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Proof of Proposition 4: First of all, the random variables
(i;N(m))i=1;...;K and their almost sure limits ((m; pi;K)) satisfy
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(i;N(m)� (m; pi;K))! 0 a.s. (21)

There is some intuition behind this fact. A rigorous proof follows the
lines of the proof of [15, Theorem 1, second step].

Now, the first term of the sum (21) satisfies
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Finally, the second term of the sum (21) satisfies
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see (19). But for every integer k, the term in parentheses on the
right-hand side converges to pk d�(p) by (A2). Thus,
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d�(p)= (m; p)d�(p):

Putting the pieces together, the proposition is proved.
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Convergence of Differential Entropies

Mahesh Godavarti, Member, IEEE, and Alfred Hero, Fellow, IEEE

Abstract—Calculation of the differential entropy of the limiting density
of a sequence of probability density functions (pdfs) is an interestingmathe-
matical problem and is important in asymptotic analysis of communication
systems. In such cases, it would be of interest to know if the limit of the dif-
ferential entropies , corresponding to the sequence of pdfs , is equal
to the differential entropy , of the limiting pdf . In this correspondence,
we establish sufficient conditions under which .

Index Terms—Convergence, differential entropy, probability density
function (pdf).

I. INTRODUCTION

The concept of convergence of differential entropy can be traced to
the problem of asymptotic analysis of communication systems where
either the maximum asymptotic rate of communication [4], [9], [15],
[16], [18], [19], [20], the asymptotic storage capacity [14], or the
asymptotically optimal source compression [7], [8] is considered. The
asymptotic analysis of communication systems is valid if the entropy
of the limiting density function f is equal to the limit of the entropies
of the converging density functions fn. In this correspondence, we
establish sufficient conditions for which H(fn)! H(f).

A related area where the convergence of differential entropies is
studied is that of entropy estimation [1]–[3], [10]–[13], [17]. In [2],
[12], the authors use either the Gram–Charlier expansion or expansions
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based on moments to approximate the density and hence the entropy.
In [1], [10], [13], [17] the density is estimated from a finite number of
realizations X1; . . . ; Xn of the source X and the estimate is refined
as n ! 1. An estimate of the entropy Hn is obtained from this esti-
mate of the density fn and is required to converge toH(f) as fn ! f .
The problem of entropy estimation finds application in independent
component analysis and projection pursuit. For more applications, an
overview of existing entropy estimators and the conditions on the final
density function f required for convergence see [3].

However, the problem we are looking at in this correspondence is
not of entropy estimation but that of entropy convergence where a se-
quence of random variables is converging to a final random variable and
we are interested in the convergence of the corresponding differential
entropies. Unlike in the problem described in the previous paragraph,
the entropy Hn is not a random variable but a deteriministic quantity.
Hence, the convergencewe are interested in is deteriministic rather than
stochastic.

Some conditions known for the convergence of differential entropies
are given below [5].

Proposition 1: Let fn(x) ! f(x) pointwise and let fn(x) be
bounded from above and below for all n over the support of fn(x)
then H(fn) ! H(f).

Proof: We have j log fn(x)j � A for x in the support of
fn(x) Sfn, for all n. Let Sf denote the support of f(x) and let
SfnSfn denote the set of all x such that x2Sf and x =2Sfn. Then

lim
n!1

Sf

fn(x) log fn(x)dx�
Sf

f(x) log f(x)dx

� lim
n!1

Sf

f(x) log
f(x)

fn(x)
dx

+ lim
n!1

SfnSf

f(x) log f(x)dx

+ lim
n!1

Sf

(f(x)� fn(x)) � log fn(x)dx

� lim
n!1

Sf

f(x) log
f(x)

fn(x)
dx

+ lim
n!1

SfnSf

f(x) log f(x)dx

+ lim
n!1

Sf

jf(x)� fn(x)jAdx
! 0:

The sufficient conditions given in Proposition 1 exclude the case of
converging Gaussian densities given below.

Example 1: Let

f(x) =
1p
2��

exp � x2

2�2

and

fn(x) =
1p
2��n

exp � x2

2�2n
:

If �n ! � then we can easily see that H(fn)! H(f)

Gaussian densities occur in asymptotic analysis of Rayleigh/Rician
fading channels and hence it is useful to have conditions that facilitate
analysis of such channels. In that regard, we show convergence under
weaker conditions on the converging and final density functions. We
start with the following examples.

