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Abstract 
Three methods of detecting road edges in mill imeter- 

waue radar images  are presented i n  this paper. All o f  
t h e m  are based o n  deformable template priors and  ran- 
d o m  field likelihoods. T h e  f i r s t  method i s  formulated in 
a Bayes ian  sett ing and  employs  a n  adaptive M A P  esti- 
mate .  T h e  second method i s  a modification of the f i r s t ,  
using a novel weighting scheme.  T h e  third method i s  based 
o n  a three-region indicator ma t r i x  which is used to  im-  
pose the  non-linear constraints implicit  o n  road geometry  
via addition of a s u m  of quasi-quadratic ma t r i x  f o r m s  to  
the log-normal likelihood. Unlike the  f i r s t  two methods,  
tha t  employ  the  Metropolis algorithm t o  f ind  the  optimal 
road edges, the third method uses  a deterministic recursive 
scheme designed to  f ind  the  optimal indicator matr ix .  Ex- 
perimental results are presented to show the advantages of 
these methods.  

1 Introduction 

In this paper, we deal with the problem of locating 
curved and parallel road edges in radar da ta  that  are ac- 
quired from an imaging platform mounted on a stationary 
automobile. T h e  goal of road detection algorithms is to  
find the road edges without an existing model of road ge- 
ometry, and d o  so in situations where there may be a great 
deal of clutter in the images due t o  cars on the road, com- 
plicated backscatter from off-road structures, etc. 

Many prior detection algorithms that  are applicable 
for structured edges such as road boundaries are edge- 
based and threshold the image gradient magnitude to  de- 
tect edges. The  performance of these edge detection al- 
gorithms is good when the images have uniform regions 
with good separation between the regions. However, in 
real road scenes it is difficult to  select a threshold which 
eliminates noise edges without also eliminating many of 
the road points of interest. This problem is particularly 
severe in C band, L band or X band radar images (see 
Fig.l(b) and Fig.a(b)), which have both a lot of texture 
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and low contrast’. Therefore] the conventional edge detec- 
tion algorithms are not suitable for our problem. 

In order to  overcome this difficulty] we make use of de- 
formable template approaches which do not require thresh- 
olding the image gradient magnitudes. This allows weak 
edge points which are consistent with a prior geometric 
model of possible road boundary shapes to  overrule strong 
edge points which are not consistent with the prior geo- 
metric model. 

In this paper, we will present three different methods 
for this edge detection problem. All of them are based on 
deformable template priors[l] and random field likelihoods 
similar to  [ 2 ] .  

2 Detection Algorithms 

In all the three methods, the road edges in the radar 
image are extracted by identifying “homogeneous” regions 
in the image. The  road boundaries separate the image 
into three uniform regions which associate with the road 
surface, the left side of the road, and the right side of the 
road. 

Let C = {(z, y ) ]  0 5 z 5 xmarl  0 5 y 5 y m a x }  denote 
the Cartesian coordinates of the pixels of the millimeter- 
wave image Z. The radar imaging likelihood is described 
using the conditional probability that  the random field 2 
takes on a realization t (corresponding t o  the radar obser- 
vation), given that  the r0a.d edge information is known, 

P ( Z  = z I road g e o m e t r y )  = 

where pry ,&  denote the mean and variance of the re- 
gion where the pixel (z,y) lies. Obviously, this imaging 
likelihood is log-normal distributed[3]. 

2.1 Method 1. Adaptive Log-normal 
Met hod 

In almost all cases, we can assume that  a priori  knowl- 
edge regarding the shape of the road edges in an image 

In a typical millimeter-wave radar image, near-range power 
values exhibit a considerable amount of contrast and textural 
variability, whereas far range power values exhibit neither a 
considerable amount of contrast nor textural variability. 
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is available. A common shape model used in road edge 
detection algorithms assumes that  road boundaries can be 
approximated by concentric arcs on a flat ground plane. 
Such arcs, a t  least within a reasonable field of view, are well 
approximated by parabolic curves. In method 1, the road 
boundaries are parameterized as two parallel and parabolic 
curves in the form 

where parameter k is the curvature of the arc, m is the 
tangential orientation and br. ( b R )  is the offset correspond- 
ing to  the left(right) road edge. The  two road boundaries 
share the same parameters k and m. We assume the pa- 
rameters are uniformly distributed over the space R4.  

