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Abstract 

W e  consider a geometric coverage process consist- 
ing of a random number of disks, or grains, having 
random radii and positions in the plane. Our  ob- 
jective is granulometry: estimation of a parameter 
of the disk radius distribution, which is important in 
diverse applications such bio-assay, balistics, and nu -  
merical taxonomy. These disks are only incompletely 
observed due t o  mutual  occlusion, spatial blurring 
and additive noise. W e  use a measurement chan- 
nel paradigm t o  derive a n  expectation-maximization 
(EM) type estimation algorithm and a distortion-rate 
lower bound on estimation error. 

I. INTRODUCTION 
Here we treat a problem of parametric estimation 

from an image consisting of a Boolean process with 
spatial blurring and additive Gaussian noise. This. 
type of geometric model is pertinent to many ap- 
plications. The first such application was described 
in 1955 by Picinbono [lo] for modeling the trans- 
parency of a photographic film composed of silver 
grains of random diameter for which the number and 
spatial positions of these grains are given by a ho- 
mogeneous Poisson process. The model introduced 
here extends that of [lo] by incorporation of a spa- 
tial point spread function and an additive noise into 
the measurements. 

11. THE BOOLEAN MODEL 

Let 0 = [@I, .  . . , @,IT be a vector of random vari- 
ables taking values 6 = [el , . . . , in Rp and having 
a joint density fs(6).  Our goal is to develop a MAP 
estimator of 0 and to specify lower bounds on the 
mean square estimation error (MSE). Estimation of 
0 is based on an observed image Y = {Y(u) : U E I }  
composed of an signal image S and a noise image 
W .  Here I = [-a,a] x [-a,u] denotes the sup- 

port of the image and 111 = 4u2 denotes its area. 
The signal S is generated by a marked point pro- 
cess d M  = { d M ( u )  : U E I }  whose distribution de- 
pends on @. The process d M  creates N disks cen- 
tered at positions { t i } N  in I and with radii {Ri}E1, 
Ri E ( 0 , ~ ) .  Conditioned on 0 = 0 and N ,  {Ui}cl 
and {Ri}El are assumed mutually independent and 
i.i.d. with marginal densities fulo(ul6) = 1/]11 and 
f R p ( r l 6 ) ,  respectively. Here N is a Poisson r.v. with 
conditional rate E[N(O] = E[N]  = A > 0 and in- 
tensity X = A / ( I (  which are indpendent of @. Un- 
der these assumptions the joint distribution of d M  is 
closed form and estimation of 0 from d M  is easily 
studied [8], [12]. This is no longer true when additive 
noise and blurring are introduced into the observa- 
tions giving rise to a model: 

Y(u)  = S(u) + W ( u ) ,  U E I (1) 

where W is a spatially white zero mean Gaussian 
noise with spectral power level N0/2, and S(U)  is the 
blurred Boolean superposition 

S(U)  = h(u) * g ( u ;  d M ) .  (2) 

where h(u) is a spherically symmetric point spread 
function and g ( u ,  d M )  = 1 -T(u) is the opacity func- 
tion introduced by Picinbono 

N 
g ( u ; d M )  = n D ( y) , 

i= 1 
(3) 

where D(u)  is the indicator function of a disc of ra- 
dius 1 centered at the origin. Note that g ( u ;  dA4) is a 
binary function which is non-zero only if there exists 
at least one disc covering the point U .  In Figure 5 
three realisations of the images S and Y are shown 
for a linear radial density-fRp(rle) whose slope is 
controlled by 0 E [ - 1,1] 
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The Boolean model (3) is also called a "cover- 
age process" model [5] and has been used for many 
applications in the life sicences, stereology, balistics 
[3]. The problem studied in this paper is known as 
granulometry [ll] and consists of estimating an at- 
tribute of the density f ~ p ,  e.g. the mean surface 
area nE[R:IO] of the disks. The additive noise and 
blurring model (l), account for the effects of physical 
transcription of the image, e.g. electronic, mechani- 
cal, or chemical recording processes. Unfortunately, 
there is no analytical representation of the joint dis- 
tribution of Y,O and thus optimal estimation 0 is 
much more difficult than for the case of direct obser- 
vation of dM.  

