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ABSTRACT

Incorporating spatial information into hyperspectral unmixing pro-
cedures has been shown to have positive effects, due to the inher-
ent spatial-spectral duality in hyperspectral scenes. Current research
works that consider spatial information are mainly focused on the
linear mixing model. In this paper, we investigate a variational ap-
proach to incorporating spatial correlation into a nonlinear unmixing
procedure. A nonlinear algorithm operating in reproducing kernel
Hilbert spaces, associated with an `1 local variation norm as the spa-
tial regularizer, is derived. Experimental results, with both synthetic
and real data, illustrate the effectiveness of the proposed scheme.

Index Terms— Nonlinear unmixing, `1-norm regularization,
spatial regularization, split Bregman iteration, hyperspectral data.

1. INTRODUCTION
Hyperspectral imaging provides two dimensional spatial images
over many contiguous spectral bands. The high spectral resolution
allows a comprehensive and quantitive analysis of materials in re-
motely observed data. This area has received considerable attention
in the last decade, see [1] for a survey.

Usually, observed reflectance at each pixel is a spectral mixture
of several material signatures, called endmembers, due to limited
spatial resolution of observation devices and diversity of materials.
Consequently, spectral unmixing has become an important issue
for hyperspectral data processing [2]. There have been significant
efforts during the past decade to address the linear unmixing prob-
lem for hyperspectral data [3–5]. Nevertheless, the linear model can
only capture simple interactions between elements, e.g., in situations
where the mixing of materials is not intimate and multiple scatter-
ing effects are negligible [1, 2]. Recently, several researchers have
begun exploring nonlinear unmixing techniques. In [6], nonlinear
unmixing was proposed based on the bilinear model and Bayesian
inference. Post-nonlinear mixing models were discussed in [7, 8].
Unmixing algorithms using geodesic distances and other manifold
learning based techniques were investigated in [9–12]. In addition,
algorithms operating in reproducing kernel Hilbert spaces (RKHS)
have been proposed for hyperspectral unmixing. Nonlinear un-
mixing with intuitive kernels was investigated in [13]. Physically-
inspired kernel-based models were introduced in [14], where each
mixed pixel is modeled by a linear mixture of endmember spectra,
coupled with an additive nonlinear interaction term to model nonlin-
ear effects of photon interactions. In [15–17], a more complete and
sophisticated theory related to this strategy was presented. See [18]
for an overview of recent advances in nonlinear unmixing modeling.
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Beyond simply providing rich spectral information, remotely
sensed data convey information about the spatial variability of spec-
tral content in the 2D terrain [19]. Subsequently, hyperspectral anal-
ysis techniques should benefit from the inherent spatial-spectral du-
ality in hyperspectral scenes. Following this idea, researchers have
attempted to exploit spatial information for hyperspectral image un-
mixing. An NMF problem regularized with the `1-norm of differ-
ences between neighboring pixels was introduced in [20]. In [21],
a Markov random field was proposed to model the spatial struc-
ture underlying pixels within classes. In [22], unmixing by a multi-
resolution sticky Hierarchical Dirichlet Process model was used to
account for spatial correlations. In [23], total variation was used
for spatial regularization in order to enhance unmixing performance.
Some other works also showed that incorporating spatial information
can have a positive effect on unmixing processes [24–26]. Neverthe-
less, all these works were conducted with a linear mixing model.
Rarely, if ever, have nonlinear mixing models incorporating spatial
information been considered in the literature. As nonlinear unmixing
is already an important but challenging issue, it appears complicated
to address these two problems simultaneously. Based on the promis-
ing results of nonlinear unmixing in RKHS [15], in this paper, we
propose a novel way to incorporate spatial information into the non-
linear unmixing process using `1-norm spatial regularization, i.e., a
local version of the total variation smoothness regularizer in image
reconstruction. An optimization method based on split-Bregman it-
erations is proposed to deal with the nonlinearity of the model and
the non-smoothness of the regularizer.

