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� Introduction

Detection and classi�cation arise in signal processing problems whenever a decision is to be made
among a �nite number of hypotheses concerning an observed waveform� Signal detection algo�
rithms decide whether the waveform consists of �noise alone� or �signal masked by noise�� Signal
classi�cation algorithms decide whether a detected signal belongs to one or another of prespeci�ed
classes of signals� The objective of signal detection and classi�cation theory is to specify systematic
strategies for designing algorithms which minimize the average number of decision errors� This
theory is grounded in the mathematical discipline of statistical decision theory where detection and
classi�cation are respectively called binary andM �ary hypothesis testing ��	 
�� However	 signal pro�
cessing engineers must also contend with the exceedingly large size of signal processing datasets	
the absence of reliable and tractible signal models	 the associated requirement of fast algorithms	
and the requirement for real time imbedding of unsupervised algorithms into specialized software
or hardware� While ad hoc statistical detection algorithms were implemented by engineers before
���	 the systematic development of signal detection theory was �rst undertaken by radar and
radio engineers in the early ����s ���	����

This chapter provides a brief and limited overview of some of the theory and practice of signal
detection and classi�cation� The focus will be on the Gaussian observation model� For more details
and examples see the cited references�

� Signal Detection

Assume that for some physical measurement a sensor produces an output waveform x � fx�t� �
t � ��� T �g over a time interval ��� T �� Assume that the waveform may have been produced by
ambient noise alone or by an impinging signal of known form plus the noise� These two possibilities
are called the null hypothesis H and the alternative hypothesis K	 respectively	 and are commonly
written in the compact notation�

H � x � noise alone

K � x � signal � noise�

The hypothesesH andK are called simple hypotheses when the statistical distributions of x underH
andK involve no unknown parameters such as signal amplitude	 signal phase	 or noise power� When
the statistical distribution of x under a hypothesis depends on unknown �nuisance� parameters the
hypothesis is called a composite hypothesis�

To decide between the null and alternative hypotheses one might apply a high threshold to
the sensor output x and make a decision that the signal is present if and only if the threshold is
exceeded at some time within ��� T �� The engineer is then faced with practical question of where to
set the threshold so as to ensure that the number of decision errors is small� There are two types of
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error possible� the error of missing the signal �decide H under K �signal is present�� and the error
of false alarm �decide K under H �no signal is present��� There is always a compromise between
choosing a high threshold to make the average number of false alarms small versus choosing a low
threshold to make the average number of misses small� To quantify this compromise it becomes
necessary to specify the statistical distribution of x under each of the hypotheses H and K�
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Figure �� The receiver operating characteristic �ROC� curve describes the tradeo� between max�
imizing the power PD and minimizing the probability of false alarm PFA of a test between two
hypotheses H and K� Shown is the ROC curve of the LRT �energy detector� which tests between
H � x � complex random variable with variance �� � �	 versus K � x � complex random variable
with variance �� �  ��dB variance ratio��

��� The ROC Curve

Let the aforementioned threshold be denoted �� De�ne the K decision region RK � fx � x�t� �
�� for some t � ��� T �g� This region is also called the critical region and simply speci�es the
conditions on x for which the detector declares the signal to be present� Since the detectors makes
mutually exclusive binary decisions the critical region completely speci�es the operation of the
detector� The probabilities of false alarm and miss are functions of � given by PFA � P �RK jH� and
PM � ��P �RK jK� where P �AjH� and P �AjK� denote the probabilities of arbitrary event A under
hypothesis H and hypothesis K	 respectively� The probability of correct detection PD � P �RK jK�
is commonly called the power of the detector and PFA is called the level of the detector�

The plot of the pair PFA � PFA��� and PD � PD��� over the range of thresholds �� � � ��
produces a curve called the receiver operating characteristic �ROC� which completely describes the
error rate of the detector as a function of � �Fig� ��� Good detectors have ROC curves which
have desirable properties such as concavity �negative curvature�	 monotone increase in PD as PFA
increases	 high slope of PD at the point �PFA� PD� � ��� ��	 etc� ��� For the energy detection
example shown in Fig� � it is evident that regardless of the actual energy �� an increase in the rate
of correct detections PD can be bought only at the expense of increasing the rate of false alarms






