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1 Introduction15

1.1 What is adaptive sensing?16

In its broadest sense, adaptive sensing has to do with actively managing sensor17
resources to achieve a sensing task. As an example, suppose our goal is to determine18
the presence or absence of an object, and we have at our disposal a single sensor19
that can interrogate the scene with any one of K waveforms. Depending on which20
waveform is used to irradiate the scene, the response may vary greatly. After each21
measurement, we can decide whether to continue taking measurements using that22
waveform, change waveforms and take further measurements, or stop and declare23
whether or not the object is present. In adaptive sensing, this decision making is24
allowed to take advantage of the knowledge gained from the measurements so far.25
In this sense, the act of sensing “adapts” to what we know so far. What guides26
this adaptation is a performance objective that is determined beforehand—in our27
example above, this might be the average number of interrogations needed so that28
we can declare the presence or absence of the object with a confidence that exceeds29
some threshold (say, 90%).30

Adaptive sensing problems arise in a variety of application areas, and represent a31
promising direction for new applications of discrete event system methods. Here, we32
outline only a few.33

Medical diagnostics Perhaps the most familiar example of adaptive sensing takes34
place between a doctor and a patient. The task here is to diagnose an illness from35
a set of symptoms, using a variety of medical tests at the doctor’s disposal. These36
include physical examinations, blood tests, radiographs (X-ray images), computer-37
ized tomography (CT) scans, and magnetic resonance imaging (MRI). Doctors use38
results from tests so far to determine what test to perform next, if any, before making39
a diagnosis.40

Nondestructive testing In nondestructive testing, the goal is to use noninvasive41
methods to determine the integrity of a material or to measure some characteristic42
of an object. A wide variety of methods are used in nondestructive testing, ranging43
from optical to microwave to acoustic. Often, several methods must be used before44
a determination can be made. The test results obtained so far inform what method45
to use next (including what waveform to select), thus giving rise to an instance of46
adaptive sensing.47

Sensor scheduling for target detection, identification, and tracking Imagine a group48
of airborne sensors—say, radars on unmanned aerial vehicles (UAVs)—with the49
task of detecting, identifying, and tracking one or more targets on the ground. For a50
variety of reasons, we can use at most one sensor at any given time. These reasons51
include limitations in communication resources needed to transmit data from the52
sensors, and the desire to minimize radar usage to maintain covertness. The selection53
of which sensor to use over time is called sensor scheduling, and is an adaptive sensing54
problem.55

Waveform selection for radar imaging Radar systems have become sufficiently agile56
that they can be programmed to use waveform pulses from a library of waveforms.57
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The response of a target in the scene can vary greatly depending on what waveform 58
is used to radiate the area due to intrapulse characteristics (e.g., frequency and 59
bandwidth) or interpulse characteristics (e.g., pulse repetition interval). The main 60
issue in the operation of such agile radar systems is the selection of waveforms to 61
use in a particular scenario. If past responses can be used to guide the selection of 62
waveforms, then this issue is an instance of adaptive sensing. 63

Laser pulse shaping Similar to the last example, optical waveforms can also be 64
designed to generate a variety of responses, only at much smaller wavelengths. By 65
carefully tailoring the shape of intense light pulses, the interaction of light with even 66
a single atom can be controlled (Bartels et al. 2000). The possibility of such controlled 67
interactions of light with atoms has many promising applications. As in the previous 68
example, these applications give rise to adaptive sensing problems. 69

1.2 Nonmyopic adaptive sensing 70

In our view, adaptive sensing is fundamentally a resource management problem, in 71
the sense that the main task is to make decisions over time on the use of sensor 72
resources to maximize sensing performance. It is informative to distinguish between 73
myopic and nonmyopic (also known as dynamic or multistage) resource management, 74
a topic of much current interest (see, e.g., Kreucher et al. 2004; He and Chong 2004, 75
2006; Bertsekas 2005; Krakow et al. 2006; Li et al. 2006, 2007; Ji et al. 2007). In 76
myopic resource management, the objective is to optimize performance on a per- 77
decision basis. For example, consider the problem of sensor scheduling for tracking 78
a single target, where the problem is to select, at each decision epoch, a single sensor 79
to activate. An example sensor-scheduling scheme is closest point of approach, which 80
selects the sensor that is perceived to be the closest to the target. Another (more 81
sophisticated) example is the method described in Kreucher et al. (2005b), where 82
the authors present a sensor scheduling method using alpha-divergence (or Rényi 83
divergence) measures. Their approach is to make the decision that maximizes the 84
expected information gain (in terms of the alpha-divergence). 85

Myopic adaptive sensing may not be ideal when the performance is measured over 86
a horizon of time. In such situations, we need to consider schemes that trade off short- 87
term for long-term performance. We call such schemes nonmyopic. Several factors 88
motivate the consideration of nonmyopic schemes, easily illustrated in the context of 89
sensor scheduling for target tracking: 90

Heterogeneous sensors If we have sensors with different locations, waveform char- 91
acteristics, usage costs, and/or lifetimes, the decision of whether or not to use a 92
sensor, and with what waveform, should consider the overall performance, not 93
whether or not its use maximizes the current performance. 94

Sensor motion The future location of a sensor affects how we should act now. 95
To optimize a long-term performance measure, we need to be opportunistic in our 96
choice of sensor decisions. 97

Target motion If a target is moving, there is potential benefit in sensing the target 98
before it becomes unresolvable (e.g., too close to other targets or to clutter, or 99
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shadowed by large objects). In some scenarios, we may need to identify multiple100
targets before they cross, to aid in data association.101

Environmental variation Time-varying weather patterns affect target visibility in102
a way that potentially benefits from nonmyopic decision making. In particular,103
by exploiting models of target visibility maps, we can achieve improved sensing104
performance by careful selection of waveforms and beam directions over time. We105
show an example along these lines in Section 8.106

The main focus of this paper is on nonmyopic adaptive sensing. The basic107
methodology presented here consists of two steps:108

1) Formulating the adaptive sensing problem as a partially observable Markov109
decision process (POMDP); and110

2) Applying an approximation to the optimal policy for the POMDP, because111
computing the exact solution is intractable.112

Our contribution is severalfold. First, we show in detail how to formulate adaptive113
sensing problems in the framework of POMDPs. Second, we survey a number of114
approximation methods for such POMDPs. Our treatment of these methods includes115
their underlying foundations and practical considerations in their implementation.116
Third, we illustrate the performance gains that can be achieved via examples.117
Fourth, in our illustrative examples, we highlight some insights that are relevant to118
adaptive sensing problems: (1) with very limited sensing resources, nonmyopic sensor119
and waveform scheduling can significantly outperform myopic methods with only120
moderate increase in computational complexity; and (2) as the number of available121
resources increases, the nonmyopic advantage decreases.122

Significant interest in nonmyopic adaptive sensing has arisen in the recent robotics123
literature. For example, the recent book by Thrun et al. (2005) describes examples of124
such approaches, under the rubric of probabilistic robotics. Our paper aims to address125
increasing interest in the subject in the signal processing area as well. Our aim is to126
provide an accessible and expository treatment of the subject, introducing a class of127
new solutions to what is increasingly recognized to be an important new problem.128

1.3 Paper organization129

This paper is organized as follows. In Section 2, we give a concrete motivating130
example that advocates the use of nonmyopic methods. We then describe, in131
Section 3, a formulation of the adaptive sensing problem as a partially observable132
Markov decision process (POMDP). We provide three examples to illustrate how to133
formulate adaptive sensing problems in the POMDP framework. Next, in Section 4,134
we review the basic principles behind Q-value approximation, the key idea in our135
approach. Then, in Section 5, we illustrate the basic lookahead control framework136
and describe the constituent components. In Section 6, we describe a host of Q-137
value approximation methods. Among others, this section includes descriptions of138
Monte Carlo sampling methods, heuristic approximations, rollout methods, and139
the traditional reinforcement learning approach. In Sections 7 and 8, we provide140
simulation results on model problems that illustrate several of the approximate141
nonmyopic methods described in this paper. We conclude in Section 9 with some142
summary remarks.143
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In addition to providing an expository treatment on the application of POMDPs 144
to the adaptive sensing problem, this paper includes several new and important 145
contributions. First, we introduce a model problem that includes time-varying in- 146
tervisibility which has all of the desirable properties to completely explore the 147
trade between nonmyopic and myopic scheduling. Second, we introduce several 148
potentially tractable and general numerical methods for generating approximately 149
optimal nonmyopic policies, and show explicitly how they relate to the optimal 150
solution. These include belief-state simplification, completely observable rollout, 151
and reward surrogation, as well as a heuristic based on an information theoretic 152
approximation to the value-to-go function which is applicable in a broad array of 153
scenarios (these contributions have never appeared in journal publications). Finally, 154
these new techniques are compared on a model problem, followed by an in-depth 155
illustration of the value of nonmyopic scheduling on the model problem. 156

2 Motivating example 157

We now present a concrete motivating example that will be used to explain and 158
justify the heuristics and approximations used in this paper. This example involves 159
a remote sensing application where the goal is to learn the contents of a surveillance 160
region via repeated interrogation. (See Hero et al. 2008 for a more complete 161
exposition of adaptive sensing applied to such problems.) 162

Consider a single airborne sensor which is able to image a portion of a ground 163
surveillance region to determine the presence or absence of moving ground targets. 164
At each time epoch, the sensor is able to direct an electrically scanned array 165
so as to interrogate a small area on the ground. Each interrogation yields some 166
(imperfect) information about the small area. The objective is to choose the sequence 167
of pointing directions that lead to the best ability to estimate the entire contents of 168
the surveillance region. 169

Further complicating matters is the fact that at each time epoch the sensor position 170
causes portions of the ground to be unobservable due to the terrain elevation 171
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Fig. 1 a A digital terrain elevation map for a surveillance region, indicating the height of the terrain
in the region. b, c Visibility masks for a sensor positioned to the south and to the west, respectively,
of the surveillance region. We show binary visibility masks (nonvisible areas are black and visible
areas are white). In general, visibility may be between 0 and 1 indicating areas of reduced visibility,
e.g., regions that are partially obscured by foliage Q1



AUTHOR'S PROOF

UNCORRECTED
PROOF

JrnlID 10626_ArtID 71_Proof# 1 - 20/05/09

Discrete Event Dyn Syst

Fig. 2 A six time step vignette
where a target moves through
an obscured area. Other
targets are present elsewhere
in the surveillance region. The
target is depicted by an
asterisk. Areas obscured to the
sensor are black and areas that
are visible are white. Extra
dwells just before becoming
obscured (time = 1) aid in
localization after the target
emerges (time = 6)
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between the sensor and the ground. Given its position and the terrain elevation, the172
sensor can compute a visibility mask which determines how well a particular spot173
on the ground can be seen. As an example, in Fig. 1 we give binary visibility masks174
computed from a sensor positioned (a) south and (b) to the west of the topologically175
nonhomogeneous surveillance region (these plots come from real digital terrain176
elevation maps). As can be seen from the figures, sensor position causes “shadowing”177
of certain regions. These regions, if measured, would provide no information to178
the sensor. A similar target masking effect occurs with atmospheric propagation179
attenuation from disturbances such as fog, rain, sleet, or dust, as illustrated in180
Section 8. This example illustrates a situation where nonmyopic adaptive sensing is181
highly beneficial. Using a known sensor trajectory and known topological map, the182
sensor can predict locations that will be obscured in the future. This information can183
be used to prioritize resources so that they are used on targets that are predicted to184
become obscured in the future. Extra sensor dwells immediately before obscuration185
(at the expense of not interrogating other targets) will sharpen the estimate of target186
location. This sharpened estimate will allow better prediction of where and when the187
target will emerge from the obscured area. This is illustrated graphically with a six188
time-step vignette in Fig. 2.189

3 Formulating adaptive sensing problems190

3.1 Partially observable Markov decision processes191

An adaptive sensing problem can be posed formally as a partially observable Markov192
decision process (POMDP). Before discussing exactly how this is done, we first need193
to introduce POMDPs. Our level of treatment will not be as formal and rigorous as194
one would expect from a fullblown course on this topic. Instead, we seek to describe195
POMDPs in sufficient detail to allow the reader to see how an adaptive sensing196
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problem can be posed as a POMDP, and to explore methods to approximate optimal 197
solutions. Our exposition assumes knowledge of probability, stochastic processes, 198
and optimization. In particular, we assume some knowledge of Markov processes, 199
including Markov decision processes, a model that should be familiar to the discrete 200
event system community. For completeness, we will introduce POMDPs in sufficient 201
detail to allow the reader to see how an adaptive sensing problem can be posed 202
as a POMDP, and to explore methods to approximate optimal solutions. For a full 203
treatment of POMDPs and related background, see Bertsekas (2007). 204