111. COMPOSITE CHANNEL REPRESENTATION 
The measurements Y are related to the param- 

eters 0 through the conditional density fylo = 
{fyle(yle)},,, or equivalently through the log- 
likelihood function Z(e) = lnfyls(yle). Since 0 
is a random vector of parameters we can associate 
f y p  with transition probabilities of a measurement 
channel C. Let X be an arbitrary random vari- 
able. Then from the Bayes identity: fyp(yl0) = sx fylx,o(ylz, O)fxp(zle)dz. When X satisfies 
fylx,e(glz,e) = independent of 8, the Bayes iden- 
tity affirms that C is decomposable into a cascade of 
two channels C1 and C2 whose transition probabili- 
ties are, respectively, f x l ~  et f ~ l x .  In the language 
of the EM algorithm, discussed below, X is a com- 
plete data set that carries more information about 0 

Fig. 1. (a) Statistical representation of Y as the output of C 
with input 0. ( b )  Decomposition of C into C1 and Cz. 

is not computable in closed form. We propose a lin- 
ear approximation which was first introduced in [l] 
and consists of making a first order approximation 
to &(Ole), i.e. we replace the non-linear conditional 
mean estimator E[ln fxp(X(B)IY, 0 = $1 by the lin- 
ear least mean square error estimator of In fXlo(Xl0) 
given Y, O = 3. 

Under the assumption of large I this approxima- 
tion takes the form [6]: 

CO 

Q'"(el3) = 6 Jd (1 + ' r2q(Y,8) ) fRl@('r le )  In fRl@('rle)dr 

q(Y,$) = 

dw FTe(w) 
IH(w)l2@T(wle) + N / 0 2  (1) a natural choice for X is the marked point pro- H(o)TXe-"xmz(e) - 

than does Y [9]. Now, in the context of the model 

cess dM which gives the decomposition illustrated in 
Figure 1. where FT,(w) is the 2D Fourier transform of the 

residual error e(.) = Y(u) - E[Y(u)l$] over U E 
I ,  and @p~(uJ$) is the 2D Fourier transform of 

The EM algorithm takes the form c o v ( ~ ( u ) , T ( ~ ) l e )  over U E I .  
Initialization: eo, Ic = 0 When the radial density is 

exponential, f R p ( r l e )  I =  Oe-er, T > 0, e E (0,~) 
we find an analytical form for the M-step of the ap- 
proximate EM algorithm obtained by replacing Q in 

IV. AN EM-TYPE MAP ESTIMATOR 

For k = 1 ,  ... 
. [E Step] Estimate 

&(e, e k )  = E[ln fxls(&p)ly, o = eki (4) (5) by QW 

[M Step] Maximize 

ek+l = argmaxe { &(el@) + In fo(e)} (5) 
The above equation is obtained under the assumption 

The exact EM algorithm is impossible to imple- 
ment sin5e 
the expectation &(el$) = E[ln fxlo(Xle)(Y, 0 = e] 

of a (impropkr) diffuse prior density of 0. When the 
radial density is linear, as in Fig. 5, the M-step is not 
explcit and must be found numerically. In Figure 2 
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the likelihood function trajectory In f(YIBk) is illus- 
trated for several realizations of Y, 0, a linear radial 
density, and 0 uniform over [-1,1]. Note that con- 
vergence is quite rapid in each case. The bias (0.03) 
and variance (0.1)2 of the EM algorithm correspond 
to approximately 10% improvement over a standard 
non-linear least squares fit of the model covariance 
function to  the sample covariance function. 

4.35 7i==-l 
4.1 - 

-0.15 - 

4.5 - 

O 5 10 15 20 B 30 
-0.75 I 

Fig. 2. Comparison of the likelihood trajectories for several 
realizations of Y,  0 for the same blur function and noise 
power as in Fig. 5 and 6' = 0.5. 

V. A SHANNON LOWER BOUND ON MSE 

For an estimator 6 = [61, . . . , 6,1T define the to- 
tal mean square error MSE = CF=lE[(Oi - 6i)2]. 
Let V and 2 be two random variables with mutual 
information I (V;  2) = E[ln Pzlv(Z(V)/Pz(Z)]. Let 
p(V, 2) be the squared distance (distortion) between 
the source V and an estimate p ( Z )  based on 2. 
Shannon theory asserts that for any upper bound d 
on p = E[@, Z)]  the capacity C = suppv I(V, 2) of 
the channel with input V and output Z must be at 
least as large as R,(d) = infp,,,:pg I(V, Z ) ,  which is 
called the rate-distortion function. R,(d) is strictly 
decreasing over d < d,,, where d,,, is the sum of 
the a priori variances of the components of V. Thus, 
defining the inverse R;l(o) we have the lower bound 

d = MSE 2 min{d,,,, RF1(C)} (6) 

To this lower bound the Shannon bound [2] can be 
applied R,(d) 5 H(V)  - 3 ln(27rde), where H ( V )  = 
E[- In PV (V)] .  Furthermore, Shannon's data pro- 
cessing theorem asserts that if C is the capacity of a 

channel composed of a cascade of two channels with 
capacities C1 and C2 [4], then 

C 5 min(C1, (72). 