PFA� Simply stated	 the job of the signal processing engineer is to �nd ways to test between K

and H which push the ROC curve towards the upper left corner of Fig� � where PD is high for low
PFA� this is the regime of PD and PFA where reliable signal detection can occur�
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Figure 
� Eight members of the family of ROC curves for the LRT �energy detector� which tests
between H � x � complex random variable with variance �� � �	 versus composite K � x � complex
random variable with variance �� � �� ROC curves shown are indexed over a range ��dB	 
�dB�
of variance ratios in equal �dB increments� ROC curves approach a step function as variance ratio
increases�

��� Detector Design Strategies

When the signal waveform and the noise statistics are fully known the hypotheses are simple and an
optimal detector exists which has a ROC curve that upper bounds the ROC of any other detector	
i�e� it has the highest possible power PD for any �xed level PFA� This optimal detector is called the
most powerful �MP� test and is speci�ed by the ubiquitous likelihood ratio test described below�
In the more common case where the signal and�or noise are described by unknown parameters	 at
least one hypothesis is composite and a detector has di�erent ROC curves for di�erent values of the
parameters �see Figure 
�� Unfortunately	 there seldom exists a uniformly most powerful detector
whose ROC curves remain upper bounds for the entire range of unknown parameters� Therefore	
for composite hypotheses other design strategies must generally be adopted to ensure reliable
detection performance� There are a wide range of di�erent strategies available including� Bayesian
detection �� and hypothesis testing ���	 min�max hypothesis testing �
�	 CFAR detection ��� and
similar	 unbiased hypothesis testing ���	 invariant hypothesis testing ��	 ��	 sequential detection ����	
simultaneous detection and estimation ����	 and non�parametric detection ��
�� Detailed discussion
of these strategies is outside of the scope of this chapter� However	 all of these strategies have a
common link� their application produces one form or another of the likelihood ratio test�
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��� Likelihood Ratio Test

Here we introduce an unknown parameter � to simplify the upcoming discussion on composite
hypothesis testing� De�ne the probability density of the measurement x as f�xj�� where � belongs
to a parameter space �� It is assumed that f�xj�� is a known function of x and �� We can now
state the detection problem as the problem of testing between

H � x � f�xj��� � � �H ���

K � x � f�xj��� � � �K � �
�

where �H and �K are non�empty sets which partition the parameter space into two regions� Note
it is essential that �H and �K be disjoint ��H � �K � �� so as to remove any ambiguity on the
decisions	 and exhaustive ��H � �K � �� to ensure that all states of nature in � are accounted
for� Let a detector be speci�ed by a critical region RK � Then for any pair of parameters �H � �H

and �K � �K the level and power of the detector can be computed by integrating the probability
density f�xj�� over RK

PFA �

Z
x�RK

f�xj�H�dx� ���

and

PD �

Z
x�RK

f�xj�K�dx� ���

The hypotheses ��� and �
� are simple when � � f�H � �Kg consists of only two values and
�H � f�Hg and �K � f�Kg are point sets� For simple hypotheses the Neyman�Pearson Lemma
��� states that there exists a most powerful test which maximizes PD subject to the constraint that
PFA 	 		 where 	 is a prespeci�ed maximum level of false alarm� This test has the form of a
threshold test known as the likelihood ratio test �LRT�

L�x�
def
�

f�xj�K�

f�xj�H�

K
�
�
H


� ��

where 
 is a threshold which is determined by the constraint PFA � 	Z �

�

g�lj�H�dl � 	� ���

Here g�lj�� is the probability density function of the likelihood ratio statistic L�x�� It must also
be mentioned that if the density g�lj�H� contains delta functions a simple randomization ��� of the
LRT may be required to meet the false alarm constraint ����

The test statistic L�x� is a measure of the strength of the evidence provided by x that the
probability density f�xj�K� produced x as opposed to the probability density f�xj�H�� Similarly	
the threshold 
 represents the detector designer�s prior level of �reasonable doubt� about the
su�ciency of the evidence � only above a level 
 is the evidence su�cient for rejecting H �
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When � takes on more than two values at least one of the hypotheses ��� or �
� are composite
the Neyman Pearson lemma no longer applies� A popular but ad hoc alternative which enjoys some
asymptotic optimality properties is to implement the generalized likelihood ratio test �GLRT��

Lg�x�
def
�

max�K��K f�xj�K�

max�H��H f�xj�H�

K
�
�
H


 ���

where	 if possible	 the threshold 
 is set to attain a speci�ed level of PFA� The GLRT can be
interpreted as a LRT which is based on the most likely values of the unknown parameters �H and
�K 	 i�e� the values which maximize the likelihood functions f�xj�H� and f�xj�K�	 respectively �See
section on parameter estimation � this chapter��

� Signal Classi�cation

When	 based on a noisy observed waveform x	 one must decide among a number of possible signal
waveforms s�� � � � � sp	 p � �	 we have a p�ary signal classi�cation problem� Denoting f�xj�i� the
density function of x when signal si is present	 the classi�cation problem can be stated as the
problem of testing between the p hypotheses

H� � x � f�xj���� �� � ��

���
���

���

Hp � x � f�xj�p�� �p � �p

where �i is a space of unknowns which parameterize the signal si� As before	 it is essential that the
hypotheses be disjoint	 which ensures that ff�xj�i�g

p
i�� are distinct functions of x for all �i � �i	

i � �� � � � � p	 and that they be exhaustive	 which ensures that the true density of x is included in one
of the hypotheses� Similarly to the case of detection	 a classi�er is speci�ed by a partition of the
space of observations x into p disjoint decision regions RH�

� � � � �RHp� Only p� � of these decision
regions are needed to specify the operation of the classi�er� The performance of a signal classi�er
is characterized by its set of p misclassi�cation probabilities PM�

� ��P �x � RH�
jH��� � � � � PMp �

P �x � RHpjHp�� Unlike in the case of detection	 even for simple hypotheses	 where �i � f�ig
consists of a single point	 i � �� � � � � p	 optimal p�ary classi�ers that uniformly minimize all PMi

�s
do not exist for p � 
� However classi�ers can be designed to minimize other weaker criteria
such as average misclassi�cation probability �

p

Pp
i�� PMi

��	 worst case misclassi�cation probability
maxi PMi

�
�	 Bayes posterior misclassi�cation probability ����	 and others�
The maximum likelihood �ML� classi�er is a popular classi�cation technique which is closely

related to maximum likelihood parameter estimation� This classi�er is speci�ed by the rule

decide Hj if and only if max�j��j f�xj�j� 
 maxk max�k��k f�xj�k�� j � �� � � � � p� ���

When the signal waveforms and noise statistics subsumed by the hypotheses H�� � � � � Hp are fully
known the ML classi�er takes the simpler form�

decide Hj if and only if fj�x� 
 maxk fk�x�� j � �� � � � � p





where fk denotes the known density function of x when the k�th signal is present� For this simple
case it can be shown that the ML classi�er is an optimal decision rule which minimizes the total
misclassi�cation error probability	 as measured by the average �

p

Pp
i�� PMi

� In some cases a weighted

average �

p

Pp
i�� �iPMi

is a more appropriate measure of total misclassi�cation error	 e�g� when �i
is the prior probability of Hi	 i � �� � � � � p	

Pp
i�� �i � �� For this case	 the optimal classi�er is given

by the maximum a posteriori �MAP� decision rule ���	 �

decide Hj if and only if fj�x��j 
 maxk fk�x��k� j � �� � � � � p�

� The Linear Multivariate Gaussian Model

Assume that X is an m� n matrix of complex valued Gaussian random variables which obeys the
following linear model ����	���

X � ASB �W ���

where A	 S and B are rectangular m � q	 q � p and p � n complex matrices	 and W is an m � n

matrix whose n columns are i�i�d� zero mean circular complex Gaussian vectors each with positive
de�nite covariance matrix Rw� We will assume that n 
 m� This model is very general and	 as
will be seen in subsequent sections	 covers many signal processing applications�

