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Abstract—We address high dimensional covariance estimation
for elliptical distributed samples. Specifically we consider shrink-
age methods that are suitable for high dimensional problems
with a small number of samples (large p small n). We start
from a classical robust covariance estimator [Tyler(1987)], which
is distribution-free within the family of elliptical distribution
but inapplicable when n < p. Using a shrinkage coefficient, we
regularize Tyler’s fixed point iteration. We derive the minimum
mean-squared-error shrinkage coefficient in closed form. The
closed form expression is a function of the unknown true
covariance and cannot be implemented in practice. Instead,
we propose a plug-in estimate to approximate it. Simulations
demonstrate that the proposed method achieves low estimation
error and is robust to heavy-tailed samples.

I. INTRODUCTION

Estimating a covariance matrix (or a dispersion matrix)
is a fundamental problem in statistical signal processing.
Many techniques for detection and estimation rely on accurate
estimation of the true covariance. In recent years, estimating a
high dimensional p× p covariance matrix under small sample
size n has attracted considerable attention. In these “large p
small n” problems, the classical sample covariance suffers
from a systematically distorted eigen-structure, and improved
estimators are required.

Many efforts have been devoted to high-dimensional co-
variance estimation, which use Steinian shrinkage [1]–[3] or
other types of regularized methods such as [4], [5]. However,
most of the high-dimensional estimators assume Gaussian
distributed samples. This limits their usage in many important
applications involving non-Gaussian and heavy-tailed sam-
ples. One exception is the Ledoit-Wolf estimator [2], where
the authors shrink the sample covariance towards a scaled
identity matrix and proposed a shrinkage coefficient which is
asymptotically optimal for any distribution. However, as the
Ledoit-Wolf estimator operates on the sample covariance, it is
inappropriate for heavy tailed non-Gaussian distributions. On
the other hand, traditional robust covariance estimators [6]–[8]
designed for non-Gaussian samples generally require n � p
and are not suitable for “large p small n” problems. Therefore,
the goal of our work is to develop a covariance estimator for
both problems that are high dimensional and non-Gaussian.
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In this paper, we model the samples using the elliptical
distribution; a flexible and popular alternative that encom-
passes a large number of important non-Gaussian distributions
in signal processing and related fields, e.g., [9], [13], [16].
A well-studied covariance estimator in this setting is the ML
estimator based on normalized samples [7], [16]. The estimator
is derived as the solution to a fixed point equation. It is
distribution-free within the class of elliptical distributions and
its performance advantages are well known in the n � p
regime. However, it is not suitable for the “large p small
n” setting. Indeed, when n < p, the ML estimator does not
even exist. To avoid this problem the authors of [10] propose
an iterative regularized ML estimator that employs diagonal
loading and use a heuristic for selecting the regularization
parameter. They empirically demonstrated that their algorithm
has superior performance in the context of a radar application.

Our approach is similar to [10] but we propose a a system-
atical choice of the regularization parameter. We consider a
shrinkage estimator that regularizes the fixed point iterations
of the ML estimator. Following Ledoit-Wolf [2], we provide
a simple closed-form expression for the minimum mean-
squared-error shrinkage coefficient. This clairvoyant coeffi-
cient is a function of the unknown true covariance and cannot
be implemented in practice. Instead, we develop a “plug-in”
estimate to approximate it. Simulation results demonstrate that
the our estimator achieves superior performance for samples
distributed within the elliptical family. Furthermore, for the
case that the samples are truly Gaussian, we report very
little performance degradation with respect to the shrinkage
estimators designed specifically for Gaussian samples [3].

The paper is organized as follows. Section II provides a
brief review of elliptical distributions and Tyler’s covariance
estimation method. The regularized estimator is introduced and
derived in Section III. We provide simulations in Section IV
and conclude the paper in Section V.

Notations: In the following, we depict vectors in lowercase
boldface letters and matrices in uppercase boldface letters. (·)T
denotes the transpose operator. Tr(·) and det(·) are the trace
and the determinant of a matrix, respectively.



