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ABSTRACT

We investigate a multiple hypothesis test designed for
detecting signals embedded in noisy observations of a sen-
sor array. The global level of the multiple test is controlled
by the false discovery rate (FDR) criterion recently sug-
gested by Benjamini and Hochberg instead of the classical
familywise error rate (FWE) criterion. In the previous study
[3], the suggested procedure has shown promising results
on simulated data. Here we carefully examine the indepen-
dence condition required by the Benjamini Hochberg proce-
dure to ensure the control of FDR. Based on the properties
of beta distribution, we proved the applicability of the Ben-
jamini Hochberg procedure to the underlying test. Further
simulation results show that the false alarm rate is less than
0.02 for a choice of FDR as high as0.1, implying the re-
liability of the test has not been affected by the increase in
power.

1. INTRODUCTION

This work discusses signal detection using a multiple hy-
pothesis test. Estimating the number of signals embedded
in noisy observations is a key issue in array processing,
harmonic retrieval, wireless communication and geophys-
ical application. In [2] [7], a multiple testing procedure
was suggested to determine the number of signals. Therein,
a Bonferroni-Holm procedure [4] was used to control the
familywise error-rate (FWE), the probability of erroneously
rejecting any of the true hypotheses. As the control of FWE
requires each test to be conducted at a significantly lower
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level, the Bonferroni-Holm procedure often leads to conser-
vative results. To overcome this drawback, we adopted the
false discovery rate (FDR) criterion suggested by Benjamini
and Hochberg [1] to keep balance between type one error
control and power [3]. Despite of the successful applica-
tion of the Benjamini-Hochberg procedure in [3], a crucial
question remains:Does the Benjamini-Hochberg procedure
control the FDR in our detection problem?The goal of this
work is to examine the test statistics carefully and show that
the conditions required by the Benjamini Hochberg proce-
dure are satisfied.

This paper is organized as follows. We give a brief de-
scription of the signal model in the next section. Then we
present the multiple test procedure for signal detection. Sec-
tion 4 introduces the idea of false discovery rate (FDR) and
the Benjamini Hochberg procedure. In the subsequent sec-
tion we show that the condition required by the Benjamini
Hochberg procedure is satisfied in the proposed approach.
Simulation results are presented and discussed in section 6.
Our concluding remarks are given in section 7.

2. PROBLEM FORMULATION

Consider an array ofn sensors receivingm narrow band sig-
nals emitted by far-field sources located atθ=[ θ1,. . ., θm]T .
The array outputx(t) ∈Cn×1 can be expressed as

x(t) = H(θ)s(t) + n(t), t = 1, . . . , T (1)

where theith column of the matrix

H(θ) = [d(θ1) · · ·d(θi) · · ·d(θm)] (2)

d(θi) ∈Cn×1 is the steering vector associated with the sig-
nal arriving from the directionθi. The signal waveform
s(t)=[s1(t),. . ., sm(t)]T ∈ Cm×1 is considered as determin-
istic and unknown. Furthermore, the noise vectorn(t) ∈



Cn×1 is independent, identically complex normally distrib-
uted with zero mean and covariance matrixσ2

I, whereσ2

is the unknown noise spectral parameter andI is an iden-
tity matrix of corresponding dimension. Based on the set of
observations{x(t)}T

t=1, the problem of central interest is to
determine the number of signalsm.

3. SIGNAL DETECTION USING A MULTIPLE
HYPOTHESIS TEST

We formulate the problem of detecting the number of sig-
nals as a multiple hypothesis test. LetM denote the max-
imal number of sources. The following procedure detects
one signal after another. More precisely, form = 1,

H1 : Data contains only noise.

x(t) = n(t)

A1 : Data contains at least1 signals.

x(t) = H1(θ1)s1(t) + n(t) (3)

For m = 2, . . . , M

Hm : Data contains at most(m − 1) signals.

x(t) = Hm−1(θm−1)sm−1(t) + n(t)

Am : Data contains at leastm signals.

x(t) = Hm(θm)sm(t) + n(t) (4)

The steering matrix and signal vector are given byHm(θm)
= [d(θ1), . . . , d(θm)] andsm(t) = [s1(t),. . ., sm(t)]T , re-
spectively.

Based on the likelihood ratio (LR) principle, we obtain
the test statisticsTm(θ̂m), (m = 1, . . . , M) as follows.

