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A b m m -  We propose a new algorithm that simultaneously 
eslimates the intrinsic dimension and intrinsic entropy 01 random 
data sets lying on smooth manifolds. The method is based 
on asymptotic properties 01 entropic graph constructions. In 
particular, n e  compute the Euclidean k-nearest neighbors (k- 
NN) graph oyer the sample points and use its overall total edge 
length to estimate intrinsic dimension and entropy. The algorithm 
is \,alidated on standard synthetic manifolds. 

1. INTRODUCTION 

Several interesting classes of signals arising in fields such 
as bioinforniatics. image processing or Internet traffic analysis 
live in high dimensional vector spaces. It is well known that 
both computational complexity and statistical performance of 
most algorithms quickly degrades as dimension increases. This 
phenomenon. usually known as curse of diniensionalitj:, makes 
it impracticable to process such high dimensional data sets. 
However, many real life signals do not fill the space entirely 
but are constrained to lie on a smooth low dimensional non- 
linear manifold embedded in the’high dimensional space. Ma- 
nyold learning is concerned with the problem of discovering 
low dimensional structure based on a set of observed high 
dimensional sample points on the manifold. 

In  the recent past, manifold learning has received substantial 
attention from researchers in  machine learning, computer 
vision, signal processing and statistics [1]-[4]. This is due to 
the fact that effectively solving the manifold learning problem 
can bring considerable improvement to the solution of such 
diverse problems as: feature extraction in pattern recognition; 
multivariate density estimation and regression in statistics; data 
compression and coding in information theory; visualisation of 
high dimensional data; or complexity reduction of algorithms. 
Several techniques for recovering the low dimensional S ~ N C -  
ture of high dimensional data have been proposed. These range 
from: linear methods as principal components analysis (PCA) 
[SI and classical multidimensional scaling (MDS) [6]; local 
methods as linear local imbedding (LLE) [ I ] ,  locally linear 
projections (LLP) [7], and Hessian eigenmaps [4]; and global 
methods as ISOMAP [2]. 

One common step to the manifold reconstruction algorithms 
mentioned above is that all require the explicit knowledge 
of the intrinsic dimension of the manifold. In many real life 
applications, this parameter cannot assumed to he known and 
has to be estimated from the data. A frequent way of doing 
this is to use linear projection techniques ( [ 5 ] ) :  a linear map is 
explicitly constructed and dimension is estimated by applying 
PCA, factor analysis, or MDS to analyze the eigenstructure 

of the data. These methods rely on the assumption that 
only a small number of the eigenvalues of the (processed) 
data covariance will be significant. Linear methods tend to 
overestimate the intrinsic dimension as they don’t account for 
non-linearities in the data. Both nonlinear PCA [3] methods 
and the ISOMAP circumvent this problem but they still rely on 
unreliable and costly eigenstructure estimates. Other methods 
have been proposed based on local geometric techniques, e.g., 
estimation of local neighborhoods [8] or fractal dimension [9], 
and estimating packing numbers [IO] of the manifold. 

The closely related problem of estimating the manifold’s 
irrtrirtsic entropy arises if the data samples are drawn from 
a multivariate distribution supported on the manifold. When 
the distribution is absolutely continuous with respect to the 
Lebesgue measure restricted to the lower dimensional ma- 
nifold, this intrinsic entropy can be useful for exploring 
data compression over the manifold or, as suggested in [ I  I], 
clustering of multiple sub-populations on the manifold. 

The goal of this paper is to develop an algorithm that jointly 
estimates both the intrinsic dimension and intrinsic entropy 
on the manifold, without knowing the manifold description, 
given only a set of random sample points. Our approach is 
based on entropic graph methods; see [ I  I ]  for an overview. 
Specifically: construct the Euclidean k-nearest neighbors (k- 
NN) graph over all the sample points and use its growth rate to 
estimate the intrinsic dimension and entropy by simple linear 
least squares and method of moments procedure. This method 
shares with the geodesic minimal spanning tree (GMST) 
method introduced by us in previous work [12], the simplicity 
of avoiding the reconstruction of the manifold or estimating 
the multivariate density of the samples. However, it has the 
main advantage of reducing runtime complexity by an order 
of magnitude and is applicable to a wider class of manifolds. 