A few comments about random matrices are now in order� If Z is an m�n random matrix the
mean	 E�Z�	 of Z is de�ned as the m� n matrix of means of the elements of Z	 and the covariance
matrix is de�ned as themn�mn covariance matrix of themn�� vector	 vec�Z�	 formed by stacking
columns of Z� When the columns of Z are uncorrelated and each have the same m�m covariance
matrix R	 the covariance of Z is block diagonal�

cov�Z� � R� In� ����

where In is the n� n identity matrix� For p� q matrix C and r� s matrix D the notation C�D
denotes the kronecker product which is the following pr � qs matrix�

C�D �

�
�����
C d�� C d�� � � � C d�s
C d�� C d�� � � � C d�s

���
���

���
���

C dr� C dr� � � � C drs

�
����� � ����

The density function of X has the form ����

f�X� �� �
�

�mnjRwjn
exp

�
�tr

n
�X�ASB��X�ASB�HR��w

o	
� ��
�

where jCj is the determinant and trfDg is the trace of square matrices C and D� For convenience
we will use the shorthand notation

X � Nmn�ASB�Rw � In�
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which is to be read as X is distributed as an m� n complex Gaussian random matrix with mean
ASB	 and covariance Rw � In	

In the examples presented in the next section	 several distributions associated with the com�
plex Gaussian distribution will be seen to govern the various test statistics� The complex non�
central Chi�Square distribution with p degrees of freedom and vector of non�centrality parameters
�� d� plays a very important role here� This is de�ned as the distribution of the random variable

���� d�
def
�

Pp
i�� dijzij

� �  where the zi�s are independent univariate complex Gaussian random
variables with zero mean and unit variance and where  is scalar and d is a �row� vector of positive
scalars� The complex non�central Chi�square distribution is closely related to the real non�central
Chi�square distribution with 
p degrees of freedom and non�centrality parameters �� diag��d� d���
de�ned in ���� The case of  � � and d � ��� � � � � �� corresponds to the standard �central� complex
Chi�square distribution� For derivations and details on this and other related distributions see �����

� Temporal Signals in Gaussian Noise

Consider the time sampled superposed signal model

x�ti� �
pX

j��

sjbj�ti� � w�ti�� i � �� � � � � n�

where here we interpret ti as time� but it could also be space or other domain� The temporal signal
waveforms bj � �bj�t��� � � � � bj�tn��

T 	 j � �� � � � � p	 are assumed to be linearly independent where
p 	 n� The scalar sj is a time independent complex gain applied to the j�th signal waveform� The
noise w�t� is complex Gaussian with zero mean and correlation function rw�t� �� � E�w�t�w������
By concatenating the samples into a column vector x � �x�t��� � � � � x�tn��

T the above model is
equivalent to�

x � Bs� w� ����

where B � �b�� � � � � bp�	 s � �s�� � � � � sp�
T � Therefore the density function ��
� applies to the trans�

pose xT with Rw � cov�w�	 m � q � �	 and A � ��

��� Signal Detection� Known Gains

For known gain factors si	 known signal waveforms bi	 and known noise covariance Rw	 the LRT ��
is the most powerful signal detector for deciding between the simple hypotheses H � x � Nn���Rw�
versus K � x � Nn�Bs�Rw�� The LRT has the form

L�x� � exp
�
�
  Re

n
xHR��w Bs

o
� sHBH

R
��
w Bs

	 K
�
�
H


� ����

This test is equivalent to a linear detector with critical region RK � fx � T �x� � �g where

T �x� � Re
n
xHR��w sc

o

�



and sc � Bs �
Pp

j�� sjbj is the observed compound signal component�
Under both hypotheses H and K the test statistic T is Gaussian distributed with common

variance but di�erent means� It is easily shown that the ROC curve is monotonically increasing
in the detectability index  � sHc R

��
w sc� It is interesting to note that when the noise is white	

Rw � ��In and the ROC curve depends on the form of the signals only through the signal�to�noise

ratio �SNR�  �
ksck

�

��
� In this special case the linear detector can be written in the form of a

correlator detector

T �x� � Re



nX
i��

s�c�ti�x�ti�

�
K
�
�
H

�

where sc�t� �
Pp

j�� sjbj�t�� When the sampling times ti are equispaced	 e�g� ti � i	 the correlator
takes the form of a matched �lter