Example 2: Consider the sequence of probability density functions
(pdfs) fn(x) defined over the real line as follows:

fn(x) =

1� 1

n
; when x 2 [0; 1]

1

nL
; when x 2 (1; 1 + Ln]

0; elsewhere

where L is a positive number not equal to 1. Then fn(x) converges
to f(x) pointwise where f(x) is the uniform distribution over the in-
terval [0; 1]. However, the differential entropy from fn(x), calledHn,
is given by

Hn =� 1� 1

n
log 1� 1

n
� 1

nLn
log

1

nLn
Ln

=� 1� 1

n
log 1� 1

n
+

1

n
logn+ logL

and, therefore, limn!1Hn = logL 6= 0 = Hf .

Example 3: Consider the sequence of pdfs fn(x) defined over the
real line as follows:

fn(x) =

1� 1

n
; when x 2 [0; 1]

L

n
; when x 2 (1; 1 + 1

L
]

0; elsewhere

where L is a positive number not equal to 1. Then fn(x) converges to
f(x) almost everywhere where f(x) is the uniform distribution over
the interval [0; 1]. The differential entropy from fn(x),Hn is given by

Hn =� 1� 1

n
log 1� 1

n
� Ln

n
log

Ln

n

1

Ln

=� 1� 1

n
log 1� 1

n
+

1

n
logn� logL

and, therefore, limn!1Hn = � logL 6= 0 = Hf .

In both the examples given above we see that convergence of pdfs
does not lead to the convergence of the corresponding differential en-
tropies. In Example 2, we see that the second moment jxj2fn(x)dx
is unbounded whereas in Example 3, we see that the pdf fn(x) itself
is unbounded. It is possible to ask the question: if we ensure that the
above two quantities are bounded then do we obtain convergence of the
differential entropies? The answer is indeed yes and is proved in Sec-
tion II. For the two examples, we also note that fn(x)j log fn(x)j�dx
for � > 1 is unbounded. We will see that limiting this quantity also en-
sures the convergence of differential entropies.

II. MAIN RESULTS

Let �P (x) denote the characteristic function over a set P defined as
�P (x) = 0 if x =2 P and �P (x) = 1 if x 2 P .

Lemma 1: Let g : CP ! R be a positive bounded function whose
region of support Sg is compact. If there exists a constant L such that
g(x)dx � L < 1=e then

g(x) log g(x)dx

� maxfjL logLj+ jL log vol(Sg)j; jL logGmjg

where Gm = sup g(x).
Proof: First

g(x) log g(x)dx � g(x) logGmdx � L logGm:
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Let g(x)dx = Ig . Consider the pdf g(x)=Ig . We know that

g(x)

Ig
log

g(x)

Igf(x)
dx � 0

for all pdfs f(x). If

f(x) =
�Sg

vol(Sg)

then

g(x) log g(x)dx � g(x) log(Igf(x))

= Ig log
Ig

vol(Sg)
:

This implies

g(x) log g(x) � max jL logGmj ; Ig log Ig
vol(Sg)

� max jL logGmj ; jIg log Igj

+ Ig log vol(Sg)

� max jL logGmj; jL logLj

+ jL log vol(Sg)j :

The last inequality follows from the fact that for x < 1=e, jx log xj is
an increasing function of x.

Theorem 1: Let fXi 2 CP g be a sequence of continuous random
variables with pdfs ffig andX 2 CP be a continuous random variable
with pdf f such that fi ! f pointwise. Let kxk =

p
xyx denote the

Euclidean norm of x 2 CP . If 1) maxfsupx fi(x); supx f(x)g �
Fm < 1 for all i and 2) maxf kxk�fi(x)dx; kxk�f(x)dxg �
L < 1 for some � > 1 and all i then H(Xi)! H(X).

Proof: First, we need to show that H(X) exists and is finite.
Since f(x) � Fm we have

H(X) = � f(x) log f(x)dx � � logFm:

Wewill see in the course of the proof thatH(X) is bounded from above
as well. The proof is based on showing that given an � > 0 there exists a
setA� with finite volume such that for all i, j

A
fi(x) log fi(x)dxj<

� where Sc denotes the complement of S. ThisA� also works for f(x).
We claim that fx : kxk � Rg for sufficiently large R is the A� we are
looking for.