A POMDP is specified by the following ingredients: 205

• A set of states (the state space) and a distribution specifying the random initial 206
state. 207

• A set of possible actions (the action space). 208
• A state-transition law specifying the next-state distribution given an action taken 209

at a current state. 210
• A reward function specifying the reward (real number) received given an action 211

taken at a state. 212
• A set of possible observations (the observation space). 213
• An observation law specifying the distribution of observations given an action 214

taken at a state. 215

A POMDP is a controlled dynamical process in discrete time. The process begins 216
at time k = 0 with a (random) initial state. At this state, we perform an action and 217
receive a reward, which depends on the action and the state. At the same time, we 218
receive an observation, which again depends on the action and the state. The state 219
then transitions to some random next state, whose distribution is specified by the 220
state-transition law. The process then repeats in the same way—at each time, the 221
process is at some state, and the action taken at that state determines the reward, 222
observation, and next state. As a result, the state evolves randomly over time in 223
response to actions, generating observations along the way. 224

We have not said anything so far about the finiteness of the state space or the 225
sets of actions and observations. The advantage to leaving this issue open is that 226
it frees us to construct models in the most natural way. Of course, if we are to 227
represent any such model in a computer, we can only do so in a finite way (though 228
the finite numbers that can be represented in a computer are typically sufficiently 229
large to meet practical needs). For example, if we model the motion of a target 230
on the ground in terms of its Cartesian coordinates, we can deal with this model 231
in a computer only in a finite sense—specifically, there are only a finite number of 232
possible locations that can be captured on a standard digital computer. Moreover, 233
the theory of POMDPs becomes much more technically involved if we are to deal 234
rigorously with infinite sets. For the sake of technical formality, we will assume 235
henceforth that the state space, the action space, and the observation space are 236
all finite (though not necessarily “small”—we stress that this assumption is merely 237
for technical reasons). However, when thinking about models, we will not explicitly 238
restrict ourselves to finite sets. For example, it is convenient to use a motion model 239
for targets in which we view the Cartesian coordinates as real numbers. There is no 240
harm in this dichotomous approach as long as we understand that ultimately we are 241
computing only with finite sets. 242
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3.2 Belief state243

As a POMDP evolves over time, we do not have direct access to the states that occur.244
Instead, all we have are the observations generated over time, providing us with245
clues of the actual underlying states (hence the term partially observable). These246
observations might, in some cases, allow us to infer exactly what states actually247
occurred. However, in general, there will be some uncertainty in our knowledge248
of the states that actually occurred. This uncertainty is represented by the belief249
state (or information state), which is the a posteriori (or posterior) distribution of the250
underlying state given the history of observations.251

Let X denote the state space (the set of all possible states in our POMDP), and252
let B be the set of distributions over X . Then a belief state is simply an element253
of B. Just as the underlying state changes over time, the belief state also changes254
over time. At time k = 0, the (initial) belief state is equal to the given initial state255
distribution. Then, once an action is taken and an observation is received, the belief256
state changes to a new belief state, in a way that depends on the observation received257
and the state-transition and observation laws. This change in the belief state can be258
computed explicitly using Bayes’ rule.259

To elaborate, suppose that the current time is k, and the current belief state is260
b k ∈ B. Note that b k is a probability distribution over X—we use the notation b k(x)261
for the probability that b k assigns to state x ∈ X . Let A represent the action space.262
Suppose that at time k we take action ak ∈ A and, as a result, we receive observation263
yk. Denote the state-transition law by Ptrans, so that the probability of transitioning264
to state x′ given that action a is taken at state x is Ptrans(x′|x, a). Similarly, denote the265
observation law by Pobs, so that the probability of receiving observation y given that266
action a is taken at state x is Pobs(y|x, a). Then, the next belief state given action ak267
is computed using the following two-step update procedure:268

1. Compute the “updated” belief state b̂ k based on the observation yk of the state269
xk at time k, using Bayes’ rule:270

b̂ k(x) = Pobs(yk|x, ak)b k(x)
∑

s∈X Pobs(yk|s, ak)b k(s)
, x ∈ X .

2. Compute the belief state b k+1 using the state-transition law:271

b k+1(x) =
∑

s∈X
b̂ k(s)Ptrans(x|s, ak), x ∈ X .

This two-step procedure is commonly realized in terms of a Kalman filter or a particle272
filter (Ristic et al. 2004).273

It is useful to think of a POMDP as a random process of evolving belief states. Just274
as the underlying state transitions to some random new state with the performance275
of an action at each time, the belief state also transitions to some random new276
belief state. So the belief state process also has some “belief-state-transition” law277
associated with it, which depends intimately on the underlying state-transition and278
the observation laws. But, unlike the underlying state, the belief state is fully279
accessible.280

Indeed, any POMDP may be viewed as a fully observable Markov decision process281
(MDP) with state space B, called the belief-state MDP or information-state MDP282
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(see Bertsekas 2007). To complete the description of this MDP, we will show how 283
to write its reward function, which specifies the reward received when action a is 284
taken at belief-state b . Suppose b ∈ B is some belief state and a is an action. Let 285
R(x, a) be the reward received if action a is taken at underlying state x. Then let 286
r(b , a) = ∑

x∈X b(x)R(x, a) be the expected reward with respect to belief-state b , 287
given action a. This reward r(b , a) then represents the reward function of the belief- 288
state MDP. 289

3.3 Optimization objective 290

Given a POMDP, our goal is to select actions over time to maximize the expected 291
cumulative reward (we take expectation here because the cumulative reward is 292
a random variable). To be specific, suppose we are interested in the expected 293
cumulative reward over a time horizon of length H: k = 0, 1, . . . , H − 1. Let xk and 294
ak be the state and action at time k, and let R(xk, ak) be the resulting reward received. 295
Then, the cumulative reward over horizon H is given by 296

VH = E

[
H−1∑

k=0

R(xk, ak)

]

,

where E represents expectation. It is important to realize that this expectation is with 297
respect to x0, x1, . . . ; i.e., the random initial state and all the subsequent states in the 298
evolution of the process, given the actions a0, a1, a2, . . . taken over time. The goal is 299
to pick these actions so that the objective function is maximized. 300

We have assumed without loss of generality that the reward is a function only 301
of the current state and the action. Indeed, suppose we write the reward such 302
that it depends on the current state, the next state, and the action. We can then 303
take the conditional mean of this reward with respect to the next state, given the 304
current state and action (the conditional distribution of the next state is given by 305
the state-transition law). Because the overall objective function involves expectation, 306
replacing the original reward with its conditional mean in the way described above 307
results in no loss of generality. Finally, notice that the conditional mean of the 308
original reward is a function of the current state and the action, but not the next 309
state. 310

Note that we can also represent the objective function in terms of r (the reward 311
function of the belief-state MDP) instead of R: 312

VH(b 0) = E

[
H−1∑

k=0

r(b k, ak)

∣
∣
∣
∣
∣
b 0

]

.

where E[·|b 0] represents conditional expectation given b 0. The expectation now is 313
with respect to b 0, b 1, . . . ; i.e., the initial belief state and all the subsequent belief 314
states in the evolution of the process. We leave it to the reader to verify this 315
expression involving belief states indeed gives rise to the same objective function 316
value as the earlier expression involving states. In Section 4 we will discuss an 317
equation, due to Bellman, that characterizes this conditional form of the objective 318
function. 319

It is often the case that the horizon H is very large. In such cases, for technical 320
reasons relevant to the analysis of POMDPs, the objective function is often expressed 321
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as a limit. A sensible limiting objective function is the infinite-horizon (or long-term)322
average reward:323

lim
H→∞

E

[
1
H

H−1∑

k=0

R(xk, ak)

]

.

Another common limiting objective function is the infinite-horizon cumulative dis-324
counted reward:325

lim
H→∞

E

[
H−1∑

k=0

γ k R(xk, ak)

]

,

where γ ∈ (0, 1) is called the discount factor. In this paper, our focus is not on326
analytical approaches to solving POMDPs. Therefore, even when dealing with large327
horizons, we will not be concerned with the technical considerations involved in328
taking the kinds of limits in the above infinite-horizon objective functions (Bertsekas329
2007). Instead, we will often imagine that H is very large but still use the nonlimiting330
form.331

3.4 Optimal policy332

In general, the action chosen at each time should be allowed to depend on the entire333
history up to that time (i.e., the action at time k is a random variable that is a function334
of all observable quantities up to time k). However, it turns out that if an optimal335
choice of such a sequence of actions exists, then there is an optimal choice of actions336
that depends only on “belief-state feedback” (see Smallwood and Sondik 1973 and337
references therein for the origins of this result). In other words, it suffices for the338
action at time k to depend only on the belief-state b k at time k. So what we seek is,339
at each time k, a mapping π∗

k : B → A such that if we perform action ak = π∗
k (b k),340

then the resulting objective function is maximized. As usual, we call such a mapping341
a policy. So, what we seek is an optimal policy.342

3.5 POMDPs for adaptive sensing343

POMDPs form a very general framework based on which many different stochastic344
control problems can be posed. Thus, it is no surprise that adaptive sensing problems345
can be posed as POMDPs.346

To formulate an adaptive sensing problem as a POMDP, we need to specify347
the POMDP ingredients in terms of the given adaptive sensing problem. This348
specification is problem specific. To show the reader how this is done, here we349
provide some examples of what aspects of adaptive sensing problems influence how350
the POMDP ingredients are specified. As a further illustration, in the next three351
sections we specify POMDP models for three example problems, including the352
motivating example in Section 2 and the simulations.353

States The POMDP state represents those features in the system (directly observ-354
able or not) that possibly evolve over time. Typically, the state is composed of several355
parts. These include target positions and velocities, sensor modes of operation,356
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sensor parameter settings, battery status, data quality, which sensors are active, states 357
that are internal to tracking algorithms, the position and connectivity of sensors, and 358
communication resource allocation. 359

Actions To specify the actions, we need to identify all the controllable aspects 360
of the sensing system (those aspects that we wish to control over time in our 361
adaptive sensing problem). These include sensor mode switching (e.g., waveform 362
selection or carrier frequencies), pointing directions, sensor tunable parameters, sen- 363
sor activation status (on/off), sensor position changes, and communication resource 364
reallocation. 365

State-transition law The state-transition law is derived from models representing 366
how states change over time. Some of these changes are autonomous, while some 367
are in response to actions. Examples of such changes include target motion, which 368
sensors were most recently activated, changes in sensor parameter settings, sensor 369
failures over time, battery status changes based on usage, and changes in the position 370
and connectivity of sensors. 371

Reward function To determine the reward function, we need to first decide on 372
our overall objective function. To be amenable to POMDP methods, this objective 373
function must be of the form shown before, namely the mean sum of per-time-step 374
rewards. Writing the objective function this way automatically specifies the reward 375
function. For example, if the objective function is the mean cumulative tracking 376
error, then the reward function simply maps the state at each time to the mean 377
tracking error at that time. 378

Observations The observation at each time represents those features of the system 379
that depend on the state and are accessible to the controlling agent (i.e., can be used 380
to inform control decisions). These include sensor outputs (e.g., measurements of 381
target locations and velocities), and those parts of state that are directly observable 382
(e.g., battery status), including prior actions. 383

Observation law The observation law is derived from models of how the observa- 384
tions are related to the underlying states. In particular, we will need to use models 385
of sensors (i.e., the relationship between the sensor outputs and the quantities being 386
measured), and also models of the sensor network configuration. 387

In the next three sections, we provide examples to illustrate how to formulate 388
adaptive sensing problems as POMDPs. In the next section, we show how to 389
formulate an adaptive classification problem as a POMDP (with detection problems 390
being special cases). Then, in the section that follows, we show how to formulate an 391
adaptive tracking problem as a POMDP. Finally, we consider the airborne sensing 392
problem in Section 2 and describe a POMDP formulation for it. (which also applies 393
to the simulation example in Section 7). 394

3.6 POMDP for an adaptive classification problem 395

We now consider a simple classification problem and show how the POMDP frame- 396
work can be used to formulate this problem. In particular, we will give specific forms 397
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for each of the ingredients described in Section 3.5. This simple classification problem398
statement can be used to model problems such as medical diagnostics, nondestructive399
testing, and sensor scheduling for target detection.400