Tm(θ̂m) = log

(

tr[(I − P m−1(θ̂m−1))R̂]

tr[(I − P m(θ̂m))R̂]

)

(5)

= log

(

1 +
n1

n2
Fm(θ̂m)

)

, (6)

whereR̂ = 1
T

∑T

t=1 x(t)x(t)H andP (θ̂m) is the projec-
tion matrix onto the subspace spanned by the columns of
Hm(θ̂m). Whenm = 1, we defineP 0(·) = 0. θ̂m repre-
sents the ML estimate assuming thatm signals are present
in the observation.

Under hypothesisHm, the statistic

Fm(θ̂m) =
n2

n1

tr[(P m(θ̂m) − P m−1(θ̂m−1))R̂]

tr[(I − P m(θ̂m))R̂]
(7)

is Fn1,n2
–distributed where the degrees of freedomn1, n2

are given by [7]

n1 = T (2 + rm), n2 = T (2rx − 2m − rm−1) (8)

with rx = dim(x(t)) = n andrm = dim(θm) = m.
From eq. (6) it is easy to see that in the narrow band

case, the LR test is equivalent to the F-test proposed by
Shumway [8]. The F-test usesFm(θ̂m) in testingHm against
Am. Given(m − 1) signals, whether a further signal exists
is decided by whether the estimated increase in SNR is large
enough.

4. CONTROL OF THE FALSE DISCOVERY RATE

The control of type one error is an important issue in mul-
tiple inferences. A type one error occurs when the null hy-
pothesisHm is wrongly rejected. The traditional concern
in multiple hypothesis problems has been about control-
ling the familywise error-rate (FWE). Given a certain sig-
nificance levelα, the control of FWE requires each of the
M tests to be conducted at a lower level. When the num-
ber of tests increases, the power of the the FWE-controlling
procedures such as Bonferroni-type procedures [4] is sub-
stantially reduced. The false discovery rate (FDR), sug-
gested by Benjamini and Hochberg [1], is a completely dif-
ferent point of view for considering the errors in multiple
testing. The FDR is defined as the expected proportion of
errors among the rejected hypotheses. If all null hypothe-
ses{H1, H2, . . . , HM} are true, the FDR-controlling pro-
cedure controls the traditional FWE. But when many hy-
potheses are rejected, an erroneous rejection is not as cru-
cial for drawing conclusion from the whole family of tests,
the FDR is a desirable error rate to control.

Assume that among theM tested hypotheses{H1, H2,
. . . , HM}, m0 are true null hypotheses. Let{p1, p2, . . . , pM}
be thep-values (observed significance values) correspond-
ing to the test statistics{T1, T2,. . . , TM}. By definition,
pm = 1 − PHm

(Tm) wherePHm
is the distribution func-

tion underHm. Benjamini and Hochberg showed that when
the test statisticscorresponding to the true null hypotheses
are independent, the following procedure controls the FDR
at levelq · m0/M ≤ q[1].

The Benjamini Hochberg Procedure

Define
k = max

{

m : p(m) ≤
m

M
q
}

(9)

and rejectH(1) . . . H(k). If no suchk exists, reject no hy-
pothesis.

5. INDEPENDENCE OF TEST STATISTICS

In the previous work [3], we applied the Benjamini-Hochberg
procedure based on the conjecture that the test statisticsTm

(m = 1, . . . , M) are conditionally independent given(I −



P m(θ̂)). In the following, we shall show that the test statis-
tics under the null hypothesesHm are independent. Conse-
quently, the FDR of the multiple test (3) is controlled by the
Benjamini Hochberg procedure. The following result from
[5] [6] regarding properties of beta distribution plays a key
role in our proof.

Result 1.Let X2
1 , X2

2 , . . . X2
k be mutually independent with

X2
j distributed asχ2

νj
with νj degrees of freedom(j =

1, 2, . . . , k). Then

V 2
1 = X2

1/(X2
1 + X2

2 )

V 2
2 = (X2

1 + X2
2 )/(X2

1 + X2
2 + X2

3 )

...

V 2
(k−1) = (X2

1 + . . . + X2
k−1)/(X2

1 + . . . + X2
k)

(10)

are mutually independent random variables, each with a beta
distribution with parameters(p, q). The values ofp, q for
V 2

j are 1
2

∑j

i=1 νi, 1
2νj+1 respectively.

Theorem 1.The test statisticsTm, (m = 1, . . . , M) defined
by (5) corresponding to the true null hypotheses are mutu-
ally independent.

Proof: We first consider the random variable

Sm =

(

tr[(I − P m(θ̂m))R̂]

tr[(I − P m−1(θ̂m−1))R̂]

)

, (m = 1, . . . , M)

(11)
which is related to the test statistic through a monotone
function

Tm(θ̂m) = − log Sm . (12)

Now we shall show that under null hypothesis,Sm (m =
1, . . . , M) are independent beta distributed random vari-
ables. By (12), this implies the independence ofTm (m =
1, . . . , M).

