance to the kth-nearest neighbor (kNN). Fig. 9 shows the bias of

modi�ed MST algorithm as a function of the radius parameter and the number of nearest neighbors

for a uniform density on the plane.

It is straightforward to prove that, if the radius is suitably speci�ed, our MST construction

yields a minimum spanning tree. Recall that the Kruskal algorithm ensures construction of the

exact MST [38].

(1) If point pi is included in the tree, then the path of its connection to the tree has the lowest

weight amongst all possible non-cyclic connections. To prove this is trivial. The disc criterion

includes lower weight edge before considering an edge with a higher weight. Hence, if a path is
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found by imposing the disc, that path is the smallest possible non-cyclic path. The non-cyclicity

of the path is ensured in the Kruskal algorithm through a standard Union-Find data set.

(2) If a point pi is not in the tree, it is because all the edges between pi and its neighbors considered

using the disc criterion of edge inclusion have total edge weight greater than disc radius or have led

to a cyclic path. Expanding the disc radius would then provide the path which is lowest in weight

and non-cyclic.

For further information and variants of the MST acceleration technique described above we

refer the reader to [54].

5 Applications

We herein illustrate the entropic graph approach to image matching for three di�erent problems.

The �rst is a toy problem involving registration of a simulated image and is meant to illustrate the

superiority of entropic methods over correlation methods. The second application is registration of

US breast images and the third application is image retrieval over a face database.

5.1 Toy Image Registration Problem

In this simple example we compare the MST-based estimate of �-Jensen di�erence using basis

projection features against the standard correlation coeÆcient method [49]. Fig. 10 shows two

images, containing a square at constant intensity, immersed in a background of uncorrelated white

noise. The square in the secondary image is translated along the diagonal from the original central

position in the primary image. The objective is to register the square in the two images by �nding

the diagonal translation of the secondary image which best matches the �rst image. For each

candidate translation the derived features were merged into one feature set as described in Section

4 to compute the MST-based �-Jensen di�erence. We adopted a 4 dimensional feature set consisting

of the coeÆcients obtained from projecting the 8� 8 sub-image at each pixel location i onto a 2D

basis of centered vertical and horizontal lines plus the two Cartesian coordinates of i.

Figure 10 is a plot of the MST-based �-Jensen criterion as a function of diagonal translation
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of the secondary image. Superimposed on this plot is plotted the estimated correlation coeÆcient.

Since the �-Jensen di�erence trajectory displays a deep minimum at the correct translation (0o

o�set in the plot), the MST-based entropic registration method clearly outperforms the correlation

method in aligning the two images.

5.2 Ultrasonic Breast Image Registration

Ultrasound breast images are notoriously diÆcult to register due to speckle noise, elastic defor-

mations, and shadows. Here we compare several entropic registration methods including MI and

�-MI to the MST-based �-Jensen method. The database used for this application was a set of

3D ultrasound scans of the left or right breast of 21 female subjects, aged 21-49 years, going to

biopsy for possible breast cancer. Each volume scan acquired at 1cm depth resolution yields 90

cross-sectional images at 0.4cm horizontal resolution. The lower age range was chosen to provide a

sample of more complex breasts, which are also somewhat more diÆcult to diagnose than typical

breasts of older women. Fig 5 shows slices of breast ultrasound image volumes representative of

those found in clinical practice. The women were imaged on their backs with the transducer placed

so as to image through the breast toward the chest wall. Three test cases chosen from the breast

database and referred to as Case 151, Case 142 and Case 162 are presented. The image slice chosen

from Case 151 exhibits signi�cant connective tissue structure as the bright thin lines or edges. Case

142 was diagnosed as a malignant tumor in echogenic �broglandular tissues. The tumor charac-

teristically shows discontinuous edges with a darker center and shadows below the borders. The

area of enhancement below the tumor is not uncommon. Case 162 shows an uncommon degree of

degradation due to shadowing. The bottom two-thirds of the image include the chest wall and the

dark shadow and reverberations behind the acoustically impenetrable boundary between the lung

and chest wall. Some edge information is evident, however shadowy streaks are observed due to

dense tissue absorbing the sound beam, refraction and phase correlation at oblique boundary or

poor acoustic impedance match (air bubbles) between the transducer and the skin. For clarity of

presentation we focus on registration of 2D slices. The extension of our methods to fully 3D voxel

registration is straightforward but will not be presented here.The value of � used for all simulations
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is 0.5.

