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ABSTRACT 

In the Magnetic Resonance Force Microscopy (MRFM) ex- 
periment that we consider, a cantilever is used to detect the 
presence of an electron spin. If an electron spin is present, 
the equation governing the motion of the cantilever is non- 
linear. In the absence of a spin, the equation is linear. We 
propose a detector model that uses two Kalman Filter (KF) 
state estimators. The estimator for the spin hypothesis is an 
adaptation of the standard KF, and can be viewed as a 0th or- 
der mixed-time Extended Kalman Filter (EKF). Simulation 
results are presented for several system parameter values. 

1. INTRODUCTION 

The principle of magnetic resonance has been successfully 
applied in the imaging of human tissue. A technique that 
attempts to extend this to the detection of a single-spin elec- 
tron has been proposed in [l, 21, and is known as Magnetic 
Resonance Force Microscopy (MRFM). The proposed ex- 
periment makes use of the intermpted Oscillating Cantilever- 
driven Adiabatic Reversal (OSCAR) idea. An oscillating 
cantilever with a magnetic tip is brought close to an electron 
spin. The movement of the cantilever causes the spin to cy- 
cle in and out of magnetic resonance. In the normal mode of 
operation of intermpted OSCAR, the electron spin is “spin- 
locked”, and the z component of the spin follows the mo- 
tion of the cantilever. The spin functions as a small magnet, 
and its presence will modify the cantilever’s frequency of 
oscillation WO. Detection of the electron is equivalent to de- 
tecting the minute frequency changes in WO of the cantilever 
position signal z ( t ) .  A straight-forward detection method 
is to pass z ( t )  through a Frequency Modulation (FM) de- 
modulator, and looking for the expected behaviour. Another 
baseband method of detecting this frequency shift is given 
in 131; however, this method makes an assumption on the 
form of the baseband output. In this paper, we propose a 
more direct detection scheme that uses samples of the can- 
tilever’s position, and is based on the well-known Kalman 
Filter (KF) algorithm [4], [5] .  It is hoped that better de- 
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tection performance can be achieved by using z ( t )  directly 
without any additional assumptions. 

2. PROBLEM DESCRIPTION 

Let HO be the hypothesis that no spin is present, and H I  that 
a spin is present. Let CO and CI be the systems under HO 
and H I  respectively. CO is the well-known linear, 2nd order 
system, of a moving cantilever. The equations describing 
CO are given below, and a description of the pertinent vari- 
ables follows. Note that an overhead dot is understood to be 
differentiation with respect to time. That is, 0 = %U. 
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mZ + Ti + kz = F,(t) 
(1) 

Zli] = Z ( t i )  + C[i] 

z ( t ) :  Cantilever position (equilibriumposition is z = 0) 

F,, (t): Thermal noise, assumed to be White Gaussian Noise 
WGN) 

sampling period) 
t i:  ith sampling time instant, where t i  = iT, (T, is the 

s[ i ] :  ith observed sample of z ( t )  

C[i]: Observation noise, assumedto be a sequence of i.i.d. 
Gaussian r.v.’s with mean 0 and variance U’ 

The equations of the classical dynamics of a MRFM 
cantilever interacting with a single electron spin moment 
are described in [61. If one considers only the fundamen- 
tal mode and takes FcontT,,l(t) = 0, the evolution of t ( t )  in 
CI is described by the nonlinear system: 
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Bl(t):  Radio frequency (rf) signal that brings the spin mo- 
ment into resonance. This is a control input to the 
system. 

Similar to CO, one only observes samples of r ( t )  at mul- 
tiples of Ts. The detection problem is as follows: given N 
noisy observations z[i] ,  i = 1,. . . , N, classify the system 
which generated the z [ i ] ’ s  as either Ho: { ~ [ i ] } ~ ~  generated 
by CO,  or HI: {z[i]}zO generated by C1. For reasons relat- 
ing to the practical implementation of the detector, we shall 
assume a low sampling frequency fs = l/Ts, As well, we 
shall assume that the number of observations N is small. 

3. ANALYSIS OF CI 

C1 is a stiff nonlinear system. The electron spin moment @ 
has a constant 2-norm that is given by 
J/T. The invariance of IpI can be verified by considering 
V ( p z , p y , p z )  = pz + pg + p: V = 0 by using the 
expressions forb=, j ig,  and j i z  in (2). Setting &(t) E 0 in 
theequationsfor& enablesustosolveforp,(t) andp,(t). 
We obtain the solution C.cos [-yG$ Z ( T ) ~ T  + 81, Cand 
8 being some constants which are different for pz and py. 
Since [-/Gzomprl is a large quantity (let ramp[ be the am- 
plitude of z( t ) ) ,  the x and y components of p are oscillating 
very rapidly. With a non-zero B1 (t), the same holds true for 
the simulated system. As a result, a small integration time 
step is required, on the order of 1O-Io to 