Our problem in illustrated in Fig. 3. Suppose an object belongs to a particular un-401
known class c, taking values in a set C of possible classes. We can take measurements402
on the object that provide us with information from which we will infer the unknown403
class. These measurements come from a “controlled sensor” at our disposal, which404
we can use at will. Each time we use the sensor, we first have to choose a control405
u ∈ U . For each chosen control u, we get a measurement whose distribution depends406
on c and u. Call this distribution Psensor(·|c, u) (repeated uses of the sensor generate407
independent measurements). Each time we apply control u, we incur a cost of κ(u)408
(i.e., the cost of using the controlled sensor depends on the control applied). The409
controlled sensor may represent a particular measurement instrument that can be410
controlled (e.g., with different configurations or settings) or may represent a set411
of fixed sensors from which to choose (e.g., a seismic, radar, and induction sensor412
for landmine detection, as discussed in Scott et al. 2004). Notice that detection (i.e.,413
hypothesis testing) is a special case of our problem because it reduces the case where414
there are two classes: present and absent.415

After each measurement is taken, we have to choose whether or not to produce416
a classification (i.e., an estimate ĉ ∈ C). If we choose to produce such a classification,417
the scenario terminates. If not, we can continue to take another measurement by418
selecting a sensor control. The performance metric of interest here (to be maximized)419
is the probability of correct classification minus the total cost of sensors used.420

To formulate this problem as a POMDP, we must specify the ingredients described421
in Section 3.5: states, actions, state-transition law, reward function, observations, and422
observation law.423

States The possible states in our POMDP formulation of this classification problem424
are the possible classes, together with an extra state to represent that the scenario has425
terminated, which we will denote by τ . Therefore, the state space is given by C ∪ {τ }.426
Note that the state changes only when we choose to produce a classification, as we427
will specify in the state-transition law below.428

Actions The actions here are of two kinds: we can either choose to take a mea-429
surement, in which case the action is the sensor control u ∈ U , or we can choose to430
produce a classification, in which case the action is the class ĉ ∈ C. Hence, the action431
space is given by U ∪ C.432

State-transition law The state-transition law represents how the state evolves at433
each time step as a function of the action. As pointed out before, as long as we are434
taking measurements, the state does not change (because it represents the unknown435

Fig. 3 An adaptive
classification system

Object
Class Class

estimate

Controlled
Sensor

Classify?
Y

N
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object class). As soon as we choose to produce a classification, the state changes to 436
the terminal state τ . Therefore, the state-transition law Ptrans is given by 437

Ptrans(x′|x, a) =
⎧
⎨

⎩

1 if a ∈ U and x′ = x
1 if a ∈ C and x′ = τ

0 otherwise.

Reward function The reward function R here is given by 438

R(x, a) =
⎧
⎨

⎩

−κ(a) if a ∈ U and x �= τ

1 if a ∈ C and x = a
0 otherwise.

If we produce a classification, then the reward is 1 if the classification is correct, and 439
otherwise it is 0. Hence, the mean of the reward when producing a classification is 440
the probability that the classification is correct. If we use the finite-horizon objective 441
function with horizon H, then the objective function represents the probability of 442
producing a correct classification within the time horizon of H (e.g., representing 443
some maximum time limit for producing a classification) minus the total sensing cost. 444

Observations The observations in this problem represent the sensor outputs (mea- 445
surements). The observation space is therefore the set of possible measurements. 446

Observation law The observation law specifies the distribution of the observations 447
given the state and action. So, if x ∈ C and a ∈ U , then the observation law is given by 448
Psensor(·|x, a). If x = τ , then we can define the observation law arbitrarily, because it 449
does not affect the solution to the problem (recall that after the scenario terminates, 450
represented by being in state τ , we no longer take any measurements). 451

Note that as long as we are still taking measurements and have not yet produced a 452
classification, the belief state for this problem represents the a posteriori distribution 453
of the unknown class being estimated. It is straightforward to show that the optimal 454
policy for this problem will always produce a classification that maximizes the a 455
posteriori probability (i.e., is a “MAP” classifier). However, it is not straightforward 456
to deduce exactly when we should continue to take measurements and when we 457
should produce a classification. Determining such an optimal policy requires solving 458
the POMDP. 459

3.7 POMDP for an adaptive tracking problem 460

We now consider a simple tracking problem and show how to formulate it using a 461
POMDP framework. Our problem in illustrated in Fig. 4. We have a Markov chain 462
with state space S evolving according to a state-transition law given by T (i.e., for 463
s, s′ ∈ S , T(s′|s) is the probability of transitioning to state s′ given that the state is 464
s). We assume that S is a metric space—there is a function d : S × S → R such that 465
d(s, s′) represents a “distance” measure between s and s′.1 The states of this Markov 466

1For the case where S represents target kinematic states in Cartesian coordinates, we typically use
the Euclidean norm for this metric.
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Fig. 4 An adaptive tracking
system

Markov Chain Tracker
Track-state
estimate

Controlled
Sensor

chain are not directly accessible—they represent quantities to be tracked over time467
(e.g., the coordinates and velocities of targets).468

To do the tracking, as in the last section, we exploit measurements from a469
“controlled sensor” over time. At each time step, we first have to choose a control470
u ∈ U . For each chosen control u, we get a measurement whose distribution depends471
on the Markov chain state s and control u, denoted Psensor(·|s, u) as before (again,472
we assume that sensor measurements over time are independent). Each time we473
apply control u, we incur a cost of κ(u) (i.e., as in the last example, the cost of using474
the controlled sensor depends on the control applied). As in the last example, the475
controlled sensor may represent a particular measurement instrument that can be476
controlled (e.g., with different configurations or settings) or may represent a set of477
fixed sensor assets from which to choose (e.g., multiple sensors distributed over a478
geographical region, where the control here is which subset of sensors to activate, as479
in He and Chong (2004, 2006), Krakow et al. (2006), Li et al. (2006, 2007)).480

Each measurement is fed to a tracker, which is an algorithm that produces an481
estimate ŝk ∈ S of the state at each time k. For example, the tracker could be a482
Kalman filter or a particle filter (Ristic et al. 2004). The tracker has an internal483
state, which we will denote zk ∈ Z . The internal state is updated as a function of484
measurements:485

zk+1 = ftracker(zk, yk),

where yk is the measurement generated at time k as a result of control uk (i.e., if486
the Markov chain state at time k is sk, then yk has distribution Psensor(·|sk, uk)). The487
estimate ŝk is a function of this internal state zk. For example, in the case of a Kalman488
filter, the internal state represents a mean vector together with a covariance matrix.489
The output ŝk is usually simply the mean vector. In the case of a particle filter,490
the internal state represents a set of particles. See Ristic et al. (2004) for explicit491
equations to represent ftracker.492

The performance metric of interest here (to be maximized) is the negative mean493
of the sum of the cumulative tracking error and the sensor usage cost over a horizon494
of H time steps. To be precise, the tracking error at time k is the “distance” between495
the output of the tracker, ŝk, and the true Markov chain state, sk. Recall that the496
“distance” here is well-defined because we have assumed that S is a metric space. So497
the tracking error at time k is d(ŝk, sk).498

As in the last section, to formulate this adaptive tracking problem as a POMDP,499
we must specify the ingredients described in Section 3.5: states, actions, state-500
transition law, reward function, observations, and observation law.501

States It might be tempting to define the state space for this problem simply to be502
the state space for the Markov chain, S . However, it is important to point out that503
the tracker also contains an internal state, and the POMDP state should take both504
into account. Accordingly, for this problem we will take the state at time k to be the505
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pair [sk, zk], where sk is the state of the Markov chain to be tracked, and zk is the 506
tracker state. Hence, the state space is S × Z . 507

Actions The actions here are the controls applied to the controlled sensor. Hence, 508
the action space is simply U . 509

State-transition law The state-transition law specifies how the state changes at 510
each time k, given the action ak at that time. Recall that the state at time k is 511
the pair [sk, zk]. The Markov chain state sk makes a transition according to the 512
transition probability T(·|sk). The tracker state zk makes a transition depending on 513
the observation yk. In other words, the transition distribution for the next tracker 514
state given zk is the distribution of ftracker(zk, yk) (which in turn depends on the 515
measurement distribution Psensor(·|sk, ak)). This completely specifies the distribution 516
of [sk+1, zk+1] as a function of [sk, zk] and ak. 517

Reward function The reward function is given by 518

R([sk, zk], ak) = −(d(ŝk, sk) + κ(ak)),

where the reader should recall that the tracker output ŝk is a function of zk. Notice 519
that the first term in the (per-time-step) reward, which represents tracking error, is 520
not a function of ak. Instead, the tracking errors depend on the actions applied over 521
time through the track estimates ŝk (which in turn depend on the actions through the 522
distributions of the measurements). 523

Observations As in the previous example, the observations here represent the sen- 524
sor outputs (measurements). The observation space is therefore the set of possible 525
measurements. 526

Observation law The observation law is given by the measurement distribution 527
Psensor(·|sk, ak). Note that the observation law does not depend on zk, the tracker 528
state, even though zk is part of the POMDP state. 529

3.8 POMDP for motivating example 530

In this section, we give mathematical forms for each of the ingredients listed in 531
Section 3.5 for the motivating example described in Section 2 (these also apply to 532
the simulation example in Section 7). To review, the motivating example dealt with 533
an airborne sensor charged with detecting and tracking multiple moving targets. The 534
airborne sensor is agile in that it can steer its beam to different ground locations. Each 535
interrogation of the ground results in an observation as to the absence or presence 536
of targets in the vicinity. The adaptive sensing problem is to use the collection of 537
measurements made up to the current time to determine the best place to point next. 538

States In this motivating problem, we are detecting and tracking N moving ground 539
targets. For the purposes of this discussion we assume that N is known and fixed, and 540
that the targets are moving in 2 dimensions (a more general treatment, where the 541
number of targets is both unknown and time varying, is given elsewhere (Kreucher 542
et al. 2005c)). We denote these positions as x1, . . . , xN where xi is a 2-dimensional 543
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vector corresponding to target i. Furthermore, because of the terrain, the position544
of the sensor influences the visibility of certain locations on the ground, so sensor545
position is an important component of the state. Denote the (directly observable)546
3-dimensional sensor position by σ . Then the state space X consists of real-valued547
vectors in R

2N+3, i.e., each state takes the form548

x = [x1, x2, . . . , xN−1, xN, σ ].
Although not explicitly shown here, the surveillance region topology is assumed549

known and considered part of the problem specification. This specification affects the550
observation law, as we shall see below.551

Actions The airborne sensor is able to measure a single detection cell and make552
an imperfect measurement as to the presence or absence of a target in that cell.553
Therefore, the action a ∈ {1, . . . , C} is an integer specifying which of the C discrete554
cells is measured.555

State-transition law The state-transition law describes the distribution of the next556
state vector x′ = [x′

1, x′
2, . . . , x′

N, σ ′] conditioned on the current state vector x =557
[x1, x2, . . . , xN, σ ] and the action a. Because our states are vectors in R

2N+3, we will558
specify the state-transition law as a conditional density function. For simplicity, we559
have chosen to model the evolution of each of the N targets as independent and560
following a Gaussian law, i.e.,561

Tsingle target(x′
i|xi) = 1

2π |�|−1/2 exp− 1
2 (xi−x′

i)
	�−1(xi−x′

i), i = 1, . . . , N

(where xi and x′
i are treated here as column vectors). In other words, each target562

moves according to a random walk (purely diffusive). Because of our independence563
assumption, we can write the joint target-motion law as564

Ttarget
(
x′

1, . . . , x′
N|x1, . . . , xN

) =
N∏

i=1

Tsingle target
(
x′

i|xi
)
.

The temporal evolution of the sensor position is assumed deterministic and known565
precisely (i.e., the aircraft if flying a pre-planned pattern). We use f (σ ) to denote566
the sensor trajectory function, which specifies the next position of the sensor given567
current sensor position σ ; i.e., if the current sensor position is σ , then f (σ ) is exactly568
the next sensor position. Then, the motion law for the sensor is569

Tsensor(σ
′|σ) = δ

(
σ ′ − f (σ )

)
.

With these assumptions, the state-transition law is completely specified by570

Ptrans
(
x′|x, a

) = Ttarget
(
x′

1, . . . , x′
N|x1, . . . , xN

)
Tsensor

(
σ ′|σ )

.