Upon application of these two Shannon bounds to (6) 
we obtain the following lower bound 

(7) 

Now identifying the data Y = Z and the parameters 
B = V in (7)  and using the decomposition C = C10C2 
illustrated in Fig. 1 we can evaluate (7) once C1 and 
C2 are available. 

A .  Point Process Channel CI 
Using the fact that among all point processes d M  

with the same intensity the Poisson process has high- 
est entropy we obtain a bound on C1 similar to the 
expression obtained in [8, Lemma 41 

C; is simply the capacity of a purely Poisson channel 
which is equal to the maximum mean Kullback dis- 
tance between the conditional density fRl0 ( r p )  and 
the marginal f~(r). Thus C1 = 0 when fRlo(rl6) 
is constant in B and thus identical to f~(r). In this 
case neither dM nor Y carry any information about 
0. For the case of a linear radial density f ~ p ( r l B ) ,  
B E [-1,1], the source density fo which attains capac- 
ity C: is easily determined and has an approximately 
quadratic form, as indicated in Figure 3. The result- 
ing capacity is the linearly increasing function of A: 
CT = Aa where a M 0.0698. 

B. Continuous Process Channel C, 
Using the fact that among all continuous processes 

Y with fixed covariance function the Gaussian pro- 
cess has highest entropy we obtain the following 
bound [6] 

where @s(w) is the power spectral density of the sig- 
nal component S.  
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over [-1, 13 and the same values for I ,  No,  and ~7 

as used in Figure 5. Recall that it is the minimum 
of C; and C,* that determine the Shannon bound 
(7). Notice that C; increases in A: estimation 0 
from direct measurements dM always benefits from 
an increase in the number of points N .  On the other 
hand, Cz takes a maximum value, decaying to zero as 
X becomes large: estimates of 0 based on degraded 
measurements Y suffer from an increasing number of 
occlusions that must occur as the number of disks be- 
come large. This degradation for large X is to be con- 
trasted with the case of a linear superposition model 
studied in [7]. 

The Shannon bound as illustrated in Figure 4 sep- 
arates estimator performance into two X operating 

region, the other for C; < C;, Gaussian noise lim- 
ited region. There are thus three regions X E [O,O.ll, 

Fig. 3. The density f& that maximises the mutual infonna- 
tion I ( Q , d M )  and attains capacity for  the case of linear regions, One for c; < ‘,*> the Poisson noise limited 
f R l e a s  shown in Figure 5. 

X E (0:1,0.65] and X > 0.65: the only region-where 
Define the fonction P(u)  = (l - IIuII/2)2tX and its the Poisson limited region is attainable from mea- 

surements y is for values E (0.1,0.65]. The bound- Fourier transform ‘ ( l l W l l ) *  By making a 
to polar coordinate transformation in (8) we obtain 
the simplification 

aries of the regions depend on 111, No, C7 and fo. 

where, Mo(t) = E[ete] is the characteristic function 
of fa and 

Me(-7~x/3) - Mg(-?rX/6)e-TA/3] . 

“0 0.2 0.4 0.6 0.8 1 

Fig. 4. Cy and C; as a function of the intensity X for  linear 
f R l e  shown in Figure 5 Here fe(0)  is uniform o n  [-1,1]. 

In Figure 4, C; and C,* are plotted as a function 
of the intensity X = A/III for uniform density fo(6) 
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Fig. 5. Three realisations of the images S et Y for linear 
mdial densities ( in  m m )  shown in the first column. Image 
size i s  20 x 20 mm and intensity increases from black t o  
white, The intensity X = 0.5 corresponds to  an average 
of A = 200 discs in each image. I n  the third column the 
SNR i s  3dB and the PSF h(u) is a symmetric Gaussienne 
of standard width 2 * U = 0.66mm. 

Y pour 8=0.8 
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