Nonlinear systems analysis methods can be applied to 
analyze the reachability and observability properties of C1 
[7, 81. CI can be written in state-space form by defining 
the state vector o(t)  = [pz py p z  z iIT and ~ ( t )  = 
[0 . . . 0 Fn(t)/rn]*. Then, from (2).  a suitable function 
f : R5 x [0, m) + R5 can be defined so that v( t )  evolves 
according to fi = f(v, t) + ~ ( t ) .  The time dependency in 
f(v,  t) arises from B l ( t ) ,  the rf signal. If we treat U = 
[Bl(t) Fn(t)] as the control inputs, C1 assumes the form 
of a linear-analytic system. That is, we can write fi = 
p ( v )  + g(v)u for suitable functions p ( . )  and g(.). In this 
formulation, C1 is locally observable everywhere except for 
the set of points RI, where RI = { U  : Guq + 6Bo = 0). CI 
is not locally reachable. Instead, it is locally reachable on a 
sub-manifold of dimension 4 at almost all points except for 
those which are in either RI  or R2 = {U : v3 = 0) .  Note, 
however, that the solution manifold of C1 is of dimension 4, 
as [ul v2 us] is constrained to lie on the unit sphere (where 
without loss of generality, we consider their appropriately 
scaled versions). Hence, CI is locally reachable in jts solu- 
tion manifold at almost all points contained within. 

As C1 is not locally reachable, it is not in minimal form. 
There is an obvious transformation that will bring it to mini- 

the unit sphere, one 
substitute it into the 

= 9.28 x 

seconds. 

right-hand side of (2). The equation for j i z  will no longer 
be needed, and the number of equations will decrease from 
5 to4. 

Going back to the original formulation of CI, although 
it is nonlinear, the non-linearity is “soft”. The f (v, t) term 
can be written as f ( v , t )  = A,( t )v ( t ) .  Here, A,(t)  is a 
time-varying matrix that depends on r( t ) ,  the cantilever po- 
sition. This is a re-formulation that conveniently ignores 
the fact that z is in the state vector v(t). However, z is a 
quantity that is readily available to us, as it is what we ob- 
serve. There are, however, non-idealities that are present. 
Firstly, we do not observe z continuously, but only a sam- 
pled version. Secondly, the samples are corrupted by noise. 
If the sampling frequency fa is sufficiently high relative to 
the bandwidth of z ,  r ( t )  will be a slowly-changing signal in 
each sampling interval [ti, ti+l), and can be approximated 
by a constant. Moreover, an estimator i can be employed 
instead of the noisy samples z[i]. This provides a “cleaner” 
version of z( t ; ) .  If the Signal to Noise Ratio (SNR) is suffi- 
ciently low, we should have ?( t i )  2: z( t i ) .  

4. MODEL DETECTION 

4.1. State estimation of C1 from noisy samples 

Assume that the sampling frequency fs is sufficiently high, 
so that t ( t )  in each sampling interval [ti,  t i+ l )  can be ap- 
proximated as z ( t )  c i(t?). We use the notation that ap- 
pears in [4], where t; denotes the time right before the i- 
th observation is available, and so fi(t;), the estimator of 
u(ti) ,  does not incorporate information from z ( t i ) .  Sim- 
ilarly, t? is the time right after the i-th observation, and 
C ( t $ )  has information from z ( t 0  incorporated into it. The 
time dependence of A, ( t )  lies in B1 (t). Assume that Bl(t)  
is sufficiently slowly varying relative to fs, so that we can 
approximate Bl(t) ,  .? &(ti)  V t  E [t;,t;+l). Then, it is 
possible to approximate A,( t )  for t  E [ t i ,  t i+ l )  by A,(t)  ? 

Ai(,+),B.(t,)..Thus, the nonlinear system C1 can beapprox- 
imated as a piece-wise Linear Time Invariant (LlT) system, 
which we shall denote as Cl;. It is then possible to apply the 
mixed-time Kalman Filter to Cli in each sampling interval. 
Instead of propagating the state estimate through Eli how- 
ever, we shall take a page from the Extended Kalman Filter 
(EKF) algorithm and propagate the state estimate through 
the original system CI.  

We call this technique piece-wise constant Kalman Fil- 
rering (PCKF) for mixed-time systems. Note that only the 
propagation equations have changed, as compared to the 
normal mixed-time KF equations [4]. The measurement up- 
date equations remain the same. The piece-wise constant 
KF can be viewed as a 0th order mixed-time EKF. The dif- 
ference between our proposed filter and the normal mixed- 
time EKF lies in the propagation of the error covariance ma- 
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trix P( t )  through time [9]. 
Define G(t/t,-l) for 1 E [ti-l,ti) as the state estimate 

(conditional mean) of v( t )  conditioned on all the observa- 
tions up until z(t,-1). Then, G ( t ; )  = C(ti/ti-l), where 
C ( t / t i - 1 )  is obtained by solving the differential equation 
S(t/ti-1) = f(G,t) with C(t,-l/ti-l) = G(t:-l). The rest 
of the propagation equations for the (i - 1)th sampling in- 
terval [ti-l ti) are as follows: 

