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ABSTRACT

There has been considerable recent interest in applying maxi-
mal invariant (MI) hypothesis testing as an alternative to the gen-
eralized likelihood ratio (GLR) test. This interest has been moti-
vated by several attractive theoretical properties of MI tests includ-
ing: exact robustness to variation of nuisance parameters, finite-
sample min-max optimality (in some cases), and distributional ro-
bustness. However, in the deep hide target detection problem, there
are regimes for which either of the MI and the GLR tests can out-
perform the other. We will discuss conditions under which the MI
tests can be expected to outperform the GLR tests in the context
of a radar imaging and target detection application. We will also
show that the relative advantage of the MI tests is robust to bound-
ary estimation errors.

1. INTRODUCTION

In [1], adaptive detection algorithms were developed for imaging
radar targets in structured clutter by exploiting both the general-
ized likelihood ratio (GLR) principle and the invariance principle.
In automatic target recognition, it is important to be able to reliably
detect or classify a target in a manner which is robust to target and
clutter variability yet maintains the highest possible discrimina-
tion capability. The GLR and invariance principles are worthwhile
approaches since they often yield good constant false alarm rate
(CFAR) tests.

A common assumption in homogeneous but uncertain clutter
scenarios is that the target is of known form but unknown am-
plitude in Gaussian noise whose covariance matrix is totally un-
known or unstructured. This assumption induces parameter un-
certainty for which the general multivariate analysis of variance
(GMANOVA) model [2] applies and optimal and suboptimal de-
tection algorithms can be easily derived using the GLR principle
[3]. However, when some structure on the covariance matrix is
known a priori, improvements over this GLR test are possible. For
adaptive arrays, Bose and Steinhardt [4] proposed an invariant de-
tector which outperforms the Kelly’s test [3] when the clutter co-
variance matrix is assumed to have a priori known block diagonal
structure. In [1], the form of the GLR for block structured covari-
ance is derived. Then the invariant approach considered in [4] is
developed in the context of imaging radar for deep hide targets.

In this paper, the robustness properties of the GLR and max-
imal invariant (MI) tests derived in [1] are more closely investi-
gated. Specifically, we show via simulation and experiment that
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there are regimes of operation which separate the GLR and MI
tests such as: target-to-clutter ratio, number of snapshots available,
and prescribed false alarm level. We also show robustness with re-
spect to boundary estimation errors and we determine minimum
detectable target amplitude for a realistic SAR imaging applica-
tion.

2. STRUCTURED GLR AND MI TESTS

Assume that the complex image has been scanned or reshaped
into an m x 1 column vector z. If multiple snapshots (chips)
Z,...,x, of the terrain are available, they can be concatenated
into a spatio-temporal matrix X with columns {z,};" ;. Let s be
the reshaped target vector to be detected in a clutter background
N having i.i.d. columns with zero mean. Then we have the simple
image model

X =asb? +N

where a is an unknown target amplitude and b accounts for the
articulation of the target vector into the snapshot sequence, e.g.
possible chip locations of the target. In spatially scanned radar
images, the vector b would be equal to [1,0, . .. , 0] if the target
presence is to be detected in the first image chip (1st column of
X). In this case, this column will be called primary data while
the rest of X will be called secondary data. Also we assume that
N is a complex multivariate Gaussian matrix with i.i.d. columns:
vec{N} ~ CN(0, R @ I,) where 0 is an mn X 1 zero vector, I,
is an n X n identity matrix, and ) is the Kronecker product.
Under an assumption that the target straddles the known bound-
ary of two independent regions, the spatial component has clutter
covariance matrix R which decomposes into a block diagonal ma-
trix. Several cases, denoted in decreasing order of uncertainty as
Cases 1, 2 and 3, of block diagonal covariance matrices are exam-
ined:
O Rsp
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e Case : R4 >0,Rg >0
e Case2: R4y > 0,Rp = 02T where 62 > 0
e Case3: R4 >0,Rg =1

where the subscripts denote the two different regions A and B. For
real valued observations, the GLR method is shown to have ex-
plicit form for each of Cases 1, 2 and 3, involving the roots of a
4th order algebraic equation. For complex valued observations, 4th
order algebraic equations for real and imaginary parts of the target



amplitude a must be solved numerically. The maximal invariant
statistics for Cases 1 and 2 were previously derived by Bose and
Steinhardt and invariant tests were proposed based on these statis-
tics in [4]. We treat Cases 1-3 in a unified framework and propose
alternative MI tests which are better adapted to the deep hide target
application.