II. ML COVARIANCE ESTIMATION FOR ELLIPTICAL
DISTRIBUTIONS

A. Elliptical distribution

Let x be a p×1 zero-mean random vector generated by the
following model

x = Ru, (1)

where R is a positive random variable and u is a p× 1 zero-
mean, jointly Gaussian random vector with positive definite
covariance Σ. We assume that R and u are statistically
independent. The resulting random vector x is elliptically
distributed.

The elliptical family encompasses many useful distributions
in signal processing and related fields and includes: the
Gaussian distribution itself, the K distribution, the Weibull
distribution and many others. Elliptically distributed samples
are also referred to as Spherically Invariant Random Vectors
(SIRV) or compound Gaussian vectors in signal processing
and have been used in various applications such as band-
limited speech signal models, radar clutter echo models [9],
and wireless fading channels [13].

B. ML estimation

Let {xi}ni=1 be a set of n independent and identically
distributed (i.i.d.) samples drawn according to (1). The prob-
lem is to estimate the covariance (dispersion) matrix Σ from
{xi}ni=1. To remove the scale ambiguity caused by R we
further constrain that Tr(Σ) = p.

The commonly used sample covariance, defined as

Ŝ =
1

n

n∑
i=1

xix
T
i , (2)

is known to be a poor estimator of Σ, especially when the
samples are high-dimensional and/or heavy-tailed.

Tyler’s method [7], [16] addressed this problem by working
with the normalized samples:

si =
xi
‖xi‖2

, (3)

for which the term R in (1) drops out. The pdf of si is given
by [12]

p(si; Σ) =
Γ(p/2)

2πp/2
·
√

det(Σ−1) ·
(
sTi Σ−1si

)−p/2
. (4)

and the maximum likelihood estimator based on {si}ni=1 is the
solution to

Σ =
p

n
·
n∑
i=1

sis
T
i

sTi Σ−1si
. (5)

When n ≥ p, the ML estimator can be found using the
following fixed point iterations:

Σ̂j+1 =
p

n
·
n∑
i=1

sis
T
i

sTi Σ̂−1j si
, (6)

where the initial Σ̂0 is usually set to the identity matrix. It can
be shown [7], [16] that the iteration process in (6) converges
and does not depend on the initial setting of Σ̂0. In practice a

final normalization step is needed, which ensures the iteration
limit Σ̂∞ satisfies Tr(Σ̂∞) = p.

The ML estimate corresponds to the Huber-type M-
estimator and has many good properties when n � p, such
as asymptotic normality and strong consistency. Furthermore,
it has been pointed out [7] that the ML estimate is the “most
robust” covariance estimator in the class of elliptical distri-
butions in the sense of minimizing the maximum asymptotic
variance.

III. ROBUST SHRINKAGE COVARIANCE ESTIMATION

Here we extend Tyler’s method to the high dimensional
setting using shrinkage. It is easy to see that there is no
solution to (5) when n < p (its left-hand-side is full rank
whereas it right-hand-side of is rank deficient). This motivates
us to develop a regularized covariance estimator for elliptical
samples. Following [2], [3], we propose to regularize the fixed
point iterations as

Σ̂j+1 = (1− ρ)
p

n

n∑
i=1

sTi si

sTi Σ̂−1j si
+ ρI (7)

Σ̂j+1 =
Σ̂j+1

Tr(Σ̂j+1)/p
, (8)

where ρ is the so-called shrinkage coefficient, which is a
constant between 0 and 1. When ρ = 0 the proposed shrinkage
estimator reduces to Tyler’s unbiased method in (5) and when
ρ = 1 the estimator reduces to the trivial estimator Σ = I.
The term ρI ensures that Σ̂j+1 is always well-conditioned
and thus allows continuation of the iterative process without
restarts. Therefore, the proposed iteration can be applied
to high dimensional estimation problems. We note that the
normalization (8) is important and necessary for convergence.