4.2. Post-FM energy detector 

As was mentioned in the introduction, a straight-fonvard 
method to detect the presence of the spin moment is to pass 
z ( t )  through a FM demodulator. Let s ( t )  be the output 
of the FM demodulator. Assume that s ( t )  under Hl will 
be a periodic telegraph signal with random transitions and 
additive WGN. This suggests the use of an energy detec- 
tor. Under high SNR, the energy of s ( t )  under HI will be 
greater than that under Ho. So the test statistic is Tfm = 

Ho 

4.3. Dual KF detector 

An electron spin detector can be constructed by using a dual 
KF setup. See Figure I .  Since CO is linear, the normal 
mixed-time KF is optimal in the sense that it minimizes the 
Mean Squared Error (MSE) of the residuals. Denote by KFO 
the KF matched to CO and KFI the piece-wise constant KF 
matched to C1. Suppose for the moment that CO and C1 
are both linear systems. Let qo[i] and q1 [i] be the residuals 
produced by K F O  and KFl respectively. Then, if the obser- 
vations z[i] are generated by C k .  the residual v k [ i ]  will be a 
zero-mean white i.i.d. sequence. The resulting likelibood- 
ratio test statistic can be simplified to: 

Even though C1 is not linear, we shall nevertheless in- 
voke the piece-wise constant assumption and apply the de- 
cision rule above. The KFs need to be initialized with an 
initial state vector and error covariance ma&x. Under high 

Fig. 1. Electron spin detector: dual Kalman Filter approach 

Sh'R conditions, z (0 )  and i ( 0 )  are approximately known. 
However, the initial spin moment c(0) is not known, and 
as it is equally likely to lie anywhere on the unit sphere, 
E [ ~ ( o ) ]  = 8. Since KFI is sensitive to ,z(o), an attempt is 
made to guess at F(0). We shall apply the Generalized Like- 
lihood Ratio (GLR) principle, which entails replacing z(0) 
with its Maximum Likelihood (ML) estimate. The lower 
KFI branch in the electron spin detector is replaced by a 
filter bank o f p  KFls, each initialized with a different @(a), 
Denote by &(O) the value of F(0) with which the kth KFl 
is initialized. The minimum output value of all p KFls will 
he selected and compared with the output of KFO. By doing 
this, (4) is modified to be: 

(5)  
The values of var(qo[i]), the variance of oo[i] under Ho, 

can be obtained from KFO.  However, var(vl[i]) cannot be 
so easily computed. We can compute an empirical approx- 
imation to var(ql[i]), or we can approximate var(vg[i]) ii: 
var(ql[i]). In the latter case, the LRT test (4) becomes an 
energytestofthefom: T, = 77i[i]-&1 $[i] 2 y. 
An analogous form exists for the GLR-LRT test (5) .  

N N 

5.. SIMULATION RESULTS 

In simulations that were conducted, 4 different parameter 
sets with different values of G and k (the spring constant of 
the cantilever) were considered. G = 2 G/A for parameter 
sets I and II, whereas G = IO G/A for In and IV; k = 10W3 
N/m for I and III, and k = N/m for II and n! Some 
of the other relevant simulation parameters are as follows: 
f. = 250kHz, wg = lOkHz, U' = Ti = 0.6K 
(noise temp. of fundamental mode of cantilever). 

The piecewise constant KF performed better than the 
mixed-time EKF in simulations that were conducted. The 
result of applying the PCKF and EKF to a simulation from 
parameter set IV is illustrated in Figure 2 below. .The overall 
MeanSquaredError(MSE)ofP, forthePCKFwas6.823~ 
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while for the EKF, it was 1.604 x 

r , ,  , , , ’ ’  . , I  I 

(a) Parameter set I (G = 2 GI& k = N/m) 

Fig. 2. Comparison of the mixed-+e EKF and the PCKF 
in tracking z ( t )  under H I  

We implemented detector test ( 5 )  with p = 2. Each Re- 
ceiver Operating Characteristic (ROC) curve was generated 
from 100 to 120 simulation trials (100 for I, I1 and 120 for 
III, I”); each trial was 25 ms in length. The dual KF spin 
detector performed better than the post-FM energy detector 
in all four parameter sets studied. Parameter set I resulted 
in the worst performance, while IV resulted in the best per- 
formance. Their ROC curves are given in Figures 3a and 3b 
respectively, with the other two cases being omitted due to 
a lack of space. 

6. CONCLUSION 

We have developed a modified form of the Kalman Filter for 
the state estimation of a soft nonlinear system. The modified 
estimator, known as the piece-wise constant Kalman Filter, 
can be viewed as a 0th order EKF. With this, we constructed 
an electron spin detector that uses a dual KF setup derived 
from the residual LRT test. Under the constraints of a small 
sampling frequency and observation time window, the dual 
KF detector out-performs the post-FM energy detector. 
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