Since y log y ! 0 as y ! 0 we have

max
f(x)�F

jf(x) log f(x)j � maxfFm logFm; eg def
= K:

Therefore, fi(x) log fi(x)�kxk�R is bounded above by a nonnegative
L1 function (g = K�kxk�R) and by the dominated convergence the-
orem we have

�
kxk�R

fi(x) log fi(x)dx! �
kxk�R

f(x) log f(x)dx:

Now, we show that the integral on Ac� is uniformly bounded by a
sufficiently small quantity for all fi and f . Let g denote either fi or f .
We have kxk�g(x)dx � L. Therefore, by Markov’s inequality

R<kxk�R+1

g(x)dx = IR � L=R�:

Choose R large enough so that for all l > R: I l < 1=e. Now

kxk>R

g(x) log g(x)dx �
kxk>R

jg(x) log g(x)jdx

=

1

l=R B

jg(x) log g(x)jdx

where Bl = fx : l < kxk � l + 1g.
Consider the term

B
jg(x) log g(x)jdx = Gl. Also, define A+ =

fx : � log g(x) > 0g and A� = fx : � log g(x) < 0g Now

Gl =
A \B

jg(x) log g(x)jdx+
A \B

jg(x) log g(x)jdx

=
A \B

g(x) log g(x)dx +
A \B

g(x) log g(x)dx :

From Lemma 1, we have

Gl � 2maxfjI l log I lj + jI l log vol(fBlg)j; jI l logFmjg:
We know vol(fx : Blg) = o(l2P ). Therefore,

B

jg(x) log g(x)jdx � Q

l�
log l

where Q is some sufficiently large constant. Therefore, we have

kxk>R

jg(x) log g(x)jdx �
1

l=R

Q

l�
log l = O

logR

R��1
:

As � > 1 we can choose R sufficiently large to have

kxk>R

g(x) log g(x)dx < �:

Finally, we show that H(X) is bounded from above

H(X) �
kxk�R

f(x) log f(x)dx +
kxk>R

f(x) log f(x)dx

�Kvol(kxk � R) + �

whereK is as defined earlier.

Theorem 2: Let fXi 2 CP g be a sequence of continuous random
variables with pdfs ffig and X 2 CP be a continuous random vari-
able with pdf f such that fi ! f pointwise. If 1) f(x) is bounded,
2) kxk�fn(x)dx � L and kxk�f(x)dx � L for some � > 1 and
L < 1 then

lim sup
i!1

H(Xi) � H(X):

Proof: First, we note from the proof of Theorem 1 thatH(X) is
finite.

We prove this theorem by showing that for every � there exists a set
A� and a positive integer K such that

A

fi(x) log fi(x)dx�
A

f(x) log f(x)dx < �

and

�
A

fi(x) log fi(x)dx � �
A

f(x) log f(x)dx

for all i > K . Let Fm = sup f(x) and for every i consider the set
Si = fx : fi(x) > Ng for a sufficiently large N > Fm. Note that
1
k=1

1
i=k Si = ; since fi ! f pointwise and f is bounded.

Let SM = 1
i=M Si. Note that for all i > M , Si � SM . Also,

note that Si is a subset of Sf = fx : f(x) > �g for sufficiently
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small � and for all sufficiently large i. Since Sf has a finite volume
limi!1 vol(Si) = 0.

Now, choose M large enough so that

vol(SM ) < �=(maxfN logNg):

We claim that ScM for sufficiently large M is the A� we are looking
for. On ScM = A�, fi(x) and f(x) are bounded and by Theorem 1 we
have

S

fi(x) log fi(x)dx!
S

f(x) log f(x)dx:

On SM = Ac� , we have

�
S

fi(x) log fi(x)dx = �
S \fx:f (x)�Ng

fi(x) log fi(x)dx

�
S \fx:f (x)>Ng

fi(x) log fi(x)dx:

Since

�
S \fx:f (x)�Ng

fi(x) log fi(x)dx < �

and

�
S \fx:f (x)>Ng

fi(x) log fi(x)dx < 0

we have for all sufficiently large i

lim sup
M!1 S

fi(x) log fi(x)dx < 0:

On the other hand, we have limM!1 S
fi(x) log fi(x) = 0 for all

sufficiently large i. Therefore, our claim has been established and the
proof is complete.

Theorem 3: Let fXi 2 CP g be a sequence of continuous
random variables with pdfs ffig and X 2 CP be a continuous
random variable with pdf f such that fi ! f pointwise. If 1)
maxfsupx f(x); supx fi(x)g � Fm < 1 and 2) kxk�f(x)dx is
bounded for some � > 1, then

lim inf
i!1

H(Xi) � H(X):

Proof: First, for every � > 0 there exists R > 0 such that

�
jxj<R

g(x) log g(x)dx � H(X)� �

where g(x) is defined as

g(x) = f(x)�jxj<R(x) + Fm�R�jxj<R+�R(x)

where �R is such that

jxj�R

f(x)dx = Fmvol(fx : R � jxj < R+�Rg):