We now turn to the problem of choosing a good, data-
dependent, shrinkage coefficient ρ. Following Ledoit-Wolf [2],
we begin by assuming we “know” the true covariance Σ. The
optimal ρ that minimizes the minimum mean-squared error is
called the “oracle” coefficient and is

ρO = arg min
ρ
E

{∥∥∥Σ̃(ρ)−Σ
∥∥∥2
F

}
, (9)

where Σ̃(ρ) is defined as

Σ̃(ρ) = (1− ρ)
p

n

n∑
i=1

sis
T
i

sTi Σ−1si
+ ρI. (10)

There is a closed-form solution to the problem (9) which is
provided in the following theorem.

Theorem 1. For i.i.d. elliptical distributed samples, the solu-
tion to (9) is

ρO =
Tr2(Σ) + (1− 2/p)Tr(Σ2)

(1− n/p− 2n/p2)Tr2(Σ) + (n+ 1 + 2(n− 1)/p)Tr(Σ2)
.

(11)

Proof: To ease the notation we define C̃ as

C̃ =
p

n

n∑
i=1

sis
T
i

sTi Σ−1si
. (12)



The shrinkage “estimator” in (10) is then

Σ̃(ρ) = (1− ρ)C̃ + ρI. (13)

By substituting (13) into (10) and taking derivatives of ρ, we
obtain that

ρO =
E
{

Tr
(

(I− C̃)(Σ− C̃)
)}

E

{∥∥∥I− C̃
∥∥∥2
F

}
=
m2 −m11 −m12 + p

m2 − 2m11 + p
,

(14)

where
m2 = E

{
Tr(C̃2)

}
, (15)

m11 = E
{

Tr(C̃)
}
, (16)

and
m12 = E

{
Tr(C̃Σ)

}
. (17)

Next, we calculate the moments. We begin by eigen-
decomposing Σ as

Σ = UDUT , (18)

and denote
Λ = UD1/2. (19)

Then, we define

zi =
Λ−1si
‖Λ−1si‖2

=
Λ−1ui
‖Λ−1ui‖2

. (20)

Noting that ui is a Gaussian distributed random vector with
covariance Σ, it is easy to see that ‖zi‖2 = 1 and zi and
zj are independent if i 6= j. Furthermore, zi is isotropically
distributed [3] and satisfies

E
{
ziz

T
i

}
=

1

p
I, (21)

E
{(

zTi Dzi
)2}

=
1

p(p+ 2)

(
2Tr(D2) + Tr2(D)

)
=

1

p(p+ 2)

(
2Tr(Σ2) + Tr2(Σ)

)
,

(22)

and

E
{(

zTi Dzj
)2}

=
1

p2
Tr(D2) =

1

p2
Tr(Σ2), i 6= j. (23)

Expressing C̃ in terms of zi, there is

C̃ =
p

n
Λ

n∑
i=1

ziz
T
i ΛT . (24)

Then,

E
{

C̃
}

=
p

n
Λ

n∑
i=1

E
{
ziz

T
i

}
ΛT = Σ, (25)

and accordingly we have

m11 = E
{

Tr(C̃)
}

= Tr(Σ), (26)

and
m12 = E

{
Tr(C̃Σ)

}
= Tr(Σ2). (27)

For m2 there is

m2 =
p2

n2
E

Tr

Λ

n∑
i=1

ziz
T
i ΛTΛ

n∑
j=1

zjz
T
j ΛT


=
p2

n2
E

Tr

 n∑
i=1

n∑
j=1

ziz
T
i ΛTΛzjz

T
j ΛTΛ


=
p2

n2

n∑
i=1

n∑
j=1

E
{(

zTi Dzj
)2}

.

(28)

Now substitute (22) and (23) to (28):

m2 =
p2

n2

(
n

p(p+ 2)

(
2Tr(Σ2) + Tr2(Σ)

)
+

n(n− 1)

p2
Tr(Σ2)

)
=

(
1− 1

n
+

2

n(1 + 2/p)

)
Tr(Σ2) +

Tr2(Σ)

n(1 + 2/p)
.

(29)
Recalling Tr(Σ) = p, (11) is finally obtained by substituting
(26), (27) and (29) into (14).