The remainder of the paper is organized as follows. In 
Section II  we discuss the asymptotic behavior of the k-NN 
graph on a manifold and the approximation of k-NN geodesic 
distances by the corresponding Euclidean distances. The pro- 
posed algorithm is described in Section 111. Experimental 
results are reported in Section IV. 

The theoretical results introduced in this paper are presented 
without proof due to space limitations.. The corresponding 
proofs can be found in [ 131. 

11. THE k-NN GRAPH 
Let X,, = {XI,. . . , X,} be n independent and identically 

distributed ( i id . )  random vectors with values in a compact 
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subset of E d .  The (1-)nearest neighbor of Xi in X,, is given 
bv 

where distances between points are measured in terms of some 
suitable distance function d(., .). For general integer k 2 1, 
the k-nearest neighbor of a point is defined in a similar way. 
The k-NN graph puts an edge between each point in X, and 
its k-nearest neighbors. Let N k , i  = Nk,i(X,)  be the set of 
k-nearest neighbors of Xi in X,. The total edge length of the 
k-NN graph is defined as: 

n 

~ 7 , k ( ~ n )  = p(x,xi)  (1) 
i=l XcNk,, 

where y > 0 is a power weighting constant. 
If d ( X , Y )  = IX - YI, where I . I is the usual Euclidean 

(Z2) norm in Ed, then the k-NN graph falls under the 
framework of continuous quasi-additive Euclidean functionals 
[14]. As a consequence, its almost sure (ax)  asymptotic 
behavior (also convergence in the mean) follows easily from 
the irriibrella tlieorenis for such graphs: 

Theorem I ([14. 72eoreni 8.31): Let X I , .  . . , X, be i.i.d. 
random vectors with values in a compact subset of Rd and 
Lebesgue density f .  Let d 2 2, 1 5 y < d and define a = 
(d  - y ) / d .  Then 

where L7.k(Xn) is given by equation ( I )  with Euclidean dis- 
tance, and Pd,.,,& is a constant independent o f f .  Furthermore, 
the mean length E [L,,k(Xn)] In" converges to the same limit. 

The integral factor s f"  in the as. limit is a monotonic 
function of the exti-insic Renyi a-entropy of the multivariate 
Lebesgue density f :  

In the limit, when a + 1 the usual Shannon entropy, 
- JRd f (z) log f (I) d z ,  is obtained. 

Assume now that Y,, = { Y l , .  . . , Y,} is constrained to 
lie on a compact smooth m-dimensional manifold M .  The 
distribution of Y ;  becomes singular with respect to Lebesgue 
measure and an application of Theorem 1 results in a zero 
limit for the length functional of the k-NN graph. However, 
this behavior can be modified by changing the way distances 
between points are measured. For this purpose, we use the 
framework of Riemann manifolds. 

A .  Random Points in a Riemann Manfold 
Given a smooth manifold M ,  a Riemann metric g is a 

mapping which associates to each point y E M an inner 
product gy(., .) between vectors tangent to M at y [15]. A 
Riemann manifold ( M , g )  is just a smooth manifold M with 
a given Riemann metric g. As an example, when M is a 

submanifold of the Euclidean space Wd, the naturally induced 
Riemann memc on M is just the usual dot product between 
vectors. 

For any tangent vector u to M at y, we can define its norm 
as lulgy = gy(u, u ) .  Using this norm, it is natural to define the 
length of a piecewise smooth curve on M ,  r : [O; 1) + M ,  
as @(r) = I$r(t)lgydt. The geodesic distance between 
points y,,y, E M is the length o f  the shortest piecewise 
smooth curve between the two points: 

d,(Y,,Y,) = y w )  : r(o) = vozr(l) = yll  

Given the geodesic distance, one can construct a geodesic 
k-NN graph on Y,, by computing the nearest neighbor rela- 
tions between points using dg instead of the usual Euclidean 
distance. Consequently, we define the total edge length of this 
new graph as Ll,k(Yn). where L7.k(Y,,) is given by ( I )  u,ith 
the correspondence d + d,. 