Similarly, define gi(x) as

gi(x) = fi(x)�jxj<R(x) + Fm�R�jxj<R+� R(x)

where �iR is such that

jxj�R

fi(x)dx = Fmvol(fx : R � jxj < R+�iRg):

Then from Theorem 1 we have

lim
i!1

� gi(x) log gi(x) = � g(x) log g(x)dx:

Since �
jxj�R

fi(x) log fi(x)dx � �
jxj�R

gi(x) log gi(x)dx

lim inf
i!1

� fi(x) log fi(x)dx � lim inf
i!1

� gi(x) log gi(x)dx

= � g(x) log g(x)dx

� H(X)� �:

Since � is arbitrary we are done if we can show thatH(X) is finite. But
that follows from the proof of Theorem 1.

Now, we will relax the boundedness condition on the densities fn(x)
and f . Note that in Examples 2 and 3, fn(x)(log fn(x))

2dx ! 1

as n ! 1. We will show that limiting that quantity alone guarantees
convergence.

Theorem 4: Let fXi 2 CP g be a sequence of continuous random
variables with pdfs ffig andX 2 CP be a continuous random variable
with pdf f such that fi ! f pointwise. If

maxf fi(x)j log fi(x)j
�dx; f(x)j log f(x)j�dxg � L <1

for some � > 1 and all i and then H(Xi)! H(X).
Proof: The boundedness ofH(X) follow from the fact that

� f(x) log f(x)dx =�
j log f(x)j<logN

f(x) log f(x)dx

�
j log f(x)j�logN

f(x) log f(x)dx

whereN is a sufficiently large number. The first term is bounded since
f is bounded from above and below and the second term is bounded
since

j log f(x)j�logN

f(x) log f(x) �
j log f(x)j�logN

f(x)j log f(x)j�

�L:

The essence of the proof is in showing that for every � there exists a
setA� such that fi(x) log fi(x)dx and f(x) log f(x)dx evaluated
on Ac� are bounded above by � and on A� we have

A

fi(x) log fi(x)dx�
A

f(x) log f(x)dx < �

for all sufficiently large i.
For sufficiently large N , define

Si = fx : 1=N � fi(x) � Ng and S = fx : 1=N � f(x) � Ng:

Then 1
k=1

1
i=k Si=S as fi!f pointwise. LetSM = 1

i=M Si S

then on ScM , j log fi(x)j> logN for all i>M and also j log f(x)j>
logN . Therefore, on ScM

(logN)��1

S

fi(x) log fi(x)dx

� (logN)��1

S

fi(x)j log fi(x)jdx

�
S

fi(x)j log fi(x)j
�dx � L:

Therefore,

S

fi(x) log fi(x)dx � L=(logN)��1:

By similar anlysis for f , we see that the integrals evaluated on ScM are
uniformly bounded by a negligible quantity for all large i.

We will show that SM is the A� we are looking for by proving that

lim
n!1 S

fi(x) log fi(x)dx =
S

f(x) log f(x)dx:



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 1, JANUARY 2004 175

For that, given a sufficient large positive integerK , we divide SM into
two regionsD1 and D2.D1 is the set of all points in SM such f(x) >
K and D2 consists of x 2 SM such that f(x) � K . Since SM has
finite volume, by Egoroff’s theorem, [6, Theorem 2.33, p. 60] there
exist regionsD1;� andD2;� such thatmaxfvol(D1;�); vol(D2;�)g � �

and fi converge to f uniformly onB1 = D1nD1;� andB2 = D2nD2;�.
Let D� = D1;� [ D2;�.

On B2, all fi(x) are bounded from above by K + � for sufficient
large i, therefore, by dominated convergence theorem

lim
i!1 B

fi(x) log fi(x)dx =
B

f(x) log f(x)dx:

On B1, all fi(x) are bounded from below by a sufficiently large
K0 = K + �. Then

j logK 0j��1

B

fi(x) log fi(x)dx �
B

fi(x)j log fi(x)j
�dx

� fi(x)j log fi(x)j
�dx < L:

Therefore,

B

fi(x) log fi(x)dx < L=j logK 0j��1

and it can be made sufficiently small by choosingK large enough.
Now we will show that on D�, j fi(x) log fi(x)dxj is negligibly

small for all sufficiently large i. For each i, divide D� into two regions
Ci
1 and Ci

2 such that fi(x) is bounded from below by K on Ci
1 and

bounded from above byK on Ci
2. As before, on Ci

1, we can show

C

fi(x) log fi(x)dx < L=j logKj��1:

Finally, on Ci
2 we note that

jfi(x) log fi(x)j � maxfK logK; eg

and since, vol(Ci
2) is small enough j

C
fi(x) log fi(x)dxj is suffi-

ciently small and we are done.