Figure 11 shows representative pro�les of the registration objective function for registering a

slice of Case 142 US breast image volume to a slice 2mm deeper in the same image volume. At

this separation distance, the speckle noise decorrelates. However the underlying anatomy remains

approximately unchanged. As the aim of this study is to quantitatively compare di�erent feature

selection and registration methods we restricted our investigation to rotation transformations over a

small range (�15o to +15o) of angles. The panel on far left of Fig. 11 indicates that, for single pixel

features, entropic-graph (MST) estimates of �-Jensen di�erence and histogram plug-in estimates of

�-MI give similarity functions with virtually identical pro�les having a unique global minimum at

the correct 0o rotation of the reference image. The pro�le of the histogram plug-in estimate of the

�-Jensen di�erence for single pixels (not shown) is very similar to the �-MI pro�le. An ICA basis of

8� 8 sub-images was generated by randomized feature selection on the image volumes. Two cases

were investigated: a reduced dimension feature set consisting of only the �rst 8 of the 64 feature

dimensions and the full 64 dimensional features. Here we assume that the dimensions of space that

are not spanned by the independent components are �lled by Gaussian noise. We see that computing

the nongaussian projection pursuit directions, we e�ectively estimate the independent components

([33]). When all nongaussian directions have been found, all independent components have been

estimated. For 8 dimensional ICA features we observe from Fig. 11 that the pro�le of the histogram

plug-in estimate of �-Jensen is degraded (middle panel) exhibiting several local minima. This is

expected since histogram estimation becomes unstable in such a high (8) dimensional feature space.

In the full 64 dimensional ICA feature space the MST-based Jensen di�erence criterion maintains

a smooth pro�le (right panel) with a single global minimum at the correct location. In the 64

dimensional feature space the histogram plug-in estimates of �-MI or �-Jensen di�erence are not

implementable.

We next investigated the e�ect of additive noise on small-angle registration performance. We

tested registration accuracy for single-pixels, tags, and discrete and continuous ICA features using

the �-MI, entropic-graph, and �-Jensen criteria under increasing noise conditions. Figures 12 and

13 show plots of registration root mean square (rms) error versus increasing levels of additive
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(truncated) Gaussian noise in the images. Shown on the plots are standard error bars. The

resultant registration peak shifts from the perfect alignment position (0o relative rotation) by an

amount depending on the SNR, the registration features, and entropy/MI estimation methods. The

lack of smoothness in the plots is likely due to the image-speci�c nature of the simulation - averaging

results over a much larger database of breast images would undoubtedly produce smoother graphs.

Figure 12 shows a comparison of histogram-based estimates derived from pixel tag features. We

see that tag features have lower MSE than the standard single pixel features. Also higher order

ICA features perform better than single pixels. Notice also that increasing the dimensionality of

the ICA coeÆcient makes the registration more robust, by further lowering misregistration error.

Figure 13 shows a comparison of the �-MI (� = 0:5) and �-Jensen discrimination criteria. The �-

Jensen di�erence function is calculated for single pixels and 8D ICA coeÆcients using higher order

histograms and the MST entropic-graph estimate. It also shows the single pixel MI criterion under

a range of SNR conditions. The performance of higher order continuous ICA features estimated

from the MST is seen to be better than those of single pixel features for which the �-MI is estimated

using histograms. More extensive experiments are necessary but these preliminary results indicate

that the MST method of entropy estimation have signi�cantly greater robustness to additive noise

than histogram plug-in methods.

5.3 Multimodal Face Retrieval

Face detection and retrieval from 2D images is a very diÆcult problem due to the high variability

of facial expressions, poses, and illuminations. Many di�erent approaches to this problem have

been proposed [46, 7, 76]. Our objective in this paper is not to compete with these many �ne

tuned approaches. Rather we simply wish to illustrate the 
exibility of the MST entropic matching

method that we have presented in earlier sections.

The widespread availability of thermal cameras, such as those used at airports for detecting

fever patients in the recent SARS outbreak, provides an opportunity to couple information from

visible-light and infrared sources for face identi�cation. The Equinox visible/IR face database [15]
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consists of 7GB worth of images of persons photographed with di�ering illumination conditions,

poses, and facial expressions using a joint co-registered visible longwave infrared (V/LWIR) camera.

Figure 14 shows a sampling of faces in this database. Given a V/LWIR image pair for a person

the multimodal face retrieval problem is to extract a corresponding pair of images of the person

from the database. Multimode retrieval using visible and thermal imagery is diÆcult due to the

prominence of contour information as opposed to the textural details available in visible imagery.

The complete lack of textural information typically leads investigators to use facial landmarks for

indexing images. However, facial landmarks change positions and aspects with expressions and

movement making them unreliable. This makes entropic methods of retrieval highly compelling

for this problem due their ability to capture complex relations using high dimensional features and

requiring no user intervention.

We implemented MST-based entropic retrieval as follows. We pulled queries at random from

the database and used this query to test the image matching method between the query and

the remaining images in the database. Two sample queries are illustrated in Figure 15. The

remainder of the database was compared to the query image and rank-ordered with respect to their

similarity with the query image. A perfect match was declared if the image with highest rank, as

measured by estimated �-Jensen di�erence, matched the person in the query image. Rather than

implement ICA, which has been reported to have de�ciencies for face recognition [45], we used a

8x8-DCT basis set to extract the features. Matching is done in a 66-dimensional space, using 64

of the DCT coeÆcients dimensions plus 2 dimensions corresponding to spatial coordinates. The

�-Jensen di�erence is computed by building the MST over this high-dimensional space for each

image pair. The measured correct retrieval rate was a respectable 95.5% even using this relatively

simple feature set and the simple MST �-Jensen image matching method. over a 300 random

queries, corresponding to di�erent facial expressions and illumination conditions.
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6 Conclusions