We can now extend Theorem 1 to general compact Riemann 
manifolds. This extension, Theorem 2 bellow, states that the 
asymptotic behavior of L,,k(Yn) is no longer determined 
by the density of Y i  relative to the Lebesgue measure of 
Rd, but depends instead on the the density of Yi relative 
to p,, the induced measure on M via the volume element [ 1.51. 

Theorem 2: Let ( M , g )  be a compact Riemann m- 
dimensional manifold. Suppose Y1, . . . ~ Y ,  are i.i.d. random 
elements of M with bounded density f relative to pg. Let 
L7,k be the k-NN graph with lengths computed using the 
geodesic distance dg. Assume m 2 2, 1 5 y < m and define 
a = (m - y ) / m .  Then, 

where / j m , 7 , k  is a constant independent of f and ( M , g ) .  
Furthermore, the mean length E [Z,.k(Yn)] InU converges to 
the same limit. 

Now, the integral factor in the a s .  limit of (3) is a monotonic 
function of the intrinsic Renyi a-entropy of the multivariate 
density f on ,M: 

An immediate consequence of Theorem 2 is that, for known 
m, 

is an asymptotically unbiased and strongly consistent estimator 
of the intrinsic a-entropy Hi''g'(f). 

The intuition behind the proofof Theorem 2 comes from the 
fact that a Riemann manifold M ,  with associated distance and 
measure, looks locally like E'" with Euclidean distance and 
Lebesgue measure. This implies that on small neighborhoods 
of the manifold the total edge length L.,,k(X) behaves like a 
Euclidean length functional. As M is assumed compact, it can 
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be covered by a finite number of such neighborhoods. This 
fact, together with subadditive and superadditive properties 
[I41 of L,,k, allows for repeated applications of Theorem 1 
resulting in (3j. 

B. Appmximating Geodesic k-NN Distances 
Assume now that M C W d .  In the manifold learning 

problem, M (or any representation of it) is not known in 
advance. Consequently, the geodesic distances between points 
on M cannot be computed exactly and have to be estimated 
solely from the data samples. In the GMST algorithm [I21 (or 
the ISOMAP [2]) .  this is done by running a costly optimization 
algorithm over a global graph of "neighborhood relations" 
among all points. 

Unlike the MST, the k-NN graph is only influenced by 
local distances. For fixed k, the maximum nearest neighbor 
distance of all points in y, goes to zero as the number n 
of samples increases. For n sufficiently large, this implies 
that the k-NN of each point will fall in a neighborhood of 
the manifold where geodesic curves are well approximated 
by the corresponding straight lines between end points. This 
suggests using simple Euclidean k-NN distances as surrogates 
for the corresponding true geodesic distances. In fact, we 
prove that the geodesic k-NN distances are uniformly well 
approximated by the corresponding Euclidean k-NN distances 
in the following sense: 

Tlteureni 3: Let ( M , g )  be a compact Riemann submani- 
fold of W d .  Suppose Y1,. . . , Y, are i.i.d. random vectors of 
41. Then, with probability 1, 

111. J O I N T  I N T R I N S I C  DIMENSION/ENTROPY ESTIMATION 

Let &.&J,,) he the total edge length of the Euclidean 
E-NN graph over Y,. Its asymptotic behavior is a simple 
consequence of Theorems 2 and 3: 

Cuvollay 4: Let ( M , g )  he a compact Riemann m- 
dimensional submanifold of W d .  Suppose Y1, ... ,Y,, are 
i.i.d. random vectors of AI with bounded density f relative to 
fly. Assume m 2 2, 1 5 y < m and define a = (m - T)/m. 
Then, 

where pm,T,k is a constant independent of f and (M,g ) .  

to the same limit. 
Furthermore, the mean length E 

We are now ready to apply this result to jointly estimate 
intrinsic dimension and entropy. The key is to notice that the 
growth rate of the length functional is strongly dependent on 
m while the constant in the convergent limit is equal to the 
intrinsic a-entropy. We use this strong growth dependence 

as a, motivation for a simple estimator of m. Define I ,  = 
logL,,k(Yn). According to Corollary 4, I ,  has the following 
approximation 

l ,=alogn+b+t, ,  (8) 

where 

(9) 
b = logpm,7,k f 7/m HLMZg' ( f )  , 

a = (m - 7)/m and e ,  is an error residual that goes to zero 
a s .  as n + 03. 