It is of interest to find out if the conditions in Theorem 4 are nec-
essary as well. To disprove the necessity all we need to do is find an
example such that

fn(x) log fn(x)dx! f(x) log f(x)dx

but

lim inf
n!1

fn(x)j log fn(x)j
�dx =1

for all � > 1.

Example 4: First, let

an =

1

m=N

1

m1+1=n
=

K

N1=n

and

a0n =

1

m=N

1

m2+1=n
=

K 0

N1+1=n

whereK > 0 andK 0 > 0 are constants. Next, define fn(x) as follows:

fn(x) =
1� K

nN
; when x 2 [0; 1]

expf�mg
n

; when x 2 (bm; bm+1]

whereN has been defined such that fn is a proper density function and
bm is defined as follows:

bm =

0; whenm < N

1; whenm = N

bm�1 + expfmg=m2+1=n; whenm > N .

Then fn(x) converges to f(x) pointwise where f(x) is the uniform
distribution over the interval [0; 1]. The differential entropy from
fn(x), Hn is given by

Hn =� 1�
K 0

nN1+1=n
log 1�

K 0

nN1+1=n

�

1

m=N

expf�mg

n
log

expf�mg

n

expfmg

m2+1=n

=� 1�
K 0

nN1+1=n
log 1�

K 0

nN1+1=n

+
1

n

1

m=N

1

m1+1=n
+

logn

n

1

m=N

1

m2+1=n

=� 1�
K 0

nN1+1=n
log 1�

K 0

nN1+1=n

+
an
n

+
a0n logn

n

and, therefore, limn!1Hn = 0 = Hf . But for any � > 1 if we
choose n > 1=(�� 1) then

fn(x)j log fn(x)j
�dx

= 1�
K 0

nN1+
log 1�

K 0

nN1+

�

+

1

m=N

expf�mg

n
(m+ logn)�

expfmg

m2+1=n

> 1�
K 0

nN1+
log 1�

K 0

nN1+

�

+
1

n

1

m=N

m�

m2+1=n

=1:

III. DISCUSSION AND CONCLUSION

It is useful to make the following simple observations on the results
derived in Section II. First, it can be easily seen that the pointwise
convergence condition on the density functions in all theorems can
be relaxed to almost everywhere convergence with minimal changes
to the corresponding proofs. Second, we note that Theorems 1–3
can be applied to the case where density functions are defined on
any normed space as long as log�(fx : kxk � Rg) = O(logR),
where � is the measure defined on the underlying space. Third,
we note from the proof of Theorem 4 even the requirement of a
norm on the underlying space can be relaxed for the applicability
of Theorem 4. Fourth, we can generalize Theorem 4 in the same
way that Theorem 1 was generalized to Theorems 2 and 3. In that
regard, we have the following.
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• If the condition in Theorem 4 is relaxed to

max
i

f >N

fi(x)j log fi(x)j
�
dx � L <1

for some �>0 and some N>0; and f(x)j log f(x)j�dx�L

then lim supH(Xi)�H(X).

• And if it is relaxed to

max
i

f <N

fi(x)j log fi(x)j
�
dx � L <1

for some �>0 and some N>0 and; f(x)j log f(x)j�dx�L

then lim infH(Xi) � H(X)

We have derived general sufficient conditions for the convergence
of differential entropies. The first set of conditions (Theorem 1) is
as follows:

1) supxmaxfsupn fn(x); f(x)g < 1.
2) maxfsupn jxj�fn(x)dx; jxj�f (x)dxg < 1 for some

� > 0:

The second set of conditions ensuring convergence (Theorem 4 ) is
as follows:

• maxfsupn fn(x)j log fn(x)j
�dx; f(x)j log f(x)j�dxg<1

for some � > 1.

For future work, it can be investigated whether a weaker form of the
preceding conditions is necessary and sufficient for the convergence of
entropies:

• there exists a decreasing sequence f�ng such that �n ! 1 and

sup
n

max fn(x)j log fn(x)j
�
dx; f(x)j log f(x)j� dx

<1:

Convergence of differential entropies is an interesting mathematical
problem and our results give a preliminary solution. Our results also
find application in the asymptotic analysis of communication sys-
tems. Examples include the capacity calculation of multiple -antenna
systems for high signal-to-noise ratio [9], [20]. The results in this
correspondence were directly applied in [9]. In [20], because of the
special nature of the density functions considered, the convergence
of the differential entropies could be proved directly. However, the
same analysis could have been performed with the results derived
in this correspondence.
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