The physical characteristics of the radar imaging pro- 
cess is described by the log-normal random field model 
which is represented by Eqn.( l ) .  Thus, the road edges de- 
tection problem is posed in a Bayesian framework where 
the deformable template plays the role of a prior and the 
log-normal pdf plays the one of a likelihood. The  Max- 
imum A Posteriori(MAP) estimator is uscd t o  find thc 
optimal deformation parameter values: 

Let (pTd,  ard ,  N r d ) ,  (pit, rLt ,  N z t )  and ( p r t ,  crrt, NTt)  de- 
note the means, standard deviations and the numbers 
of pixels associated with the road, left-side and right- 
side regions, respectively. For a given parameter set 
{ k ,  m, b ~ ,  b ~ } ,  the  means and standard deviations can be 
empirically estimated from the image da ta  by a maximum 
likelihood method, 

(=,Y)E.CPd 

1 
N rd 

( P ) 2  = __ (log zzg - $ d ) 2  (4) 
( = , Y  1 EL’d 

where Crd  = { (z, y ) ,  (z, w )  E C, z 2 ;ky2 + m y  + b L ,  

2 5 $]cy2 + my + b R } .  Similarly pzt & aLt ,  p r t  & 
art can be obtained by (i)replacing Nrd in Eqn.(4) with 
N i t  and N T t ,  and (ii) replacing LTd in Eqn.(4) with 
Ltt = { (z,y), (z,y) E C, z < $ky2 + my + b ~ }  and 
Lrt = { ( x , ~ ) ,  (Z ,Y)EL,  2 > ;ky2 +-my+bR}. 

The log-normal likelihood in Eqn.(3) is modified by re- 
substituting these estimated parameters back in, thereby 
making the method adaptive, 

( I C * ,  m*,  b r ,  b;L) 
= ar max ( - N ‘ ~  log ard - N ’ ~  log alt - N‘~ log urt)  (5) 

( g , m , b L  , b R )  

The  objective function in Eqn.(5) is non-concave with 
many local maxima, hence we employ the Metropolis 
algorithm[4] with a geometric annealing schedule[5] to  per- 
form this maximization, 

1. Set i = 0, and initialize { IC(’), m(’), b(L) ,  b$’ }. 

2. Calculate 

3.  Pick { l , f i , g ~ , g ~  } at  random among all the 
possible parameter values in the neighborhood of 
{k (a ) ,m( ’ ) ,b$ ) ,  b $ ) } .  

= log P(~c(”),  m(’), b t ) ,  b ,  ( 1 )  I z = z )  

4. Calculate 1 = log ~(i, r iz,  b l ,  bR I z=z).  
5. Calculate p ( ‘ )  = exp(T), L-L(>) 

where T(‘) = Ttntt(%.E!-)(&), 
Tznri 

2.2 Method 2. Weighted Log-normal 
Met hod 

From Eqn.(5) we can see t,hat our objective is trying to  
minimize NTd log ord + N f t  log alt + Nrt  log ar t ,  i.e., trying 
t o  minimize the variances of the three regions. However, 
in the radar images, it is clear tha t  the backscatter dis- 
tribution of the road is virtually homogeneous while the 
backscatter distributions of the roadsides are much more 
complicated. Therefore, we might prefer having an even 
smaller variance in the road region at the price of having 
slightly larger variances in the roadside regions. 

In method 1, the variances are weighted proportionately 
to  the number of pixels in their respective regions. In order 
for ard to  weigh more heavily, in terms of its contribution 
t o  the likelihood, NTd would have t o  proportionately large. 
The  same is true for the other two regions as well. This 
characteristic is illustrated in Fig.2(c), where one can see 
that  the road edges detected by Method 1 yields a 3-region 

Also, the edges detected by method 1 are unduly influenced 
by bright point scatterers, particularly in far ranges where 
the contrast (difference) between the road and roadside 
regions is minimal. In fact one can see in Fig.2(c) that  
method 1 is prone to giving wrong curvature estimates (it 
estimates the road as curving right, while in reality the 
road is curving left). 

In order t o  re-enforce our a priori  belief that  road pixels 
tend to  be homogeneous (at least compared to  the pixels 
belonging to  either side of the road), and t o  overcome the 
undue influence of bright point scatterers, we propose a 
new method that  gives the region of the road a different 
weight wTd(O < wTd < 1) from those given to  the roadside 
regions. The weighted log-normal method, when coupled 

estimate in which the road is wider than necessary (actual). 
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with a penalty function a(.) ,  
results as shown in Fig.2(d). 

yields considerably better 

(k*,m*,b:,b;O 
= arg max (-P log 2 - N ' ~  log I T r t  

( k , m , b L  IbR) 

-wrdNrd log ard + log a(k ,  m, b ~ ,  b ~ ) )  (6) 

where 

2 
a(k ,  m, b L ,  b R )  = ; a W d w e d t h  x ( b R  - bL)) (7) 