GLR test statistics are listed in Table 1 where the measurement
matrix is partitioned as

X — Xa | _| zar Xaz
Xg Tp, XpB2

and each column corresponds to pixel values in a different chip.
H1H

The known target signature is s = [gf s B] ,and
p(a,Xa) = (241 —ass)” (Xa2Xl5) " (&g, —asy)
q(a,Xp) = tr{(Xp —asge; )" (X5 —aspe; )}

Here z 4,(ma x 1) and z 5, (mp x 1) denote pixels in the chip

which is being tested for containing the target where ma +mp =
m. The MI tests are listed in Table 2 where

_ tr{XEXs}

ga =1+ zi (XaeXih) ey, v
mp

g =1+ igl (XBZXgQ)71£B1 , Uz=mn.

The complete derivations of the test statistics can be found in [5].
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Table 1. GLR tests for Case 1, 2 and 3. (The notation ‘?’ denotes
‘unknown’ quantity in the model)
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Table 2. MI tests for Case 1, 2 and 3

3. NUMERICAL COMPARISONS

To analyze the performance of the GLR and MI tests, ROC curves
are generated and compared. In Fig. 1, the three GLR tests and
the three MI tests matched to one of the three cases are compared.
Also shown are ROC curves for structured Kelly’s test matched
to Case 1, and Bose and Steinhardt’s test matched to Case 2. For
each case, two tests stand out as significantly better than the other
six: the GLR and MI tests which are matched to the underlying
scenario.
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Fig. 1. ROC curves for (a) Case 1 (ma = 60, mp = 40, n = 61),
and (b) Case 2 (ma = 50, mp = 50,n = 61).

Of particular interest are the curve crossings in low Pr4 re-
gions between the GLR and the MI tests, and the relative advan-
tages of those tests are more closely investigated in Fig. 2 and 3. In
(a) of both figures, we increased n while fixing SNR. Note that the
GLR and MI tests have ROCs which are virtually indistinguishable
for large n. In (b), however, by increasing SNR while fixing n, the
Pr 4 positions of the crossings of the ROCs for the GLR and MI
tests decreased. In particular, if one fixes a level of false alarm, say
Pra = 0.1, then note from Fig. 2 (b) that the GLR test dominates
the MI test for SNR = 19dB while the reverse is true for SNR =
7dB.

Since both the structured GLR and MI tests can only be imple-
mented with the known boundary separating two different regions,
sensitivity of the tests to boundary estimation errors is illustrated
in Fig. 4. In both cases, ROC curves obtained with the biased
boundary are compared with those using the true boundary. As
can be seen, the overall performance of each test is degraded with
false information, but the relative advantages of the GLR and MI
tests still can be observed.

Next, we consider an application to real SAR imagery in Fig.
5. The image shown is a rural scene near Redstone Arsenal at



Huntsville, Alabama, reproduced from the data collected using the
Sandia National Laboratories Twin Otter SAR sensor payload op-
erating at X band (center frequency = 9.6 GHz, band width = 590
MHz). This clutter image consists of a forest canopy on top and
a field on bottom, separated by a coarse boundary. The bound-
ary was hand extracted and a 9 x 7 SLICY target extracted from
Fig. 6 (e) was inserted additively with the center at column 305
so that it straddles the boundary. The images in Fig. 6 correspond
to the same target but viewed at different pose angles of azimuth.
The data from which these images are reproduced was downloaded
from the MSTAR SAR database at the Center for Imaging Science
(www.cis.jhu.edu). From the realigned image in Fig. 7, we took
subimages (chips) along the boundary by centering a 20 x 20 win-
dow at the boundary and sliding it over the image from left to right.
Each of these subimages is then concatenated into a column vector
of size m = 400 where ma = 200 and mp = 200. Since we
need at least 200 secondary chips to implement the structured de-
tectors, clutter-alone pixels above and below those 20 x 20 subim-
ages taken along the boundary were used to generate enough sec-
ondary data for region A and B, respectively. Each of the subim-
ages along the boundary was tested as a primary chip, and the
test statistics derived under Case 1 were calculated and maximized
over each possible location in the subimage. After normalizing
the known target signature, we obtained the minimum magnitude
of target amplitude required for each test to detect the target at
the correct location. The resulting amplitude is the minimum de-
tectable threshold for each of the detectors and these thresholds are
shown in Table 3 for different number of secondary chips (n — 1).
As can be seen, with a large number of chips (n — 1 = 250), both
the GLR and MI tests perform as well as the structured Kelly’s test.
On the other hand, with a limited number of chips (n — 1 = 200),
MI test 1 successfully detects the target down to a significantly
lower threshold than for GLR 1 and structured Kelly detectors.