The termtr[(I−P m(θ̂m))R̂ ] appearing in (11) can be
decomposed as

tr[(I−P m(θ̂m))R̂ ] = σ2(Y 2
M +Y 2

M−1+. . .+Y 2
m). (13)

where

Y 2
m =

1

σ2
tr[(P m+1(θ̂m+1) − P m(θ̂m))R̂ ],

(m = 1, . . . , (M − 1))

Y 2
M =

1

σ2
tr[(I − P M (θ̂M ))R̂ ] (14)

are asymptotically independent andχ2
νm

, (νm ∈ N) distrib-
uted under null hypotheses. By (13),

Sm =
(Y 2

M + Y 2
M−1 + . . . + Y 2

m)

(Y 2
M + Y 2

M−1 + . . . + Y 2
m + Y 2

m−1)
. (15)

According toResult 1, for independentY 2
m (m = 1, . . . , M)

with centralχ2
νm

distribution,S1, S2, . . . , SM are indepen-
dent beta distributed random variables. The independence
of Tm follows immediately. �

6. SIMULATION

In the previous study [3], we compared the FDR- and FWE-
controlling procedure for various numbers of signals and
different sample sizes. Here, we consider two important
cases: 1. Signal sources are closely located. 2. Array output
contains only noise. A uniformly linear array of 15 sensors
with inter-element spacings of half a wavelength is used in
all experiments. Each experiment performs 100 trials.

In the first experiment, the narrow band signals are gen-
erated bym = 12 sources of equal amplitudes. The number
of snapshots is given byT = 20. The SNR varies from
−8 dB to 8 dB in a1 dB step. For comparison, the simu-
lated data is applied to the Bonferroni-Holm procedure [4]
as well. The sequentially rejective Bonferroni-Holm pro-
cedure keeps the FWE at the same levelα as the classical
Bonferroni test but is more powerful than it. The signifi-
cance level of each test is given byα/(M +1−m). We use
q = 0.1 andα = 0.1 in the simulation. Fig. 1 presents re-
sults for12 widely apart sources. The probability of correct
detectionP (m̂ = 12) increases with increasing SNRs. The
FDR-controlling procedure has a lower SNR threshold and
a higher probability of detection in the threshold region. In
Fig. 2, we show results for a more difficult scenario: two
of the signal sources are closely located atθ1 = 9◦ and
θ2 = 12◦ relative to broadside. Obviously, both procedures
perform worse than in Fig. 1. The gap between FDR- and
FWE-controlling procedures has widened in the threshold
region. This implies that the FDR-controlling procedure is
more useful in critical situations.

In the second experiment, the observation contains only
noise. The number of snapshots is varied fromT = 10 to
30 in a ∆T = 5 step. The maximum number of signals is
set to beM = 4. From Fig. 3 one can observe that both
procedures have probability of correct decisionP (m̂ = 0)
higher than0.98 for all T s. Although the FDRq and FWEα
are chosen to be0.1, the detection procedures provide very
reliable results.

In summary, the FDR-controlling procedure leads to a
higher probability of correct detection than the FWE-control-
ling procedure. In particular, for situations involving closely
located signals, the difference between these two procedures
become larger. In the noise only case, the proposed detec-
tion scheme has a false alarm rate less than0.02 for a choice
of FDR as high as0.1.



7. CONCLUSION

This work discusses signal detection using a multiple hy-
pothesis test under an FDR consideration of Benjamini and
Hochberg. Compared to the classical FWE criterion, the
FDR criterion leads to more powerful tests and controls the
errors at a reasonable level. We proved that the conditions
required by the Benjamini-Hochberg procedure are satis-
fied in the proposed detection procedure. Numerical experi-
ments show that the FDR-controlling procedure has always
a higher probability of detection than the FWE controlling
procedure. More importantly, the reliability of the proposed
test is not affected by the gain in power.
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Comparison of FDR− and FWE−controlling procedures, m= 12.
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Fig. 1. Probability of correct detection.M = 12, SNR= [−8 : 1 : 8]
dB, number of snapshotsT = 20. All sources are apart more than7◦ .
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Fig. 2. Probability of correct detection.M = 12, SNR= [−8 : 1 : 8]
dB, number of snapshotsT = 20. Two sources are closely located.
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Fig. 3. Probability of correct decision. Noise only.T = [10 : 5 : 30].