Note that according to our assumptions, the actions taken do not affect the state571
evolution. In particular, we assume that the targets do not know they are under572
surveillance and consequently they do not take evasive action (see Kreucher et al.573
2006 for a model that includes evasion).574
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Reward function In previous work (Kreucher et al. 2005b), we have found that 575
information gain provides a useful metric that captures a wide variety of goals. 576
Information gain is a metric that measures the relative information increase between 577
a prior belief state and a posterior belief state, i.e., it measures the benefit a particular 578
observation has yielded. An information theoretic metric is intuitively pleasing as it 579
measures different types of benefits (e.g., information about the number of targets 580
present versus information about the positions of individual targets) on an equal 581
footing, that of information gain. Furthermore, it has been shown that information 582
gain can be viewed as a near universal proxy for any risk function (Kreucher et al. 583
2005a). Therefore, the reward used in this application is the gain in information 584
between the belief state before a measurement b k and the (measurement updated) 585

belief state after a measurement is made b̂ k. We use a particular information metric 586
called the Rènyi divergence, defined as follows. The Rènyi divergence of two belief 587
states p and q is given by 588

Dα(p||q) = 1
α − 1

ln
∑

x∈X
p(x)αq(x)1−α

where α > 0. To define the reward r(b , a) in our context, given a belief state b and 589
an action a, we first write, 590


α(b , a, y) = Dα

(
b̂ ||b

)
,

where y is an observation with distribution given by the observation law Pobs(·|b , a) 591

and b̂ is the “updated” belief state computed as described earlier in Section 3.2 using 592
Bayes’ rule and knowledge of b , a, and y. Note that 
α(b , a, y) is a random variable 593
because it is a function of the random observation y, and hence its distribution 594
depends on a. We will call this random variable the myopic information gain. 595
The reward function is defined in terms of the myopic information gain by taking 596
expectation: r(b , a) = E[
α(b , a, y)|b , a]. 597

Observations When a cell is interrogated, the sensor receives return energy and 598
thresholds this energy to determine whether it is to be declared a detection or a 599
nondetection. This imperfect measurement gives evidence as to the presence or 600
absence of targets in the cell. Additionally, the current sensor position is directly 601
observable. Therefore, the observation is given by [z, σ ], where z ∈ {0, 1} is the one- 602
bit observation representing detection or nondetection, and σ is the position of the 603
sensor. 604

Observation law Detection/nondetection is assumed to result from thresholding a 605
Rayleigh-distributed random variable that characterizes the energy returned from an 606
interrogation of the ground. The performance is completely specified by a probability 607
of detection Pd and a false alarm rate Pf, which under the Rayleigh assumption are 608

linked by a signal-to-noise-plus-clutter ratio, SNCR, by Pd = P1/(1+SNCR)

f . 609
To precisely specify the observation model, we make the following notational 610

definitions. First, let oa(x1, . . . , xN) denote the occupation indicator function for cell 611
a, defined as oa(x1, . . . , xN) = 1 when at least one of the targets projects into sensor 612
cell a (i.e., at least one of the xi locations are within cell a), and oa(x1, . . . , xN) = 0 613
otherwise. Furthermore, let va(σ ) denote the visibility indicator function for cell a, 614
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defined as va(σ ) = 1 when cell a is visible from a sensor positioned at σ (i.e., there is615
no line of sight obstruction between the sensor and the cell), and va(σ ) = 0 otherwise.616
Then the probability of receiving a detection given state x = [x1, . . . , xN, σ ] and617
action a is618

Pdet(x, a) =
{

Pd if oa(x1, . . . , xN)va(σ ) = 1

Pf if oa(x1, . . . , xN)va(σ ) = 0.

Therefore, the observation law is specified completely by619

Pobs(z|x, a) =
{

Pdet(x, a) if z = 1

1 − Pdet(x, a) if z = 0.

4 Basic principle: Q-value approximation620

4.1 Overview and history621

In this section, we describe the basic principle underlying approximate methods to622
solve adaptive sensing problems that are posed as POMDPs. This basic principle is623
due to Bellman, and gives rise to a natural framework in which to discuss a variety of624
approximation approaches. Specifically, these approximation methods all boil down625
to the problem of approximating Q-values.626

Methods for solving POMDPs have their roots in the field of optimal control,627
which dates back to the end of the seventeenth century with the work of Johann628
Bernoulli (Willems 1996). This field received significant interest in the middle of629
the twentieth century, when much of the modern methodology was developed, most630
notably by Bellman (1957), who applied dynamic programming to bear on optimal631
control, and Pontryagin et al. (1962), who introduced his celebrated maximum632
principle based on calculus of variations. Since then, the field of optimal control has633
enjoyed much fruit in its application to control problems arising in engineering and634
economics.635

The recent history of methods to solve optimal stochastic decision problems took636
an interesting turn in the second half of the twentieth century with the work of637
computer scientists in the field of artificial intelligence seeking to solve “planning”638
problems (roughly analogous to what engineers and economists call optimal control639
problems). The results of their work most relevant to the POMDP methods discussed640
here are reported in a number of treatises from the 80s and 90s (Cheng 1988;641
Kaelbling et al. 1996, 1998; Zhang and Liu 1996). The methods developed in the642
artificial intelligence (machine learning) community aim to provide computationally643
feasible approximations to optimal solutions for complex planning problems under644
uncertainty. The operations research literature has also continued to reflect ongoing645
interest in computationally feasible methods for optimal decision problems (Lovejoy646
1991b; Chang et al. 2007; Powell 2007).647

The connection between the significant work done in the artificial intelligence648
community and those of the earlier work on optimal control is noted by Bertsekas649
and Tsitsiklis in their 1996 book (Bertsekas and Tsitsiklis 1996). In particular, they650
note that the developments in reinforcement learning—the approach taken by arti-651
ficial intelligence researchers for solving planning problems—is most appropriately652
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understood in the framework of Markov decision theory and dynamic programming. 653
This framework is now widely reflected in the artificial intelligence literature (Kael- 654
bling et al. 1996, 1998; Zhang and Liu 1996; Thrun et al. 2005). Our treatment in this 655
paper rests on this firm and rich foundation (though our focus is not on reinforcement 656
learning methods). 657

4.2 Bellman’s principle and Q-values 658

The key result in Markov decision theory relevant here is Bellman’s principle. Let 659
V∗

H(b 0) be the optimal objective function value (over horizon H) with b 0 as the initial 660
belief state. Then, Bellman’s principle states that 661

V∗
H(b 0) = max

a

(
r(b 0, a) + E

[
V∗

H−1(b 1)|b 0, a
])

where b 1 is the random next belief state (with distribution depending on a), and 662
E[·|b 0, a] represents conditional expectation with respect to the random next state 663
b 1, whose distribution depends on b 0 and a. Moreover, 664

π∗
0 (b 0) = arg max

a

(
r(b 0, a) + E

[
V∗

H−1(b 1)|b 0, a
])

is an optimal policy. 665
Define the Q-value of taking action a at state b k as 666

QH−k(b k, a) = r(b k, a) + E
[
V∗

H−k−1(b k+1)|b k, a
]
,

where b k+1 is the random next belief state (which depends on the observation yk at 667
time k, as described in Section 3.2). Then, Bellman’s principle can be rewritten as 668

π∗
k (b k) = arg max

a
QH−k(b k, a)

i.e., the optimal action at belief-state b k (at time k, with a horizon-to-go of H − k) is 669
the one with largest Q-value at that belief state. This principle, called lookahead, is 670
the heart of POMDP solution approaches. 671

4.3 Stationary policies 672

In general, an optimal policy is a function of time k. If H is sufficiently large, then 673
the optimal policy is approximately stationary (independent of k). This is intuitively 674
clear: if the end of the time horizon is a million years away, then how we should act 675
today given a belief-state is the same as how we should act tomorrow with the same 676
belief state. Said differently, if H is sufficiently large, the difference between QH and 677
QH−1 is negligible. Moreover, if needed we can always incorporate time itself into the 678
definition of the state, so that dependence on time is captured simply as dependence 679
on state. 680

Henceforth we will assume for convenience there is a stationary optimal policy, 681
and this is what we seek. We will use the notation π for stationary policies (with 682
no subscript k)—this significantly simplifies the notation. Our approach is equally 683
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applicable to the short-horizon, nonstationary case, with appropriate notational684
modification (to account for the time dependence of decisions).685

4.4 Receding horizon686

Assuming H is sufficiently large and that we seek a stationary optimal policy, at any687
time k we write:688

π∗(b) = arg max
a

QH(b , a).

Notice that the horizon is taken to be fixed at H, regardless of the current time k. This689
is justified by our assumption that H is so large that at any time k, the horizon is still690
approximately H time steps away. This approach of taking the horizon to be fixed at691
H is called receding horizon control. For convenience, we will also henceforth drop692
the subscript H from our notation (unless the subscript is explicitly needed).693

4.5 Approximating Q-values694

Recall Q(b , a) is the reward r(b , a) of taken action a at belief-state b plus the695
expected cumulative reward of applying the optimal policy for all future actions.696
This second term in the Q-value is in general difficult to obtain, especially when the697
belief-state is large. For this reason, approximation methods are necessary to obtain698
Q-values. Note that the quality of an approximation is not so much in the accuracy699
of the actual Q-values obtained, but in the ranking of the actions reflected by their700
relative values.701

In Section 6, we describe a variety of methods to approximate Q-values. But702
before discussing such methods, we first describe the basic control framework for703
using Q-values to inform control decisions.704

5 Basic control architecture705

By Bellman’s principle, knowing the Q-values allows us to make optimal control706
decisions. In particular, if we are currently at belief-state b , we need only find the707
action a with the largest Q(b , a). This principle yields a basic control framework708
that is illustrated in Fig. 5. The top-most block represents the sensing system, which709
we treat as having an input and two forms of output. The input represents actions710
(external control commands) we can apply to control the sensing system. Actions711
usually include sensor-resource controls, such as which sensor(s) to activate, at what712
power level, where to point, what waveforms to use, and what sensing modes to713
activate. Actions may also include communication-resource controls, such as the data714
rate for transmission from each sensor.715

The two forms of outputs from the sensing system represent:716

1) Fully observable aspects of the internal state of the sensing system (called717
observables), and718

2) Measurements (observations) of those aspects of the internal state that are not719
directly observable (which we refer to simply as measurements).720
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Fig. 5 Basic lookahead
framework
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We assume that the underlying state-space is the Cartesian product of two sets, one 721
representing unobservables and the other representing observables. Target states 722
are prime examples of unobservables. So, measurements are typically the outputs 723
of sensors, representing observations of target states. Observables include things 724
like sensor locations and orientations, which sensors are activated, battery status 725
readings, etc. In the remainder of this section, we describe the components of 726
our control framework. Our description starts from the architecture of Fig. 5 and 727
progressively fills in the details. 728

5.1 Controller 729

At each decision epoch, the controller takes the outputs (measurements and observ- 730
ables) from the sensing system and, in return, generates an action that is fed back 731
to the sensing system. This basic closed-loop architecture is familiar to mainstream 732
control system design approaches. 733

The controller has two main components. The first is the measurement filter, which 734
takes as input the measurements, and provides as output the a posteriori (posterior) 735
distribution of unobservable internal states (henceforth called unobservables). In 736
the typical situation where the unobservables are target states, the measurement 737
filter outputs a posterior distribution on target states given the measurement history. 738
The measurement filter is discussed further below. The posterior distribution of the 739
unobservables in addition to the observables form the belief state, the posterior 740
distribution of the underlying state. The second component is the action selector, 741
which takes the belief state and computes an action (the output of the controller). 742
The basis for action selection is Bellman’s principle, using Q-values. This is discussed 743
below. 744

5.2 Measurement filter 745

The measurement filter computes the posterior distribution given measurements. 746
This component is present in virtually all target-tracking systems. It turns out that 747
the posterior distribution can be computed iteratively: each time we obtain a new 748
measurement, the posterior distribution can be obtained by updating the previous 749
posterior distribution based on knowing the current action, the transition law, and the 750
observation law. This update is based on Bayes’ rule, described earlier in Section 3.2. 751
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Fig. 6 Basic components of
the action selector
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The measurement filter can be constructed in a number of ways. If the posterior752
distribution always resides within a family of distributions that is conveniently para-753
meterized, then all we need to do is keep track of the belief-state parameters. This754
is the case, for example, if the belief state is Gaussian. Indeed, if the unobservables755
evolve in a linear fashion, then these Gaussian parameters can be updated using a756
Kalman filter. In general, however, it is not practical to keep track of the exact belief757
state. Indeed, a variety of options have been explored for belief-state representation758
and simplification (e.g., Rust 1997; Roy et al. 2005; Yu and Bertsekas 2004). We will759
have more to say about belief-state simplification in Section 6.11.760