In this paper we presented a simple entropic graph approach to image matching. The method is

capable of capturing entropy and divergence between features in high dimensional spaces. Com-

parisons to other entropy based techniques such as MI with histogram plug-in estimates showed

that the technique could better exploit di�erences in multivariate feature distributions without

su�ering the curse of dimensionality in high dimensions. We presented a technique to accelerate

MST computation for large number of feature vectors and reduce its memory complexity to the

point where we could rapidly compute the MST length for data sets containing up to 1 million

points in 8 dimensional space. For a US breast image registration application, we showed that the

MST-based algorithm gave lower misregistration errors than single pixel MI methods.

It is known that color information o�ers distinct performance advantages for image retrieval and

in particular US image registration [69, 20, 32, 63]. Application of our MST{based image matching

techniques to color images, such as US Doppler blood 
ow color images with other color 
ow or

gray scale images is a worthwhile direction of future study. Another natural extension of this work

is to incorporate spatial relations amongst pairs of spatially separated tags to eliminate the e�ect

of shadows and other nonlinear artifacts which pose problems during compounding registration of

US images. Finally, speci�cation of the best value of � in the �-entropy similarity criteria is an

open issue that needs further investigation.
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Figure 1: Joint coincidence histograms for single-pixel gray level features. Both horizontal and
vertical axes of each panel are indexed over the gray level range of 0 to 255. Top left: joint
histogram scatter plot for the case that reference image (Xi) and secondary image (Xj) are the
same slice of the US image volume (Case 142) at perfect 0o alignment (Xj = Xi). Bottom Left:
same as top left except that reference and secondary are misaligned by 8o relative rotation as in
Fig. 2. Top right: same as top left except that the reference and secondary images are from
adjacent (2mm separation) slices of the image volume. Bottom right: same as bottom left except
that images are misaligned by 8o relative rotation.
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Pixel at location (i, j) Pixel at location (i, j) in rotated image 

Figure 2: Single-pixel gray level coincidences are recorded by counting number of co-occurences of a
pair of gray level in the reference (left) and in the secondary (right) images at a pair of homologous
pixel locations. Here the secondary image (right) is rotated by 15o relative to the reference image
(left).

Figure 3: Local tags features applied to image registration. Each pixel is labeled by a tag type.
Occurrences and coincidences of tag labels can be mapped to a coincidence histogram like Fig. 1.
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Figure 4: 8 � 8 ICA basis set obtained from training on randomly selected 8 � 8 blocks in 10
ultrasound breast images. Features extracted from an image are the 64-dimensional vectors obtained
by projecting 8� 8 sub-images of the image on the ICA basis.

Figure 5: Three ultrasound (US) breast scans. From left to right are: Case 151, Case 142 and Case
162.
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Figure 6: A set of n = 100 points fZig in the plane (left) and the corresponding Minimal Spanning
Tree (MST) (right).
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Figure 7: Length functions Ln of MST implemented with 
 = 1 (left) and Ln/
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function of n for the uniform and normal distributed points in Fig. 6.
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Figure 8: Disc-based acceleration of Kruskals MST algorithm from n2 logn to n logn (left) and com-
parison of computation time for Kruskal's standard MST algorithm with respect to our accelerated
algorithm (right)
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Figure 9: Bias of the n logn MST algorithm as a function of radius parameter (left) and as a
function of the number of nearest neighbors (right) for uniform points in the unit square.
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Figure 10: Square immerssed in homogeneous background noise (primary image on left). Translated
square in noise (secondary image in center). Plot of �Jensen di�erence and correlation coeÆcient
as a function of translation of secondary image along diagonal (right).
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Figure 11: Pro�les of image mathcing criteria for registration of US breast images taken from two
slices of the image volume for Case 142: MST-based �-Jensen and histogram-based �-MI for single
pixel features (left); MST-based �-Jensen and histogram-based �-MI for 8D ICA features (center);
and MST-based �-Jensen for 64D ICA feature vectors (right)
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Figure 12: E�ect of additive Gaussian noise on the rms of the peak position of the �-MI objective
function estimated using histograms on single-pixel and feature coincidence trees of 8�8 tag features
(left) and feature coincidence thistograms on discrete ICA (8D) features (right). These plots are
based on 250 repeated experiments from within the breast US database. The two slices studied are
separated by 2mm. Search was restricted to a maximum rotation angle of plus or minus 15o.
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Figure 13: E�ect of additive noise on the peak of the �- MI objective function estimated using
histograms on single pixels vs. �-Jensen function estimated using histograms on single-pixels and
8D discrete and continuous ICA features.
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Example Images from  face database

Figure 14: Sampling of faces in the Equinox V/LWIR face database [15]. The database consists
of 100 individual faces at various illumination, pose and facial expression con�gurations. Each
visible-light image is co-registered to infrared counterpart by the camera.

Query 1 Query 2

Figure 15: Two examples of queries taken from the Equinox face database.
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