T �x� � Re



nX
i��

h�n� i�x�i�

�
K
�
�
H

��

where h�i� � s�c��i�� Block diagrams for the correlator and matched �lter implementations of the
LRT are shown in Figs� � and ��

T(x)
>
<

H

K

γRe

x(t )i

s (t )c i

Σ
i=1

n

*

Figure �� The correlator implementation of the most powerful LRT for signal component sc�ti�
in additive Gaussian white noise� For non�white noise a prewhitening transformation must be
performed on x�ti� and sc�ti� prior to implementation of correlator detector�

��� Signal Detection� Unknown Gains

When the gains sj are unknown the alternative hypothesis K is composite	 the critical region RK

depends on the true gains for p � �	 and no most powerfull test for H � x � Nn���Rw� versus
K � x � Nn�Bs�Rw� exists� However	 the GLRT ��� can easily be derived by maximizing the
likelihood ratio for known gains ���� over s� Recalling from least squares theory that mins�x �

�



T(x)
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<

H

K

γReh(i)
x(i)

Figure �� The matched �lter implementation of the most powerful LRT for signal component sc�i�
in additive Gaussian white noise� Matched �lter impulse response is h�i� � s�c ��i�� For non�white
noise a prewhitening transformation must be performed on x�i� and sc�i� prior to implementation
of matched �lter detector�

Bs�HR��w �x�Bs� � xHR��w x� xHR��w B�B
H
R
��
w B�

��
B
H
R
��
w x the GLRT can be shown to take

the form

Tg�x� � xHR��w B�B
H
R
��
w B�

��
B
H
R
��
w x

K
�
�
H

��

A more intuitive form for the GLRT can be obtained by expressing Tg in terms of the prewhitened

observations �x � R
��

�
w x and prewhitened signal waveform matrix �B � R

��

�
w B	 where R

��

�
w is the

right Cholesky factor of R��w

Tg�x� � k �B� �B
H �B��� �B

H
�xk�� ���

�B� �B
H �B��� �B

H
is the idempotent n�n matrix which projects onto column space of the prewhitened

signal waveform matrix �B �whitened signal subspace�� Thus the GLRT decides that some linear
combination of the signal waveforms b�� � � � � bp is present only if the energy of the component of x
lying in the whitened signal subspace is su�ciently large�

Under the null hypothesis the test statistic Tg is distributed as a complex central Chi�Square
random variable with p degrees of freedom	 while under the alternative hypothesis Tg is non�central
Chi�Square with non�centrality parameter vector �sHBH

R
��
w Bs� ��� The ROC curve is indexed by

the number of signals p and the non�centrality parameter but is not expressible in closed form for
p � ��

��� Signal Detection� Random Gains

In some cases a random Gaussian model for the gains may be more appropriate than the unknown
gain model considered above� When the p�dimensional gain vector s is multi�variate normal with
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zero mean and p � p covariance matrix Rs the compound signal component sc � Bs is an n�
dimensional random Gaussian vector with zero mean and rank p covariance matrix BRsB

H � A
standard assumption is that the gains and the additive noise are statistically independent� The
detection problem can then be stated as testing the two simple hypotheses H � x � Nn���Rw�
versus K � x � Nn���BRsB

H �Rw�� It can be shown that the most powerful LRT has the form

T �x� �
pX
i��

�
�i

� � �i


jv�iR

��

�
w xj�

K
�
�
H

�� ����

where f�ig
p
i�� are the non�zero eigenvalues of the matrix R

��

�
w BRsB

H
R
�H

�
w and fvig

p
i�� are the

associated eigenvectors� Under H the test statistic T �x� is distributed as complex non�central
Chi�square with p degrees of freedom and non�centrality parameter vector ��� dH� where dH �
������ � ���� � � � � �p��� � �p��� Under the alternative hypothesis T is also distributed as non�
central complex Chi�square	 however with non�centrality vector ��� dK� where dK are the non�zero
eigenvalues of BRsB

H � The ROC is not available in closed form for p � ��

��� Signal Detection� Single Signal

We obtain a uni�cation of the GLRT for unknown gain and the LRT for random gain in the case
of a single impinging signal waveform� B � b�	 p � �� In this case the test statistic Tg in ��� and
T in ���� reduce to the identical form and we get the same detector structure