Particle filtering is a Monte Carlo sampling method for updating posterior distri-761
butions. Instead of maintaining the exact posterior distribution, we maintain a set of762
representative samples from that distribution. It turns out that this method dovetails763
naturally with Monte Carlo sampling-based methods for Q-value approximation, as764
we will describe later in Section 6.8.765

5.3 Action selector766

As shown in Fig. 6, the action selector consists of a search (optimization) algorithm767
that optimizes an objective function, the Q-function, with respect to an action. In768
other words, the Q-function is a function of the action—it maps each action, at a769
given belief state, to its Q-value. The action that we seek is one that maximizes the770
Q-function. So, we can think of the Q-function as a kind of “action-utility” function771
that we wish to maximize. The search algorithm iteratively generates a candidate772
action and evaluates the Q-function at this action (this numerical quantity is the Q-773
value), searching over the space of candidate actions for one with the largest Q-value.774
Methods for obtaining (approximating) the Q-values is described in the next section.775

6 Q-value approximation methods776

6.1 Basic approach777

Recall the definition of the Q-value,778

Q(b , a) = r(b , a) + E
[
V∗ (

b ′) |b , a
]
, (1)

where b ′ is the random next belief state (with distribution depending on a). In all but779
very special problems, it is impossible to compute the Q-value exactly. In this section,780
we describe a variety of methods to approximate the Q-value. Because the first term781
on the right-hand side of (1) is usually easy to compute, most approximation methods782
focus on the second term. As pointed out before, it is important to realize that the783
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quality of an approximation to the Q-value is not so much in the accuracy of the 784
actual values obtained, but in the ranking of the actions reflected by their relative 785
values. 786

We should point out that each of the approximation methods presented in this 787
section has its own domain of applicability. Traditional reinforcement learning 788
approaches (Section 6.6), predicated on running a large number of simulations to 789
“train,” are broadly applicable as they only require a generative model. However, 790
these methods often have infeasible computational burden owing to the long training 791
time required for some problems. Furthermore, there is an extensibility problem, 792
where a trained function may perform very poorly if the problem changes slightly 793
between the training stage and the application stage. To address these concerns, 794
we present several sampling techniques (Sections 6.2, 6.8, 6.9, 6.11) which are also 795
very broadly applicable as they only require a generative model. These methods 796
do not require a training phase, per se, but do on-line estimation. However, in 797
some instances, these too may require more computations than desirable. Simi- 798
larly, parametric approximations (Section 6.5) and action-sequence approximations 799
(Section 6.7) are general in applicability but may entail excessive computational 800
requirements. Relaxation methods (Section 6.3) and heuristics (Section 6.4) may 801
provide reduced computation but require advanced domain knowledge. 802

6.2 Monte Carlo sampling 803

In general, we can think of Monte Carlo methods simply as the use of computer 804
generated random numbers in computing expectations of random variables through 805
averaging over many samples. With this in mind, it seems natural to consider using 806
Monte Carlo methods to compute the value function directly based on Bellman’s 807
equation: 808

V∗
H(b 0) = max

a0

(
r(b 0, a0) + E

[
V∗

H−1(b 1)|b 0, a0
])

.

Notice that the second term on the right-hand side involves expectations (one per 809
action candidate a0), which can be computed using Monte Carlo sampling. However, 810
the random variable inside each expectation is itself an objective function value 811
(with horizon H − 1), and so it too involves a max of an expectation via Bellman’s 812
equation: 813

V∗
H(b 0) = max

a0

(

r(b 0, a0) + E
[

max
a1

(
r(b 1, a1) + E

[
V∗

H−2(b 2)|b 1, a1
])

∣
∣
∣
∣ b 0, a0

])

.

Notice we now have two “layers” of max and expectation, one “nested” within 814
the other. Again, we see the inside expectation involves the value function (with 815
horizon H − 2), which again can be written as a max of expectations. Proceeding 816
this way, we can write V∗

H(b 0) in terms of H layers of max and expectations. Each 817
expectation can be computed using Monte Carlo sampling. The remaining question 818
is how computationally burdensome is this task? 819

Kearns et al. (1999) have provided a method to calculate the computational 820
burden of approximating the value function using Monte Carlo sampling as described 821
above, given some prescribed accuracy in the approximation of the value function. 822
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Unfortunately, it turns out that for practical POMDP problems this computational823
burden is prohibitive, even for modest degrees of accuracy. So, while Bellman’s824
equation suggests a natural Monte Carlo method for approximating the value825
function, the method is not useful in practice. For this reason, we seek alternative826
approximation methods. In the next few subsections, we explore some of these827
methods.828

6.3 Relaxation of optimization problem829

Some problems that are difficult to solve become drastically easier if we relax certain830
aspects of the problem. For example, by removing a constraint in the problem,831
the “relaxed” problem may yield to well-known solution methods. This constraint832
relaxation enlarges the constraint set, and so the solution obtained may no longer833
be feasible in the original problem. However, the objective function value of the834
solution bounds the optimal objective function value of the original problem.835

The Q-value involves the quantity V∗(b ′), which can be viewed as the optimal836
objective function value corresponding to some optimization problem. The method837
of relaxation, if applicable, gives rise to a bound on V∗(b ′), which then provides an838
approximation to the Q-value. For example, a relaxation of the original POMDP839
may result in a bandit problem (see Krishnamurthy and Evans 2001; Krishnamurthy840
2005); or may be solvable via linear programming (see de Farias and Van Roy841
2003, 2004). (See also specific applications to sensor management Castanon 1997;842
Washburn et al. 2002.) In general, the quality of this approximation is a function of843
the specific relaxation and is very problem specific. For example, Castanon (1997)844
suggests that in his setting his relaxation approach is feasible for generating near-845
optimal solutions. Additionally, Washburn et al. (2002) show that the performance of846
their index rule is eclipsed by that of multi-step lookahead under certain conditions847
of the process noise, while being much closer in the low-noise situation. While it848
is sometimes possible to apply analytical approaches to a relaxed version of the849
problem, it is generally accepted that problems that can be posed as POMDPs are850
unlikely to be amenable to analytical solution approaches.851

Bounds on the optimal objective function value can also be obtained by approx-852
imating the state space. Lovejoy (1991a) shows how to approximate the state space853
by a finite grid of points, and use that grid to construct upper and lower bounds on854
the optimal objective function.855

6.4 Heuristic approximation856

In some applications we are unable to compute Q-values directly, but can use domain857
knowledge to develop an idea of its behavior. If so, we can heuristically construct a858
Q-function based on this knowledge.859

Recall from (1) that the Q-value is the sum of two terms, where the first term860
(the immediate reward) is usually easy to compute. Therefore, it often suffices861
to approximate only the second term in (1), which is the mean optimal objective862
function value starting at the next belief state, which we call the expected value-to-go863
(EVTG). (Note the EVTG is a function of both b and a, because the distribution864
of the next belief state is a function of b and a.) In some problems, it is possible to865
construct a heuristic EVTG based on domain knowledge. If the constructed EVTG866
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properly reflects tradeoffs in the selection of alternative actions, then the ranking of 867
these actions via their Q-values will result in the desired “lookahead.” 868

For example, consider the motivating example of tracking multiple targets with 869
a single sensor. Suppose we can only measure the location of one target per 870
decision epoch. The problem then is to decide which location to measure and the 871
objective function is the aggregate (multi-target) tracking error. The terrain over 872
which the targets are moving is such that the measurement errors are highly location 873
dependent, for example because of the presence of topological features which cause 874
some areas to be invisible from a future sensor position. In this setting, it is intuitively 875
clear that if we can predict sensor and target motion so that we expect a target 876
is about to be obscured, then we should focus our measurements on that target 877
immediately before the obscuration so that its track accuracy is improved and the 878
overall tracking performance maximized in light of the impending obscuration. 879

The same reasoning applies in a variety of other situations, including those where 880
targets are predicted to become unresolvable to the sensor (e.g., two targets that 881
cross) or where the target and sensor motion is such that future measurements 882
are predicted to be less reliable (e.g., a bearings-only sensor that is moving away 883
from a target). In these situations, we advocate a heuristic method that replaces the 884
EVTG by a function that captures the long-term benefit of an action in terms of an 885
“opportunity cost” or “regret.” That is, we approximate the Q-value as 886

Q(b , a) ≈ r(b , a) + wN(b , a)

where N(b , a) is an easily computed heuristic approximation of the long-term value, 887
and w is a weighting term that allows us to trade the influence of the immediate value 888
and the long-term value. As a concrete example of a useful heuristic, we have used 889
the “gain in information for waiting” as a choice of N(b , a) (Kreucher et al. 2004). 890
Specifically, let ḡk

a denote the expected value of the Rényi divergence between the 891
belief state at time k and the updated belief state at time k after taking action a, 892
as defined in Section 3.8 (i.e., the myopic information gain). Note that this myopic 893
information gain is a random variable whose distribution depends on a, as explained 894
in Section 3.8. Let pk

a(·) denote the distribution of this random variable. Then a 895
useful approximation of the long-term value of taking action a is the gain (loss) in 896
information received by waiting until a future time step to take the action, 897

N(b , a) ≈
M∑

m=1

γ msgn
(
ḡk

a − ḡk+m
a

)
Dα

(
pk

a(·)||pk+m
a (·))

where M is the number of time steps in the future that are considered. 898
Each term in the summand of N(b , a) has two components. First, sgn

(
ḡk

a − ḡk+m
a

)
899

signifies if the expected reward for taking action a in the future is more or less 900
than the present. A negative value implies that the future is better and that the 901
action ought to be discouraged at present. A positive value implies that the future 902
is worse and that the action ought to be encouraged at present. This may happen, for 903
example, when the visibility of a given target is getting worse with time. The second 904
term, Dα

(
pk

a(·)||pk+m
a (·)), reflects the magnitude of the change in reward using the 905

divergence between the density on myopic rewards at the current time step and at 906
a future time step. A small number implies the present and future rewards are very 907
similar, and therefore the nonmyopic term should have little impact on the decision 908
making. 909
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Therefore, N(b , a) is positive if an action is less favorable in the future (e.g.,910
the target is about to become obscured). This encourages taking actions that are911
beneficial in the long term, and not just taking actions based on their immediate912
reward. Likewise, the term is negative if the action is more favorable in the future913
(e.g., the target is about to emerge from an obscuration). This discourages taking914
actions now that will have more value in the future.915

6.5 Parametric approximation916

In situations where a heuristic Q-function is difficult to construct, we may consider917
methods where the Q-function is approximated by a parametric function (by this918
we mean that we have a function approximator parameterized by one or more919

parameters). Let us denote this approximation by Q̃(b , θ), where θ is a parameter920
(to be tuned appropriately). For this approach to be useful, the computation of921

Q̃(b , θ) has to be relatively simple, given b and θ . Typically, we seek approximations922
for which it is easy to set the value of the parameter θ appropriately, given some923
information of how the Q-values “should” behave (e.g., from expert knowledge,924
empirical results, simulation, or on-line observation). This adjustment or tuning of925
the parameter θ is called training. In contrast to on-line approximation methods926
discussed in this section, the training process in parametric approximation is often927
done off-line.928

As in the heuristic approximation approach, the approximation of the Q-function929
by the parametric function approximator is usually accomplished by approximating930

the EVTG, or even directly approximating the objective function V∗.2 In the usual931
parametric approximation approach, the belief state b is first mapped to a set of932
features. The features are then passed through a parametric function to approximate933
V∗(b). For example, in the problem of tracking multiple targets with a single sensor,934
we may extract from the belief state some information on the location of each target935
relative to the sensor, taking into account the topology. These constitute features.936
For each target, we then assign a numerical value to these features, reflecting the937
measurement accuracy. Finally, we take a linear combination of these numerical938
values, where the coefficients of this linear combination serve the role of the939
parameters to be tuned.940