2.3 Method 3. Recursive Indicator 
Matrix Method 

In both methods 1 and 2, the objective functions being 
optimized, with respect to  the deformation parameters, are 
non-concave and have many local maxima. To obtain the 
global maxima of those objective functions, we are forced 
to  employ stochastic algorithms such as Metropolis. While 
these algorithms are simple to devise and program, they 
have t o  be carefully tuned before they can be employed 
over a large class of images. To remedy this problem, 
a new three-region indicator matrix based formulation is 
presented. The  geometric constraints of the road edges im- 
posed by the deformable template are rewritten in terms 
of constraints on the indicator matrix I,. I ,  is a mn x 3 
matrix (the dimension of the radar image is m x n) and 
its p-th row [ c p l ,  cp2,  cp3] ( 0 5 p f mn - 1) corresponds 
to a pixel in the radar image. Let j = 1 , 2 , 3  denote the 
left-side, road and right-side region, respectively. If pixel 
p is in the 3-th region, then 

1 i f k = j  
0 otherwise Cpk = 

With this indicator matrix Eqn.(3) can be reformulated as 

I: = argmin 11 (I - I ~ ( I : I ~ ) - ~ I ? ) ~ ~ ~  z 11' (9) 
I ,  

The generic portion of the constraint expressed via 
Eqn.(2), namely, that  the road edges be smooth and con- 
nected, can also be expressed in terms of the indicator 
matrix I,: 

min 111, - shift(I;)l12 (10) 
I ,  

Combining Eqns.(g) and (IO), we can recast an alterna- 
tive deformable template minimization problem in terms 
of the indicator matrix I,: 

~ ~ 

2This penalty function is to prevent the detected road from 
being too narrow. Without the a(.) term, maximization of the 

the left and right road edges collapse to be the same. 
wcighted likelihood in E?n.(6) tends t o  yield estimates where 

As it stands, the objective function in Eqn.( l l )  is not 
convex w.r.t. I , ,  and hence difficult t o  minimize. However, 
we can design a recursive scheme to simplify the optimiza- 
tion, 

which is a quadratic integer optimization problem. 

3 Experilmental Results 

We have applied the three deformable template meth- 
ods described in the pretious sections to  locate curved 
road edges in actual ground-level millimeter-wave radar 
images3. Shown in Figs.l( b) and (a) are an original radar 
image and accompanying visual image (the goal of also 
displaying visual images i j  just to  give readers a clearer 
image of the ground t ruth,  in our work, however, we only 
make use of radar images to  detect road edges); the results 
obtained by applying Methods 1, 2 and 3 are shown in 
Figs.l(c), (d) and (e), respectively. As one can see, all the 
three methods give compatrable results, and indeed those 
results are very close t o  thle ground truth. In addition, to  
illustrate the improvement of Method 2 over Method 1, we 
consider another visual/radar image pair in Figs.2(a) and 
(b). For this case, the result of detecting the road bound- 
aries using method 1 is shown in Fig.P(c) and the result 
using method 2 is shown in Fig.Z(d). 

4 Concluding Remarks 

In this paper we developed three different methods for 
detecting road edges in radar images. All of them are based 
on deformable template priors, random field likelihoods, 
and Bayesian estimation. The first method is an adaptive 
MAP estimate method, tlne second method is a modified 
version of the first via a n.ovel weighting strategy and the 
addition of a penalty term.. The third method relies on an 
indicator matrix (re)formnlation of the problem ~ specif- 
ically, the rigid geometric constraints imposed by the de- 
formable template prior are replaced by some quadratic 
constraints on the indicator matrix and the original ob- 
jective function is recast in such a way that  it is recur- 
sively convex w.r.t. the iindicator matrix. The  net result 
is that  method 3 uses a deterministic iterative algorithm 
for finding the optimal road boundaries, as opposed to the 
stochastic (Metropolis) algorithms used in Methods 1 and 
2. 

Since none of the three methods makes use of the noise- 
sensitive gradient magnit.ude of the radar images, they 

3These images were all obtained from a sensor platform 
mounted on top of WOLVERINE I (a self-contained test-bed 
HMMWV). The platform contains a 77GHz FMCW radar sen- 
sor which has range and azimuthal resolution of 0.5m and lo, 
respectively. The radar's range extends out to 128m and spans 
a 64' horizontal field-of-view. 
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Figure 1: (a) Visual image,  (b) Radar image,  (c) Re- 
sul t  f rom Method 1, (d) Resul t  from Method 2 ,  and 
(e) Result from Method 3 

overcome the shortcomings of the edge-based detection al- 
gorithms. The results show that  the methods we present 
in this paper promise to be better than the edge-based 
detection algorithms, particularly, when the edge gradient 
has an unusually small SNR, or when the roadsides contain 
bright point scatterers. 

Figure 2: (a) Visual image,  (b) Radar image ,  (c)Result  
from Method  1, a n d  (d) Result  from Method  2 
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