���xHR��w b�

����
bH� R

��
w b�

K
�
�
H


�

This establishes that the GLRT is uniformly most powerfull over all values of the gain parameter
s� for p � �� Note that even though the form of the unknown parameter GLRT and the random
parameter LRT are identical for this case	 their ROC curves and their thresholds � will be di�erent
since the underlying observation models are not the same� When the noise is white the test simply
compares the magnitude squared of the complex correlator output

Pn
i�� b

�
�
�ti�x�ti� to a threshold

��

� Spatio	Temporal Signals

Consider the general spatio�temporal model

x�ti� �
qX

j��

aj

pX
k��

sjkbk�ti� � w�ti�� i � �� � � � � n�

This model applies to a wide range of applications in narrowband array processing and has been
thoroughly studied in the context of signal detection in ����� The m�element vector x�ti� is a
snapshot at time ti of the m�element array response to p impinging signals arriving from q dif�
ferent directions� The vector aj is a known steering vector which is the complex response of the
array to signal energy arriving from the j�th direction� From this direction the array receives

��



the superposition
Pp

k�� sjkbk of p known time varying signal waveforms bk � �bk�t��� � � � � bk�tn��T 	
k � �� � � � � p� The presence of the superposition accounts for both direct and multipath arrivals and
allows for more signal sources than directions of arrivals when p � q� The complex Gaussian noise
vectors w�ti� are spatially correlated with spatial covariance cov�w�ti�� � Rw but are temporally
uncorrelated cov�w�ti�� w�tj�� � �	 i �� j�

By arranging the n column vectors fx�ti�g
n
i�� in an m � n matrix X we obtain the equivalent

matrix model

X � ASB
H �W�

where S � �sij� is a q � p matrix whose rows are vectors of signal gain factors for each di�erent
direction of arrival	 A � �a�� � � � � aq� is an m � q matrix whose columns are steering vectors for
di�erent directions of arrival	 and B � �b�� � � � � bp�

T is a p�n matrix whose rows are di�erent signal
waveforms� To avoid singular detection it is assumed that A is of rank q	 q 	 m	 and that B is of
rank p	 p 	 n� We consider only a few applications of this model here� For many others see �����

��� Detection� Known Gains and Known Spatial Covariance

First we assume the gain matrix S and the spatial covariance Rw are known� This case is only
relevant when one knows the direct path and multipath geometry of the propagation medium
�S�	 the spatial distribution of the ambient �possibly coherent� noise �Rw�	 the q directions of the
impinging superposed signals �A�	 and the p signal waveforms �B�� Here the detection problem is
stated in terms of the simple hypothesesH �X � Nnm���Rw�In� versusK �X � Nnm�ASB�Rw�
In�� For this case	 the LRT �� is the most powerful test and	 using ��
�	 has the form

T �x� � Re
�
tr
n
A
H
R
��
w XB

H
S
H
o	 K

�
�
H

��

Since the test statistic is Gaussian under H and K the ROC curve is of similar form to the ROC
for detection of temporal signals with known gains�

Identifying the quantities �X � R
�
�

�
w X and �A � R

��

�
w A as the spatially whitened measurement

matrix and spatially whitened array response matrix	 respectively	 the test statistic T can be
interpreted as a multivariate spatio�temporal correlator detector� In particular	 when there is only
one signal impinging on the array from a single direction then p � q � �	 �A � �a a column vector	
B � bT a row vector	 S � s a complex scalar	 and the test statistic becomes

T �x� � Re
n
�aH �s �X �t b

� s�
o

� Re

��
�s�

mX
j��

�a�j

nX
i��

b��ti��xj�ti�

��
� �

In the above the multiplication notation �s and �t is used to simply emphasize the respective matrix
multiplication operations �correlation� which occur over the spatial domain and the time domain� It
can be shown that the ROC curve monotonically increases in the detectability index  � naHR��w a�
ksbk��

��



��� Detection� Unknown Gains and Unknown Spatial Covariance

By assuming the gain matrix S and Rw to be unknown the detection problem becomes one of
testing for noise alone against noise plus p coherent signal waveforms	 where the waveforms lie in
the subspace formed by all linear combinations of the rows of B but are otherwise unknown� This
gives a composite null and alternative hypothesis for which the generalized likelihood ratio test can
be derived by maximizing the known�gain likelihood ratio over the gain matrix S� The result is the
GLRT ����

Tg�x� �

����AH   R
��

K A

�������AH  R
��
H A

���
K
�
�
H

��

where j � j denotes the determinant	  RH � �

n
XX

H is a sample estimate of the spatial covariance

matrix using all of the snapshots	 and
  RK � �

n
X�In � B

H �BBH ���B�XH is the sample estimate
using only those components of the snapshots lying outside of the row space of the signal wave�
form matrix B� To gain insight into the test statistic Tg consider the asymptotic convergence

of Tg as the number of snapshots n goes to in�nity� By the strong law
  RK converges to the

covariance matrix of X�In �B
H �BBH ���B�� Since In �B

H �BBH ���B annihilates the signal com�
ponent ASB	 this covariance is the same quantity R	 R 	 Rw	 under both H and K� On the
other hand	  RH converges to Rw under H while it converges to Rw �ASBBH

S
H
A
H under K�

Hence when strong signals are present Tg tends to take on very large values near the quantity�
jAH

R
��
Aj
	
�
�
jAH �Rw �ASBBH

S
H
A
H ���AH j

	
� ��

The distribution of Tg under H �K� can be derived in terms of the distribution of a sum
of central �non�central� complex Beta random variables� See ���� for discussion of performance
and algorithms for data recursive computation of Tg� Generalizations of this GLRT exist which
incorporate non�zero mean ���	 ���


 Signal Classi�cation

Typical classi�cation problems arising in signal processing are� classifying an individual signal wave�
form out of a set of possible linearly independent waveforms	 classifying the presence of a particular
set of signals as opposed to other sets of signals	 classifying among speci�c linear combinations of
signals	 and classifying the number of signals present� The problem of classi�cation of the number
of signals	 also known as the order selection problem	 is treated elsewhere in this chapter �Djuric!��
While the spatio�temporal model could be treated in analogous fashion	 for concreteness we focus
on the case of the Gaussian temporal signal model �����

	�� Classifying Individual Signals

Here it is of interest to decide which one of the p scaled signal waveforms s�b�� � � � � spbp are present
in the observations x � �x�t��� � � �x�tn��T � Denote by Hk the hypothesis that x � skbk � w� Signal
classi�cation can then be stated as the problem of testing between the following simple hypotheses

H� � x � s�b� � w

�




���
���

���

Hp � x � spbp � w

For known known gain factors sk	 known signal waveforms bk 	 and known noise covariance Rw	
these hypotheses are simple	 the density function f�xjsk� bk� � Nn�skbk �Rw� under Hk involves no
unknown parameters and the maximum likelihood classi�er ��� reduces to the decision rule

decide Hj if and only if j � argmink�������p�x� skbk�
H
R
��
w �x� skbk� � ����

Thus the classi�er chooses the most likely signal as that signal sjbj which has minimum normalized
distance from the observed waveform x� The classi�er can also be interpreted as aminimum distance
classi�er which chooses the signal which minimizes the Euclidean distance k�x� sk�bkk between the

prewhitened signal �bk � R
��

�
w bk and the prewhitened measurement �x � R

��

�
w x�

Written in the minimum normalized distance form	 the ML classi�er appears to involve non�
linear statistics� However	 an obvious simpli�cation of ���� reveals that the ML classi�er actually
only requires computing linear functions of x

decide Hj if and only if j � argmaxk�������p

n
Re

�
xHR��w bk sk

	
� �

�
jsk j

� bHk R
��
w bk

o
�

Note that this linear reduction only occurs when the covariances Rw are identical under each Hk	
k � �� � � � � p� In this case the ML classi�er can be implemented using prewhitening �lters followed
by a bank of correlators or matched �lters	 an o�set adjustment	 and a maximum selector �Fig� ��

An additional simpli�cation occurs when the noise is white	 Rw � In	 and all signal energies
jskj�kb