The parametric approximation method has some advantages over methods based941
only on heuristic construction. First, the training process usually involves numerical942
optimization algorithms, and thus well-established methodology can be brought to943
bear on the problem. Second, even if we lack immediate expert knowledge on our944
problem, we may be able to experiment with the system (e.g., by using a simulation945
model). Such empirical output is useful for training the function approximator.946
Common training methods found in the literature go by the names of reinforcement947
learning, Q-learning, neurodynamic programming, and approximate dynamic pro-948
gramming. We have more to say about reinforcement learning in the next section.949

2In fact, given a POMDP, the Q-value can be viewed as the objective function value for a related
problem; see Bertsekas and Tsitsiklis (1996).
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The parametric approximation approach may be viewed as a systematic method 950
to implement the heuristic approach. But note that even in the parametric approach, 951
some heuristics are still needed in the choice of features and in the form of the 952
function approximator. For further reading, see Bertsekas and Tsitsiklis (1996). 953

6.6 Reinforcement learning 954

A popular method for approximating the Q-function based on the parametric 955
approximation approach is reinforcement learning or Q-learning (Watkins 1989). 956
Recall that the Q-function satisfies the equation 957

Q(b , a) = r(b , a) + E
[

max
α

Q
(
b ′, α

)∣∣
∣ b , a

]
. (2)

In Q-learning, the Q-function is estimated from multiple trajectories of the process. 958
Assuming as usual that the number of states and actions are finite, we can represent 959
Q(b , a) as a lookup table. In this case, given an arbitrary initial value of Q(b , a), 960
the one-step Q-learning algorithm (Sutton and Barto 1998) is given by the repeated 961
application of the update equation: 962

Q(b , a) ← (1 − β)Q(b , a) + β
(

r(b , a) + max
α

Q
(
b ′, α

))
, (3)

where β is a parameter in (0, 1) representing a “learning rate,” and each of the 4- 963
tuples {b , a, b ′, r} are examples of states, actions, next states, and rewards incurred 964
during the training phase. With enough examples of belief states and actions, the 965
Q-function can be “learned” via simulation or on-line. 966

Unfortunately, in most realistic problems (the problems considered in this paper 967
included) it is infeasible to represent the Q-function as a lookup table. This is 968
either due to the large number of possible belief states (our case), actions, or both. 969
Therefore, as pointed out in the last section, function approximation is required. A 970
standard and simplest class of Q-function approximators are linear combinations of 971
basis functions (also called features): 972

Q(b , a) = θ(a)	φ(b), (4)

where φ(b) is a feature vector (often constructed by a domain expert) associated 973
with state b and the coefficients of θ(a) are to be estimated, i.e., the training data 974
is used to learn the best approximation to Q(b , a) among all linear combinations of 975
the features. Gradient descent is used with the training data to update the estimate 976
of θ(a): 977

θ(a) ← θ(a) + β

(

r(b , a) + max
a′ Q(b ′, a′) − Q(b , a)

)

∇θ Q(b , a)

= θ(a) + β

(

r(b , a) + max
a′ θ(a′)	φ(b ′) − θ(a)	φ(b)

)

φ(b).

Note that we have taken advantage of the fact that for the case of a linear function 978
approximator, the gradient is given by ∇Q(b , a) = φ(b). Hence, at every iteration, 979
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θ(a) is updated in the direction that minimizes the empirical error in (2). When980
a lookup table is used in (4), this algorithm reduces to (3). Once the learning981
of the vector θ(a) is completed, optimal actions can be computed according to982
arg maxa θ(a)	φ(b). Determining the learning rate (β) and the number of training983
episodes required is a matter of active research.984

Selecting a set of features that simultaneously provide both an adequate descrip-985
tion of the belief state and a parsimonious representation of the state space requires986
domain knowledge. For the illustrative example that we use in this paper (see987
Section 3.8), the feature vector φ(b) should completely characterize the surveillance988
region and capture its nonstationary nature. For consistency in comparison to other989
approaches, we appeal to features that are based on information theory, although990
this is simply one possible design choice. In particular, we use the expected myopic991
information gain at the current time step and the expected myopic information992
gain at the next time step as features which characterize the state. Specifically, let993
r(b , a) = E[
α(b , a, y)|b , a] be defined as in Section 3.8. Next, define b ′ to be the994
belief state at the hypothetical “next” time step starting at the current belief state b ,995
computed using the second of the two-step update procedure in Section 3.2. In other996
words, b ′ is what results in the next step if only a state transition takes place, without997
an update based on incorporating a measurement. Then, the feature vector is998

φ(b) = [
r(b , 1), . . . , r(b , C), r(b ′, 1), . . . , r(b ′, C)

]

where C is the number of cells (and also the number of actions). In the situation999
of time-varying visibility, these features capture the immediate value of various1000
actions and allow the system to learn the long-term value by looking at the change in1001
immediate value of the actions over time. In a more general version of this problem,1002
actions might include more than just which cell to measure—for example, actions1003
might also involve which waveform to transmit. In these more general cases, the1004
feature vector will be have more components to account for the larger set of possible1005
actions.1006

6.7 Action-sequence approximations1007

Let us write the value function (optimal objective function value as a function of1008
belief state) as1009

V∗(b) = max
π

E

[
H−1∑

k=0

r(b k, π(b k))

∣
∣
∣
∣
∣
b , π(b)

]

= E

[

max
a0,...,aH−1:ak=π(b k)

H−1∑

k=0

r(b k, ak)

∣
∣
∣
∣
∣
b

]

, (5)

where the notation maxa0,...,aH−1:ak=π(b k) means maximization subject to the constraint1010
that each action ak is a (fixed) function of the belief state b k. If we relax this constraint1011
on the actions and allow them to be arbitrary random variables, then we have an1012
upper bound on the value function:1013

V̂HO(b) = E

[

max
a0,...,aH−1

H−1∑

k=0

r(b k, ak)

∣
∣
∣
∣
∣
b

]

.
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In some applications, this upper bound provides a suitable approximation to the 1014
value function. The advantage of this method is that in certain situations the 1015
computation of the “max” above involves solving a relatively easy optimization 1016
problem. This method is called hindsight optimization (Chong et al. 2000; Wu et al. 1017
2002). 1018

One implementation involves averaging over many Monte Carlo simulation runs 1019
to compute the expectation above. In this case, the “max” is computed for each 1020
simulation run by first generating all the random numbers for that run, and then 1021
applying a static optimization algorithm to compute optimal actions a0, . . . , aH−1. It 1022
is easy now to see why we call the method “hindsight” optimization: the optimization 1023
of the action sequence is done after knowing all uncertainties over time, as if making 1024
decisions in hindsight. 1025

As an alternative to relaxing the constraint in (5) (that each action ak is a fixed 1026
function of the belief state b k), suppose we further restrict each action to be simply 1027
fixed (not random). This restriction gives rise to a lower bound on the value function: 1028

V̂FO(b) = max
a0,...,aH−1

E
[
r (b 0, a0) + · · · + r (b H−1, aH−1) |b , a0, . . . , aH−1

]
.

To use analogous terminology to “hindsight optimization,” we call this method 1029
foresight optimization—we make decisions before seeing what actually happens, 1030
based on our expectation of what will happen. The method is also called open loop 1031
feedback control (Bertsekas 2007). For a tracking application of this, see Chhetri 1032
et al. (2004). 1033

We should also point out some alternatives to the simple hindsight or foresight 1034
approaches above. In Yu and Bertsekas (2004), more sophisticated bounds are 1035
described that do not involve simulation, but instead rely on convexity. The method 1036
in Miller et al. (2009) also does not involve simulation, but approximates the future 1037
belief-state evolution using a single sample path. 1038

6.8 Rollout 1039

In this section, we describe the method of policy rollout (or simply rollout) (Bertsekas 1040
and Castanon 1999). The basic idea is simple. First let Vπ (b 0) be the objective 1041
function value corresponding to policy π . Recall that V∗ = maxπ Vπ . In the method 1042
of rollout, we assume that we have a candidate policy πbase (called the base policy), 1043
and we simply replace V∗ in (1) by Vπbase . In other words, we use the following 1044
approximation to the Q-value: 1045

Qπbase(b , a) = r(b , a) + E
[
Vπbase

(
b ′) |b , a

]
.

We can think of Vπbase as the performance of applying πbase in our system. In 1046
many situations of interest, Vπbase is relatively easy to compute, either analytically, 1047
numerically, or via Monte Carlo simulation. 1048

It turns out that the policy π defined by 1049

π(b) = arg max
a

Qπbase(b , a) (6)
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is at least as good as πbase (in terms of the objective function); in other words,1050
this step of using one policy to define another policy has the property of policy1051
improvement. This result is the basis for a method known as policy iteration, where1052
we iteratively apply the above policy-improvement step to generate a sequence1053
of policies converging to the optimal policy. However, policy iteration is difficult1054
to apply in problems with large belief-state spaces, because the approach entails1055
explicitly representing a policy and iterating on it (remember that a policy is a1056
mapping with the belief-state space B as its domain).1057

In the method of policy rollout, we do not explicitly construct the policy π in (6).1058
Instead, at each time step, we use (6) to compute the output of the policy at the1059
current belief-state. For example, the term E[Vπbase(b ′)|b , a] can be computed using1060
Monte Carlo sampling. To see how this is done, observe that Vπbase(b ′) is simply the1061
mean cumulative reward of applying policy πbase, a quantity that can be obtained1062
by Monte Carlo simulation. The term E[Vπbase(b ′)|b , a] is the mean with respect to1063
the random next belief-state b ′ (with distribution that depends on b and a), again1064
obtainable via Monte Carlo simulation. We provide more details in Section 6.10. In1065
our subsequent discussion of rollout, we will focus on its implementation using Monte1066
Carlo simulation. For an application of the rollout method to sensor scheduling for1067
target tracking, see He and Chong (2004, 2006), Krakow et al. (2006), Li et al. (2006,1068
2007).1069

6.9 Parallel rollout1070

An immediate extension to the method of rollout is to use multiple base policies. So1071
suppose that �B = {π1, . . . , πn} is a set of base policies. Then replace V∗ in (1) by1072

V̂(b) = max
π∈�B

Vπ (b).

We call this method parallel rollout (Chang et al. 2004). Notice that the larger the set1073

�B, the tighter V̂(b) becomes as a bound on V∗(b). Of course, if �B contains the1074

optimal policy, then V̂ = V∗. It follows from our discussion of rollout that the policy1075
improvement property also holds here. As with the rollout method, parallel rollout1076
can be implemented using Monte Carlo sampling.1077

6.10 Control architecture in the Monte Carlo case1078

The method of rollout provides a convenient turnkey (systematic) procedure for1079
Monte-Carlo-based decision making and control. Here, we specialize the general1080
control architecture of Section 5 to the use of particle filtering for belief-state1081
updating and a Monte Carlo method for Q-value approximation (e.g., rollout). We1082
note that there is increasing interest in Monte Carlo methods for solving Markov1083
decision processes (Thrun et al. 2005; Chang et al. 2007). Particle filtering, which1084
is a Monte Carlo sampling method for updating posterior distributions, dovetails1085
naturally with Monte Carlo methods for Q-value approximation. An advantage1086
of the Monte Carlo approach is that it does not rely on analytical tractability—it1087
is straightforward in this approach to incorporate sophisticated models for sensor1088
characteristics and target dynamics.1089
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Fig. 7 Basic control
architecture with particle
filtering Sensing System

Particle
Filter

Action
Selector

Samples of
unobservables
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Figure 7 shows the control architecture specialized to the Monte Carlo setting. In 1090
contrast to Fig. 5, a particle filter plays the role of the measurement filter, and its 1091
output consists of samples of the unobservables. Figure 8 shows the action selector 1092
in this setting. Contrasting this with Fig. 6, we see that a Monte Carlo simulator 1093
plays the role of the Q-value approximator (e.g., via rollout). Search algorithms that 1094
are suitable here include the method of Shi and Chen (2000), which is designed for 1095
such problems, dovetails well with a simulation-based approach, and accommodates 1096
heuristics to guide the search within a rigorous framework. 1097

As a specific example, consider applying the method of rollout. In this case, the 1098
evaluation of the Q-value for any given candidate action relies on a simulation model 1099
of the sensing system with some base policy. This simulation model is a “dynamic” 1100
model in that it evaluates the behavior of the sensing system over some horizon of 1101
time (specified beforehand). The simulator requires as inputs the current observables 1102
and samples of unobservables from the particle filter (to specify initial conditions) 1103
and a candidate action. The output of the simulator is a Q-value corresponding 1104
to the current measurements and observables, for the given candidate action. The 1105
output of the simulator represents the mean performance of applying the base policy, 1106
depending on the nature of the objective function. For example, the performance 1107
measure of the system may be the negative mean of the sum of the cumulative 1108
tracking error and the sensor usage cost over a horizon of H time steps, given the 1109
current system state and candidate action. 1110