The oracle cannot be implemented since ρO is a function of
the unknown true covariance Σ. We propose to use a plug-in
estimate for ρO determined as follows:

ρ̂ =
Tr2(R̂) + (1− 2/p)Tr(R̂2)

(1− n/p− 2n/p2)Tr2(R̂) + (n+ 1 + 2(n− 1)/p)Tr(R̂2)
,

(30)
where R̂ is the normalized sample covariance:

R̂ =
1

n

n∑
i=1

sis
T
i . (31)

Given the plug-in estimate ρ̂, the robust shrinkage estimator
is computed using the fixed point iteration in (7) and (8).

IV. SIMULATIONS

In this section we use simulations to demonstrate the
superior performance of the proposed approach. First we show
that our estimator outperforms other estimators in the case
of heavy-tailed samples generated by a multivariate Student-
T distribution. The degree-of-freedom of this multivariate
Student-T is set to 3. The dimensionality p is chosen to be
100 and an autoregressive covariance structured Σ is used.
We let Σ be the covariance matrix of an AR(1) process,

Σ(i, j) = r|i−j|, (32)

where Σ(i, j) denotes the entry of Σ in row i and column
j, and r is set to 0.7 in this simulation. The sample size n
varies from 5 to 225 with step size 10. All the simulations are
repeated for 100 trials and the results are averaged.

For comparison, we also plot the results of the closed-form
oracle in (11), the Ledoit-Wolf estimator [2], and the non-
regularized solution in (6) when n > p. As the Ledoit-Wolf
estimator operates on the sample covariance which is sensitive
to heavy-tails, we also compare the Ledoit-Wolf estimator with
knownR in (1), where the samples xi are firstly normalized by
those known realizations Ri, yielding truly Gaussian samples,
and followed by implementation of the Ledoit-Wolf estimator.
The MSE of those estimators are plotted in Fig. 1. It can



be observed that the proposed method performs significantly
better than the Ledoit-Wolf estimator, and the performance
is very close to the ideal oracle. Even the Ledoit-Wolf with
known Ri does not exceed the proposed estimator for small
sample size. These results demonstrate the robustness of the
proposed approach.

When n > p, we also observe a substantial improvement
of the proposed method over the ML estimate, which demon-
strates the power of Steinian shrinkage in reducing the MSE.
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Fig. 1. Multivariate Student-T samples: Comparison of different covariance
estimators when p = 100.

In order to asses the tradeoff between accuracy and ro-
bustness we investigate the case when the samples are truly
Gaussian distributed. We use the same setting as in the pre-
vious example and the only difference is that the samples are
now generated from a Gaussian distribution. The performance
comparison is shown in Fig. 2, where four different methods
are included: the oracle estimator derived from Gaussian
setting (Gaussian oracle) [3], the iterative approximation of
the Gaussian oracle (Gaussian OAS) [3], the Ledoit-Wolf
estimator and the proposed method. It can be seen that for
truly Gaussian samples the proposed method performs very
closely to the Gaussian OAS which is specifically designed
for Gaussian distributions. Indeed, for small sample size
(n < 20), the proposed method performs even better than
the Ledoit-Wolf estimator. This indicates that although the
proposed method is developed for the entire elliptical family,
it actually sacrifices very little performance for the case that
the distribution is known to be Gaussian.
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Fig. 2. Gaussian samples: Comparison of different covariance estimators
when p = 100.

V. CONCLUSION

In this paper, we proposed a shrinkage covariance estima-
tor which is robust over the class of elliptically distributed
samples. The proposed estimator is obtained by fixed point
iterations, and we established a systematical approach to
choosing the shrinkage coefficient, which was derived using a
minimum mean-squared-error framework and has a closed-
form expression in terms of the unknown true covariance.
This expression can be well approximated by a simple plug-in
estimator. Simulations suggest that the proposed estimator is
robust to heavy-tailed multivariate Student-T samples. Further-
more, we show that for the Gaussian case, the proposed esti-
mator performs very closely to previous estimators designed
expressly for Gaussian samples.

We did not give a proof that the regularized fixed point
iteration (7) and (8) converges. The proof of convergence uses
ideas from concave Perron-Frobenius theory [18] and further
details will be provided in the full length journal version of
this paper.
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