Using the additive model ( S ) ,  we propose a simple non- 
parametric least squares strategy based on resampling from 
the population Yn of points in M. Specifically, l e tp l , .  . . ,PQ, 
1 5 pl < . . .,< p~ 5 n, be Q integers and let N 
be an integer that satisfies N / n  = p for some fixed p E 
(0,1]. For each value of p E {p,, . . . , p ~ }  randomly draw 
N bootstrap datasets Y j ,  j = 1 , .  . . , N ,  with replacement, 
where the p data points within each Y j  are chosen from the 
entire data set Y ,  independently. From these samples compute 
the empirical mean of the k-NN, length functionals E, = 
N - ' C z ,  L.,,k(YJ). Defining t = [ logt , , , .  ..,logL,,IT 
we write down the linear vector model 

a = (m --r)/m, 

We now take a method-of-moments (MOM) approach in 
which we use ( I O )  to solve for the linear least squares (LLS) 
estimates 6, b of a ,  b followed by inversion of the relations (9). 
After making a simple large n approximation, this approach 
yields the following estimates: 

A = round{y/(l - &)} 

The importance of constants Brn,,,k is different whether 
dimension or entropy estimation is considered. On one hand, 
due to the slow growth of {pm,.,,k}rn>o in the large n regime 
for which the above estimates were derived, Pm,,,,+ is not 
required for the dimension estimator. On the other hand, the 
value of &,,k is required for the entropy estimator to be 
unbiased. From the proof of Theorem 2, it comes out that 
Pm,.,.k is the limit of the normalized length functional of the 
Euclidean k-NN graph for a uniform distribution on the unit 
cube [O,l]"'. As closed form expressions are not available, this 
constant must be determined by Monte Carlo simulations of 
the k-NN length on the corresponding unit cube for uniform 
random samples. We note, however, that in many applications 
all that is required is the knowledge of the entropy up to a 
constant. For example, when maximum or minimum entropy 
is used as a discriminant on several data sets [ I  I], only the 
relative ordering of the entropies is important. 
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.. . 
Fig. I .  
sample pointr. 

The Swiss roll manifold and corresponding 4-NN graph on 4Q3 

t a n  

Fig. 2. Log-log plot of the average k-NN length i, for the Swiss roll 
manifold and its least squarer linear f i t .  for n = 800 sample points, k = 3 
and N = 5. The estimated slope is  d = 0.504 which implies I = 2. 

Finally, the complexity of the algorithm is dominated by 
the search of  nearest neighbors in the Euclidean metric. 
Using efficient constructions such as K-D trees, this task can 
be performed in O(n1ogn) time for n sample points. This 
contrasts with both the GMST and ISOMAP that require 
a costly O(n2 logn) implementation of a geodesic pairwise 
distance estimation step. 

1V. EXPERIMENTAL RESULTS 
We illustrate the performance of the proposed k-NN algo- 

rithm on manifolds of known dimension. In all the simulations 
we used y = 1 andpl  = n-Q,.  . .,pq = n-1. With regards 
to intrinsic dimension estimation, we compare our algorithm to 
ISOMAP. In ISOMAP, similarly to PCA, intrinsic dimension is 
usually estimated by looking at the residual errors as a function 
of  subspace dimension. 

A .  Swiss Roll 
The first manifold considered is the standard 2-dimensional 

Swiss roll surface [2] embedded in iT$ (Fig. I ) .  Fig. 2 shows 
a log-log plot of the average k-NN length E, as a function of 
the number of  samples. The good agreement between L, and 
its least squares linear fit confirms the large sample behavior 
predicted by Corollary 4 and shows evidence in favor of linear 
model (8). 

To compare the dimension estimation performance of the 
k-NN method to ISOMAP we ran a Monte Carlo simulation. 

For each of  several sample sizes, 30 independent sets of i.i.d. 
random vectors uniformly distributed on the surface were 
generated. We then counted the number of  times that the 
intrinsic dimension was correctly estimated. To automatically 
estimate dimension with ISOMAP, we look at its eigen- 
value residual variance plot and try to detect the “elbow” at 
which residuals cease to decrease “significantly” as estimated 
dimension increases [2]. This is implemented by a simple 
minimum angle threshold rule. Table I shows the results of 
this experiment. As it can he observed, the k-NN algorithm 
outperforms ISOMAP for small sample sizes. 