To elaborate on exactly how the Q-value approximation using rollout is imple- 1111
mented, suppose we are given the current observables and a set of samples of the 1112
unobservables (from the particle filter). The current observables together with a 1113
single sample of unobservables represent a candidate current underlying state of the 1114
sensing system. Starting from this candidate current state, we simulate the application 1115
of the given candidate action (which then leads to a random next state), followed by 1116
application of the base policy for the remainder of the time horizon—during this time 1117

Fig. 8 Components of the
action selector

Particle
Filter

Search
Algorithm

Q-Value

Action Selector

Simulator

Candidate
action

Samples of
unobservables

Observables
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horizon, the system state evolves according to the dynamics of the sensing system as1118
encoded within the simulation model. For this single simulation run, we compute1119
the “action utility” of the system (e.g., the negative of the sum of the cumulative1120
tracking error and sensor usage cost over that simulation run). We do this for each1121
sample of the unobservables, and then average over the performance values from1122
these multiple simulation runs. This average is what we output as the Q-value.1123

The samples of the unobservables from the particle filter that are fed to the1124
simulator (as candidate initial conditions for unobservables) may include all the1125
particles in the particle filter (so that there is one simulation run per particle), or1126
may constitute only a subset of the particles. In principle, we may even run multiple1127
simulation runs per particle.1128

The above Monte Carlo method for approximating POMDP solutions has some1129
beneficial features. First, it is flexible in that a variety of adaptive sensing scenarios1130
can be tackled using the same framework. This is important because of the wide1131
variety of sensors encountered in practice. Second, the method does not require1132
analytical tractability; in principle, it is sufficient to simulate a system component,1133
whether or not its characteristics are amenable to analysis. Third, the framework1134
is modular in the sense that models of individual system components (e.g., sensor1135
types, target motion) may be treated as “plug-in” modules. Fourth, the approach1136
integrates naturally with existing simulators (e.g., Umbra (Gottlieb and Harrigan1137
2001)). Finally, the approach is inherently nonmyopic, allowing the tradeoff of short-1138
term gains for long-term rewards.1139

6.11 Belief-state simplification1140

If we apply the method of rollout to a POMDP, we need a base policy that maps1141
belief states to actions. Moreover, we need to simulate the performance of this1142
policy—in particular, we have to sample future belief states as the system evolves1143
in response to actions resulting from this policy. Because belief states are probability1144
distributions, keeping track of them in a simulation is burdensome.1145

A variety of methods are available to approximate the belief state. For example,1146
we could simulate a particle filter to approximate the evolution of the belief state1147
(as described previously), but even this may be unduly burdensome. As a further1148
simplification, we could use a Gaussian approximation and keep track only of the1149
mean and covariance of the belief state using a Kalman filter or any of its extensions,1150
including extended Kalman filters and unscented Kalman filters (Julier and Uhlmann1151
2004). Naturally, we would expect that the more accurate the approximation of the1152
belief state, the more burdensome the computation.1153

An extreme special case of the above tradeoff is to use a Dirac delta distribution1154
for belief states in our simulation of the future. In other words, in our lookahead1155
simulation, we do away with keeping track of belief states altogether and instead1156
simulate only a completely observable version of the system. In this case, we need only1157
consider a base policy that maps underlying states to actions—we could simply apply1158
rollout to this policy, and not have to maintain any belief states in our simulation.1159
Call this method completely observable (CO) rollout. It turns out that in certain1160
applications, such as in sensor scheduling for target tracking, a CO-rollout base policy1161
is naturally available (see He and Chong 2004, 2006; Krakow et al. 2006; Li et al. 2006,1162
2007). Note that we will still need to keep track of (or estimate) the actual belief state1163
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of the system, even if we use CO rollout. The benefit of CO rollout is that it allows 1164
us to avoid keeping track of (simulated) belief states in our simulation of the future 1165
evolution of the system. 1166

In designing lookahead methods with a simplified belief state, we must ensure the 1167
simplification does not hide the good or bad effects of actions. The resulting Q-value 1168
approximation must properly rank current actions. This requires a carefully designed 1169
simplification of the belief state together with a base policy that appropriately reflects 1170
the effects of taking specific current actions. 1171

For example, suppose that a particular current action results in poor future 1172
rewards because it leads to belief states with large variances. Then, if we use the 1173
method of CO rollout, we have to be careful to ensure that this detrimental effect of 1174
the particular current action be reflected as a cost in the lookahead. (Otherwise, the 1175
effect would not be accounted for properly, because in CO rollout we do not keep 1176
track of belief states in our simulation of the future effect of current actions.) 1177

Another caveat in the use of simplified belief states in our lookahead is that the 1178
resulting rewards in the lookahead may also be affected (and this may have to be 1179
taken into account). For example, consider again the problem of sensor scheduling 1180
for target tracking, where the per-step reward is the negative mean of the sum of 1181
the tracking error and the sensor usage cost. Suppose that we use a particle filter 1182
for tracking (i.e., for keeping track of the actual belief state). However, for our 1183
lookahead, we use a Kalman filter to keep track of future belief states in our rollout 1184
simulation. In general, the tracking error associated with the Kalman filter is different 1185
from that of the particle filter. Therefore, when summed with the sensor usage cost, 1186
the relative contribution of the tracking error to the overall reward will be different 1187
for the Kalman filter compared to the particle filter. To account for this, we will need 1188
to scale the tracking error (or sensor usage cost) in our simulation so that the effect of 1189
current actions are properly reflected in the Q-value approximations from the rollout 1190
with the simplified belief state calculation. 1191

6.12 Reward surrogation 1192

In applying a POMDP approximation method, it is often useful to substitute the 1193
reward function for an alternative (surrogate), for a number of reasons. First, we 1194
may have a surrogate reward that is much simpler (or more reliable) to calculate 1195
than the actual reward (e.g., the method of reduction to classification (Blatt and 1196
Hero 2006a, b)). Second, it may be desirable to have a single surrogate reward for 1197
a range of different actual rewards. For example, Kreucher et al. (2005b), Hero 1198
et al. (2008) shows that average Rényi information gain can be interpreted as a near 1199
universal proxy for any bounded performance metric. Third, reward surrogation may 1200
be necessitated by the use of a belief-state simplification technique. For example, if 1201
we use a Kalman filter to update the mean and covariance of the belief state, then 1202
the reward can only be calculated using these entities. 1203

The use of a surrogate reward can lead to many benefits. But some care must 1204
be taken in the design of a suitable surrogate reward. Most important is that the 1205
surrogate reward be sufficiently reflective of the true reward that the ranking of 1206
actions with respect to the approximate Q-values be preserved. A superficially 1207
benign substitution may in fact have unanticipated but significant impact on the 1208
ranking of actions. For example, recall the example raised in the previous section on 1209
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belief-state simplification, where we substitute the tracking error of a particle filter1210
for the tracking error of a Kalman filter. Superficially, this substitute appears to be1211
hardly a “surrogate” at all. However, as pointed out before, the tracking error of the1212
Kalman filter may be significantly different in magnitude from that of a particle filter.1213

7 Illustration: spatially adaptive airborne sensing1214

In this section, we illustrate the performance of several of the strategies discussed1215
in this paper on a common model problem. The model problem has been chosen1216
to have the characteristics of the motivating example given earlier, while remaining1217
simple enough so that the workings of each method are transparent.1218

In the model problem, there are two targets, each of which is described by a1219
one-dimensional position (see Fig. 9). The state is therefore a 2-dimensional real1220
number describing the target locations plus the sensor position, as described in1221
Section 3.8. Targets move according to a pure diffusion model (given explicitly1222
in Section 3.8 as Tsingle target(y|x)), and the belief state is propagated using this1223
model. Computationally, the belief state is estimated by a multi-target particle filter,1224
according to the algorithm given in Kreucher et al. (2005c).1225

The sensor may measure any one of 16 cells, which span the possible target1226
locations (again, see Fig. 9). The sensor is capable of making three (not necessarily1227
distinct) measurements per time step, receiving binary returns independent from1228
dwell to dwell. The three measurements are fused sequentially: after each measure-1229
ment, we update the belief state by incorporating the measurement using Bayes’ rule,1230
as discussed in Section 3.2. In occupied cells, a detection is received with probability1231
Pd = 0.9. In cells that are unoccupied a detection is received with probability Pf (set1232
here at 0.01). This sensor model is given explicitly in Section 3.8 by Pobs(z|x, a).1233

At the onset, positions of the targets are known only probabilistically. The belief1234
state for the first target is uniform across sensor cells {2, . . . , 6} and for the second1235
target is uniform across sensor cells {11, . . . , 15}. The particle filter used to estimate1236
the belief state is initialized with this uncertainty.1237

Visibility of the cells changes with time as in the motivating example of Section 3.8.1238
At time 1, all cells are visible. At times 2, 3, and 4, cells {11, . . . , 15} become obscured.1239
At time 5, all cells are visible again. This time varying visibility map is known to1240
the sensor management algorithm and should be exploited to best choose sensing1241
actions.1242

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16
Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10 Cell 11 Cell 12 Cell 13 Cell 14 Cell 15 Cell 16

Time 1
Time 2
Time 3
Time 4
Time 5

X X

Fig. 9 The model problem. At the onset, the belief state for target 1 is uniformly distributed across
cells {2, . . . , 6} and the belief state for target 2 is uniformly distributed across cells {11, . . . , 15}. At
time 1 all cells are visible. At times 2, 3, and 4, cells {11, . . . , 15} are obscured. This is a simple case
where a target is initially visible, becomes obscured, and then reemergesQ2
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Sensor management decisions are made by using the belief state to predict which 1243
actions are most valuable. In the following paragraphs, we contrast the decisions 1244
made by a number of different strategies that have been described earlier. 1245

At time 1 a myopic strategy, using no information about the future visibility, will 1246
choose to measure cells uniformly from the set {2, . . . , 6} ∪ {11, . . . , 15} as they all 1247
have the same expected immediate reward. As a result, target 1 and target 2 will on 1248
the average be given equal attention. A nonmyopic strategy, on the other hand, will 1249
choose to measure cells from {11, . . . , 15} as they are soon to become obscured. That 1250
is, the policy of looking for target 2 at time 1 followed by looking for target 1 is best. 1251

Figure 10 shows the performance of several of the on-line strategies discussed 1252
in this paper on this common model problem. The performance of each scheduling 1253
strategy is measured in terms of the mean squared tracking error at each time step. 1254
The curves represent averages over 10, 000 realizations of the model problem. Each 1255
realization has randomly chosen initial positions of the targets and measurements 1256
corrupted by random mistakes as discussed above. The five policies are as follows. 1257

• A random policy that simply chooses one of the 16 cells randomly for inter- 1258
rogation. This policy provides a worst-case performance and will bound the 1259
performance of the other policies. 1260

• A myopic policy that takes the action expected to maximize immediate reward. 1261
Here the surrogate reward is myopic information gain as defined in Section 6.4, 1262
measured in terms of the expected Rényi divergence with α = 0.5 (see Kreucher 1263
et al. 2005b). So the value of an action is estimated by the amount of information 1264
it gains. The myopic policy is sub-optimal because it does not consider the long 1265
term ramifications of its choices. In particular, at time 1 the myopic strategy 1266
has no preference as to which target to measure because both are unobscured 1267
and have uncertain position. Therefore, half of the time, target 1 is measured, 1268
resulting in an opportunity cost because target 2 is about to disappear. 1269

• The reinforcement learning approach described in Section 6.6. The Q-function 1270
was learned using a linear function approximator, as described in detail in 1271
Section 6.6, by running a large number (105) of sample vignettes. Each sample 1272

Fig. 10 The performance of
the five policies discussed
above. Performance is
measured in terms of mean
squared tracking error at each
time step, averaged over a 104
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vignette proceeds as follows. An action is taken randomly. The resulting imme-1273
diate gain (as measured by the expected information gain) is recorded and the1274
resulting next-state computed. This next-state is used to predict the long-term1275
gain using the currently available Q-function. The Q-function is then refined1276
given this information (in practice this is done in blocks of many vignettes, but the1277
principle is the same). Training the Q-function is a very time consuming process.1278
In this case, for each of the 105 sample vignettes, the problem was simulated from1279
beginning to end, and the state and reward variables were saved along the way. It1280
is also unclear as to how the performance of the trained Q-function will change1281
if the problem is perturbed. However, with these caveats in mind, once the Q-1282
function has been learned, decision making is very quick and the resulting policy1283
in this case is very good.1284