H
k k

� are identical� the classi�er chooses the most likely signal as that signal bj�ti�sj which is
maximally correlated with the measurement x�

decide Hj if and only if j � argmaxk�������pRe �sk
Pn

i�� b
�
k�ti�x�ti���

The decision regions RHk
� fx � decide Hkg induced by ���� are piecewise linear regions	 known

as Voronoi cells Vk 	 centered at each of the prewhitened signals sk�bk� The misclassi�cation error
probabilities PMk

� � � P �x � RHk
jHk� � � �

R
x�Vk

f�xjHk�dx must generally be computed by
integrating complex multivariate Gaussian densities f�xjHk� � Nn�skbk�Rw� over these regions�
In the case of orthogonal signals biR

��
w bj � �	 i �� j	 this integration reduces to a single integral of

a univariate N��k� k� density function times the product of p� � univariate N���� i� cumulative
distribution functions	 i � �� � � � � p� i �� k	 where k � bHk R

��
w bk � Even for this case no general closed

form expressions for PMk
is available� However	 analytical lower bounds on PMk

and on average
missclassi�cation probability �

p

Pp
k�� PMk

can be used to qualitatively assess classifer performance
�����

	�� Classifying Presence of Multiple Signals

We next treat the problem where the signal component of the observation is the linear combination
of one of J hypothesized subsets Sk	 k � �� � � � � J 	 of the signal waveforms b�� � � � � bp� Assume that
subset Sk contains pk signals and that the Sk	 k � �� � � � � J 	 are disjoint	 i�e� they do not contain

��
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Figure � The ML classi�er for classifying presence of one of p signals sj�ti�
def
� sjbj�ti�	 j � �� � � � � p	

under additive Gaussian white noise� dj � ��

�
jsj j

� kbjk
� and jmax is index of correlator output

which is maximum� For non�white noise a prewhitening transformation must be performed on x�ti�
and the bj�ti��s prior to implementation of ML classi�er�

��



any signals in common� De�ne the n � pk matrix Bk whose columns are formed from the subset
Sk� We can now state the classi�cation problem as testing between the J composite hypotheses

H� � x � B�s� � w� s� � Cl p�

���
���

���

HJ � x � BJsJ � w� sJ � Cl pJ

where sk is a column vector of pk unknown complex gains�
The density function under Hk 	 f�xjsk�Bk� � Nn�Bksk �Rw�	 is a function of unknown parame�

ters sk and therefore the ML classi�er ��� involves �nding the largest among maximized likelihoods
maxsk f�xjsk �Bk�	 k � �� � � � � J � This yields the following form for the ML classi�er�

decide Hj if and only if j � argmink�������J�x�Bk sk�
H
R
��
w �x�Bk sk��

where  sk �
h
B
H
k R

��
w Bk

i��
B
H
k R

��
w x is the maximum likelihood gain vector estimate� The decision

regions are once again piecewise linear but with Voronoi cells having centers at the the least squares
estimates of the hypothesized signal components Bk sk	 k � �� � � � � J �

Similarly to the case of non�composite hypotheses considered in the previous subsection	 a
simpli�cation of ���� is possible

decide Hj if and only if j � argmaxk�������Jx
H
R
��
w Bk �B

H
k R

��
w Bk�

��
B
H
k R

��
w x

De�ning the prewhitened versions �x � R
��

�
w x and �Bk � R

��

�
w Bk of the observations and the k�th

signal matrix	 the ML classi�er is seen to decide that the linear combination of the pj signals in Hj

is present when the length k �Bj � �B
H

j
�Bj �

�� �B
H

j � �xk of the projection of �x onto the j�th signal space

�colspanf �Bjg� is greatest� This classifer can be implemented as a bank of p adaptive matched
�lters each matched to one of the least squares estimates �Bk sk	 k � �� � � � � p	 of the prewhitened
signal component� Under any Hi the quantities xHR��w Bk�B

H
k R

��
w Bk���R

��
w x	 k � �� � � �J 	 are

distributed as complex non�central Chi�square with pk degrees of freedom� For the special case of
orthogonal prewhitened signals biR

��
w bj � �	 i �� j	 these variables are also statistically independent

and PMi
can be computed as a one dimensional integral of a univariate non�central Chi�square den�

sity times the product of J�� univariate non�central Chi�square cumulative distribution functions�

�
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