B. Hyper-spheres 
A more challenging problem is the case of the m- 

dimensional sphere S” (embedded in R”+’). This manifold 
does not satisfy any of the usual isometric or conformal 
embedding constraints required by ISOMAP or other methods 
like C-ISOMAP [I61 and Hessian eigenmap [4]. Once again, 
we tested the algorithm over 30 generations of uniform random 
samples over S”, for m = 2 ,3 ,4  and different sample sizes 
n, and counted the number of correct dimension estimates. We 
note that in all the simulations ISOMAP always overestimated 
the intrinsic dimension as m + 1. The results for k-NN are 
shown in Table I I  for different values of the parameter Q. 
As it can be seen, the L-NN method succeeds in finding the 
correct intrinsic dimension. However, Table I I  also s h o w  that 
the number of samples required to achieve the same level of 
accuracy increases with the manifold dimension. This is the 
usual curse of  dimensionality phenomenon: as the dimension 
increases, more samples are needed for the asymptotic resime 
in (7) to settle in and validate the limit in Corollary 4. 

c. Hjper-planes 
We also investigate m-dimensional hyper-planes in Wm+’ 

for. which PCA methods are designed. We consider hyper- 
planes of the form x1 + . . . + X,+I = 0. Table 111 shows the 
results of  running a Monte Carlo simulation under the same 
conditions as in the previous subsections. Unlike the ISO.MAP, 

TABLE I 
NUMBER OF CORRECT DIMENSION ESIIY.ATES OVER 30 TRI.ALS .AS .A 

FUNCTION OF THE NUMBER OF S.<YPLES FOR THE SWISS ROLL 
MAKIFOLD. 

TABLE II  
NUNBER OF CORRECT DIMESSlONESTlhIATES OVER 30 TRIALS AS A 

FUNCTION OF THE NUMBER OF SAMPLES FOR Hl-PER-SPHERES. k = 5 
N E l G H B O R S , N  = 5. 
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n Hyper-plane 
dimension 

2 N = S , Q = 9  
3 N = 5,Q = 9 
3 N = l0,Q = 14 
4 N = 10,Q = 14 
4 N =  l0 ,Q = 19 

Fig. 3. Real valued intrinsic dimension estimates and histogram for the 4-D 
hyper-plane. for n = 400 sample points, k = 5, N = 10 and Q = 14. 

600 800 1000 1200 

30 30 30 30 
27 27 28 28 
30 30 30 30 
22 23 26 26 
24 26 28 28 

which was observed to correctly predict the dimension for all 
sample sizes investigated, the k-NN method has a tendency to 
underestimate the correct dimension at smaller sample sizes. 
This fact can be observed in  Fig. 3. The first column shows the 
real valued estimates of the intrinsic dimension, i.e., estimates 
obtained before the rounding operation in (11). Any value 
that falls in between the dashed lines will then he rounded 
to the middle point. The second column of Fig. 3 shows the 
histogram for these rounded estimates over the 30 simulations 
trial. We believe that the resampling strategy of the algorithm 
may he responsible for this underestimation. Several methods 
for improving the performance of the k-NN algorithm are 
currently under investigation. 

D. Full Diniensional Unforni Samples on the Unit Cube 
Finally, we consider uniformly distributed samples on the 

full dimensional unit cube [0,lId c E d .  The results sum- 
marized by Table IV are similar to those for hyper-planes 
in the previous subsection. ISOMAP correctly estimated the 
dimensionality of the data for all sample sizes. 

V. CONCLUSION 
We have introduced a novel method for intrinsic dimension 

and entropy estimation based on the growth rate of the Eu- 
clidean k-NN graph length functional. The proposed algorithm 
is applicable to a wider class of manifolds than previous 
methods and has reduced computational complexity. We have 
validated the new method by testing it on synthetic manifolds 

In order to improve the performance of the derived estima- 
tors, a better understanding of the statistics of the error term 
in the linear model (8) would be important. Also of great 
interest is the study of the effect of additive noise on the 
manifold samples. With regards to applications, we plan to 
test the proposed algorithm on databases of faces, handwritten 
digits and genetic data. 
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