• The heuristic EVTG approximation described in Section 6.4 favors actions1285
expected to be more valuable now than in the future. In particular, actions1286
corresponding to measuring target 2 have additional value because target 21287
is predicted to be obscured in the future. This makes the ranking of actions1288
that measure target 2 higher than those that measure target 1. Therefore, this1289
policy (like the other nonmyopic approximations described here) outperforms1290
the myopic policy. The computational burden is on the order of H times the1291
myopic policy, where H is the horizon length.1292

• The rollout policy described in Section 6.8. The base policy used here is to take1293
each of the three measurements sequentially at the location where the target1294
is expected to be, which is a function of the belief state that is current to the1295
particular measurement. This expectation is computed using the predicted future1296
belief state, which requires the belief state to be propagated in time. This is done1297
using a particle filter. We again use information gain as the surrogate reward to1298
approximate Q-values. The computational burden of this method is on the order1299
of NH times that of the myopic policy, where H is the horizon length and N is1300
the number of Monte Carlo trials used in the approximation (here H = 5 and1301
N = 25).1302

• The completely observable rollout policy described in Section 6.11. As in the1303
rollout policy above, the base policy here is to take measurements sequentially1304
at locations where the target is expected to be, but enforces the criterion that1305
the sensor should alternate looking at the two targets. This slight modification is1306
necessary due to the delta-function representation of future belief states. Since1307
the completely observable policy does not predict the posterior into the future, it1308
is significantly faster than standard rollout (an order of magnitude faster in these1309
simulations). However, it requires a different surrogate reward (one that does1310
not require the posterior like the information gain surrogate metric). Here we1311
have chosen as a surrogate reward to count the number of detections received,1312
discounting multiple detections of the same target.1313

Our main intent here is simply to convey that, from Fig. 10, the nonmyopic policies1314
perform similarly, and are better than the myopic and random policies, though at1315
the cost of additional computational burden. The nonmyopic techniques perform1316
similarly since they ultimately choose similar policies. Each one prioritizes measuring1317
the target that is about to disappear over the target that is in the clear. On the other1318
hand, the myopic policy is “losing” the target more often, resulting in higher mean1319
error as there are more catastrophic events.1320
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8 Illustration: multi-mode adaptive airborne sensing 1321

In this section, we turn our attention to adaptive sensing with a waveform-agile sen- 1322
sor. In particular, we investigate how the availability of multiple waveform choices 1323
effects the myopic/nonmyopic trade. The model problem considered here again 1324
focuses on detection and tracking in a visibility impaired environment. The target 1325
dynamics, belief-state update, and observation law are identical to that described in 1326
the first simulation. However, in this section we look at a sensor that is agile over 1327
waveform as well as pointing direction (i.e., can choose both where to interrogate as 1328
well as what waveform to use). Furthermore, the different waveforms are subject 1329
to different (time-varying) visibility maps. Simulations show that the addition of 1330
waveform agility (and corresponding visibility differences) changes the picture. 1331
In this section, we restrict our attention to the EVTG heuristic for approximate 1332
nonmyopic planning. Earlier simulations have shown that in model problems of this 1333
type, the various approaches presented here perform similarly. 1334

8.1 A study with a single waveform 1335

We first present a baseline result comparing random, myopic, and heuristic EVTG 1336
(HECTG) approximation based performance in the (modified) model problem. The 1337
model problem again covers a surveillance area broken into 16 regions with a target 1338
that is to be detected and tracked. The single target moves according to a purely 1339
diffusive model, and the belief state is propagated using this model. However, in this 1340
simulation the model problem is modified in that there is only one sensor allocation 1341
per time step and the detection characteristics are severely degraded. The region 1342
is occluded by a time-varying visibility map that obscures certain sub-regions at 1343
each time step, degrading sensor effectiveness in those regions at that time step. 1344
The visibility map is known exactly a priori and can be used both to predict which 1345
portions of the region are useless to interrogate at the present time (because of 1346
current occlusion) and to predict which regions will be occluded in the future. The 1347
sensor management choice in the case of a single waveform is to select the pointing 1348
direction (one of the 16 sub-regions) to interrogate. If a target is present and the sub- 1349
region is not occluded, the sensor reports a detection with pd = 0.5. If the target is not 1350
present or the sub-region is occluded the sensor reports a detection with p f = .01. 1351

Both the myopic and nonmyopic information based methods discount the value of 1352
looking at occluded sub-regions. Prediction of myopic information gain uses visibility 1353
maps to determine that interrogating an occluded cell provides no information 1354
because the outcome is certain (it follows the false alarm distribution). However, the 1355
nonmyopic strategy goes further: It uses future visibility maps to predict which sub- 1356
regions will be occluded in the future and gives higher priority to their interrogation 1357
at present. 1358

The simulation results shown in Fig. 11 indicate that the HEVTG approximation 1359
to the nonmyopic scheduler provides substantial performance improvement with 1360
respect to a myopic policy in the single waveform model problem. The gain in 1361
performance for the policy that looks ahead is primarily ascribable to the following. 1362
It is important to promote interrogation of sub-regions that are about to become 1363
occluded over those that will remain visible. If a sub-region is not measured and 1364
then becomes occluded, the opportunity to determine target presence in that region 1365
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Fig. 11 Performance of the
scheduling policies with a
pointing-agile single
waveform sensor
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is lost until the region becomes visible again. This opportunity cost is captured in1366
the HEVTG approximation as it predicts which actions will have less value in the1367
future and promotes them at the present. The myopic policy merely looks at the1368
current situation and takes the action with maximal immediate gain. As a result of1369
this greediness, it misses opportunities that have long term benefit. As a result of this1370
greediness, the myopic policy may outperform the HEVTG in the short term but1371
ultimately underperforms.1372

8.2 A study with multiple independent waveforms1373

This subsection explores the effect of multiple waveforms on the nonmyopic/myopic1374
trade. We consider multiple independent waveforms, where independent means the1375
time-varying visibility maps for the different waveforms are not coupled in any way.1376
This assumption is relaxed in the following subsection.1377

Each waveform has an associated time-varying visibility map drawn indepen-1378
dently from the others. The sensor management problem is one of selecting both1379
pointing direction and the waveform. All other simulation parameters are set iden-1380
tically to the previous simulation (i.e., detection and false alarm probabilities, and1381
target kinematics). Figure 12 shows performance curves for two and five independent1382
waveforms. In comparison to the single waveform simulation, these simulations (a)1383
have improved overall performance, and (b) have a narrowed gap in performance1384
between nonmyopic and myopic schedulers.1385

Figure 13 provides simulation results as the number of waveforms available is1386
varied. These results indicate that as the number of independent waveforms available1387
to the scheduler increase, the performance difference between a myopic policy and1388
a nonmyopic policy narrows. This is largely due to the softened opportunity cost the1389
myopic policy suffers. In the single waveform situation, if a region became occluded1390
it could not be observed until the visibility for the single waveform changed. This puts1391
a sharp penalty on a myopic policy. However, in the multiple independent waveform1392
scenario, the penalty for myopic decision making is much less severe. In particular,1393
if a region becomes occluded in waveform i, it is likely that some other waveform1394
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Fig. 12 Top: Performance of
the strategies with a
two-waveform sensor. Bottom:
Performance curves with a
five-waveform sensor
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is still viable (i.e., the region is unoccluded to that waveform) and a myopic policy 1395
suffers little loss. As the number of independent waveforms available to the sensor 1396
increases, this effect is magnified until there is essentially no difference in the two 1397
policies. 1398

8.3 A study with multiple coupled waveforms 1399

A more realistic multiple waveform scenario is one in which the visibility occlusions 1400
between waveforms are highly coupled. Consider the case where a platform may 1401
choose between the following 5 waveforms (modalities) for interrogation of a region: 1402
electro-optical (EO), infra-red (IR), synthetic aperture radar (SAR), foliage pene- 1403
trating radar (FOPEN), and moving target indication radar (MTI). In this situation, 1404
the visibility maps for the 5 waveforms are highly coupled through the environmental 1405
conditions (ECs) present in the region. For example, clouds effect the visibility of 1406
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Fig. 13 Top: The terminal
performance of the scheduling
algorithms versus number of
waveforms. Bottom: The gain
(performance improvement)
of the nonmyopic policy with
respect to the myopic policy
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both EO and IR. Similarly, tree cover effects the performance of all modes except1407
FOPEN, and so on.1408

Therefore, a more realistic study of multiple waveform performance is to model1409
the time-varying nature of a collection of environmental conditions and generate the1410
(now coupled) waveform visibility maps from the ECs. For this simulation study, we1411
choose the nominal causation map shown in Fig. 14.Q31412

The time-varying maps of each EC are chosen to resemble a passover, where for1413
example the initial cloud map is chosen randomly and then it moves at a random ori-1414
entation and random velocity through the region over the simulation time. The wave-1415
form visibility maps are then formed by considering all obscuring ECs and choosing1416
the maximum obscuration. This setup results in fewer than five independent wave-1417
forms available to the sensor because the viability maps are coupled through the ECs.1418

Figure 14 (right) shows a simulation result of the performance for a five waveform1419
sensor. The simulation shows the gap between the myopic policy and the nonmyopic1420
policy widens from where it was in the independent waveform simulation. In fact,1421
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Fig. 14 Top: EC Causation
map. Bottom: Performance of
the scheduling strategies with a
pointing-agile five waveform
sensor, where the visibility
maps are coupled through the
presence of environmental
conditions
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in this scenario, the 5 dependent waveforms have performance characteristics that 1422
are similar to 2 independent waveforms, as measured by the ratio of nonmyopic 1423
scheduler performance to myopic scheduler performance. Figure 15 illustrates the 1424
difference among the three policies being compared here, highlighting the “looka- 1425
head” property of the nonmyopic scheme. 1426

Fig. 15 Three time steps from
a three waveform simulation.
Obscured areas are shown
with filled black squares and
unobscured areas are white.
The true target position is
shown by an asterisk for
reference. The decisions
(waveform choice and pointing
direction) are shown with
solid-bordered squares
(myopic policy) and
dashed-bordered squares
(nonmyopic policy). This
illustrates “lookahead,” where
regions that are about to be
obscured are measured
preferentially by the
nonmyopic policy
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9 Conclusions1427

This paper has presented methods for adaptive sensing based on approximations1428
for partially observable Markov decision processes, a special class of discrete event1429
system models. Though we have not specifically highlighted the event-driven nature1430
of these models, our framework is equally applicable to models that are more1431
appropriately viewed as event driven. The methods have been illustrated on the1432
problem of waveform-agile sensing, wherein it has been shown that intelligently1433
selecting waveforms based on past outcomes provides significant benefit over naive1434
methods. We have highlighted, via simulation, computationally approaches based1435
on rollout and a particular heuristic related to information gain. We have detailed1436
some of the design choices that go into finding appropriate approximations, including1437
choice of surrogate reward and belief-state representation.1438

Throughout this paper we have taken special care to emphasize the limitations of1439
the methods. Broadly speaking, all tractable methods require domain knowledge in1440
the design process. Rollout methods require a base policy specially designed for the1441
problem at hand; relaxation methods require one to identify the proper constraint(s)1442
to remove; heuristic approximations require identification of appropriate value-to-1443
go approximations, and so on. That being said, when domain knowledge is available1444
it can often yield dramatic improvement in system performance over traditional1445
methods at a fixed computational cost. Formulating a problem as a POMDP itself1446
poses a number of challenges. For example, it might not be straightforward to cast1447
the optimization objective of the problem into an expected cumulative reward (with1448
stagewise additivity).1449

A number of extensions to the basic POMDP framework are possible. First, of1450
particular interest to discrete event systems is the possibility of event-driven sensing,1451
where actions are taken only after some event occurs or some condition is met. In this1452
case, the state evolution is more appropriately modeled as a semi-Markov process1453
(though with some manipulation it can be converted into an equivalent standard1454
Markovian model) (Tijms 2003, Ch. 7). A second extension is to incorporate explicit1455
constraints into the decision-making framework (Altman 1998; Chen and Wagner1456
2007; Zhang et al. 2008).1457
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