a
Test (n—1=250)|||(n—1=200)
MI test 1 1.454 x 1072 | 0.609 x 10 *
GLR 1 1.462 x 10°2 | 1.042 x 10 T
Structured Kelly || 1.407 x 107% | 1.049 x 10!

Table 3. Minimum detectable amplitudes for detection of the tar-
get at the correct location.

As a final experiment we maximized the test statistics over the
different target poses in Fig. 6 as well as over all possible locations
along the boundary. Again the normalized signature from Fig. 6
(e) was inserted with |a| = 0.015, and 250 secondary chips were
obtained from the surrounding clutter. Test values for the 3 detec-
tors under Case 1 are obtained using 9 different target signatures.
For each test the peak values for 9 target signatures are plotted in
Fig. 8. Note that all the tests successfully picked the signature at
the true pose and location for this target amplitude.

4. CONCLUSION AND FUTURE RESEARCH

The deep hide scenario considered in this paper complicates the
design of optimal target detectors. This scenario gives rise to block
diagonal constraints imposed by the clutter covariance structure.
Both GLR and MI tests can be derived under these constraints.
Numerical results indicate that neither GLR nor MI tests domi-
nate the other in terms of ROC performance. Both detectors have

comparable performance when high estimator accuracy is attain-
able, e.g. for a large number of independent clutter samples, but
otherwise MI test is better especially in low Pra. This property
is also shown to be robust to segmentation errors. Therefore, MI
test not only plays an important role as an alternative to the GLR
procedure, but also has the desirable property of reliable perfor-
mance in low Pra with a small number of snapshots. The results
in this paper are generalizable to other applications where invari-
ance principle can be applied.

However, the known boundary assumption of the structured
detectors may not be realistic in radar imaging applications. Thus,
to move to a fully automatic procedure for combining boundary es-
timation and structured detection, image segmentation techniques
such as the one in [6] should be investigated. In real applica-
tions, boundary estimation will be difficult even with a strong tar-
get straddling the boundary. Therefore, boundary estimation and
its interaction with detection should also be investigated including
sensitivity of detector performance to boundary estimations and
tradeoffs between segmentation and detection.
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Fig. 2. Comparison of GLR and MI tests for Case 1 by (a) in-
creasing n with fixed SNR and (b) increasing SNR with fixed n
(ma = 60, mp = 40).
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Fig. 3. Comparison of GLR and MI tests for Case 2 by (a) in-
creasing n with fixed SNR and (b) increasing SNR with fixed n
(ma = 50, mp = 50).
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Fig. 4. Comparison of ROC curves using true boundaries and
false boundaries (a) moved downward by one pixel and (b) moved
upward by one pixel in each snapshot (True values: (a) ma =
60, mp = 40,n = 61, (b) ma = 50, mp = 50,n = 51).
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Fig. 5. SAR clutter image with target in Fig. 6 (e) straddling the
boundary at column 305.
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Fig. 6. SLICY canonical target images at elevation 39° and differ-
ent azimuth angles. Image in (e) is inserted in Fig. 5.

Fig. 7. Image realigned along the extracted boundary. SLICY
target is located at column 305 with |a| = 0.015. This target
is just above the minimal detectable threshold for the three tests
investigated in Fig. 8.
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Fig. 8. Peak values obtained for 9 different target images in Fig. 6
(la|] = 0.015,n — 1 = 250).