2. FORMULATION OF THE PROBLEM
Consider an hyperspectral image with w pixels in each row, and
h pixels in each column. Each pixel consists of a reflectance vec-
tor in L contiguous spectral bands. In order to keep the presen-
tation simple, we transform this three dimensional image into an
L ⇥ N matrix, with N = w ⇥ h the total number of pixels. Let
n 2 {1, . . . , N} be the sequential index of pixels. Suppose that the
scene consists of R significant endmembers, each with a spectral sig-
nature mi 2 IR

L. Let rn 2 IR

L be an observed hyperspectral pixel,
and let ↵n 2 IR

R be the vector of endmember abundances in the
pixel rn. The matrix composed of all the abundance vectors is de-
noted by A = [↵1, . . . ,↵N ]. Let M = [m1, . . . ,mR] 2 IR

L⇥R

be the matrix of the endmember spectra. For the sake of conve-
nience, the `-th row of M is denoted by m>

�`
2 IR

L, that is, m�` is
the vector of the endmember signatures at the `-th wavelength band.
Finally, let 1 and I be the all-one vector and the identity matrix,
respectively, with compatible sizes according to the context.

Similarly to many nonlinear unmixing approaches, we suppose
that the material signatures in the scene have been determined by
some endmember extraction algorithm. The unmixing problem boils



down to estimating the abundance vectors. To take the spatial rela-
tionship between pixels into consideration, the unmixing problem
can be solved by minimizing a general cost function, with respect to
A, of the form

J(A) = Jerr(A) + ⌘ Jsp(A) (1)

subject to a non-negativity constraint on each entry of A, and a sum-
to-one constraint on each column of A, namely, on each ↵n. For
ease of notation, these two physical constraints will be expressed by

A ⌫ 0 and A>1R = 1N (2)

Recent work has raised the question of relaxing the sum-to-one con-
straint. The proposed algorithm can be easily adapted if this con-
straint is removed. In the experimental section, results subject to the
non-negativity constraint will only be presented. In the general ex-
pression (1), the function Jerr represents the modeling error and Jsp
is a regularization term to promote similarity of the fractional abun-
dances of neighboring pixels. Various regularizers have been defined
in the literature [20, 23, 25]. The non-negative parameter ⌘ controls
the trade-off between local data fidelity and pixel similarity.

Let us now present Jerr and Jsp investigated in this paper. Con-
sider the general unmixing process, acting between the entries rn,`

of the observed reflectance vector, and the spectral signatures m�`

of the endmembers at each wavelength band �`, defined as
rn,` =  ↵n(m�`) + en,`

with  ↵n an unknown nonlinear function to be estimated that de-
fines the interaction between the endmember spectra, in the propor-
tion ↵n, and en the estimation error. This leads us to consider the
general problem

 

⇤
↵n = argmin

 ↵n

1

2

k ↵nk2H +

1

2µ

LP
`=1

(rn,` �  ↵n(m�`))
2 (3)

with µ a positive parameter that controls the trade-off between struc-
tural error and misadjustment error. Clearly, this basic strategy may
fail if the functionals  ↵n cannot be adequately and finitely param-
eterized. In [15], we defined them by a linear trend parameterized
by the abundance vector ↵n, combined with a nonlinear fluctuation
function  n, namely,

 ↵n(m�`) = ↵
>
nm�` +  n(m�`) (4)

where  n can be any real-valued function in a reproducing ker-
nel Hilbert space H, endowed with the reproducing kernel  such
that  n(m�`) = h n,(·,m�`)i. Indeed, kernel-based methods
lead to efficient and accurate resolution for inverse problems of the
form (3) by exploiting the central idea of this research area, known
as the kernel trick. We proposed in [15] to conduct data unmixing
(3)–(4) by solving the following least-square support vector regres-
sion (LS-SVR) problem

↵⇤
n, 

⇤
n = argmin

↵n, n

1

2

⇣
k↵nk2 + k nk2H +

1

µ

kenk2
⌘

subject to ↵n ⌫ 0 and 1>↵n = 1

(5)

where en is the (L ⇥ 1) misadjustment error vector with `-th entry
en,` = rn,` � (↵>

nm�` +  n(m�`)) as defined in (3). It can be
shown that problem (5) is convex so that it can be solved exactly by
the duality theory. This so-called K-Hype method was introduced
in [15]. Finally, considering all the pixels of the image to process,
the modeling error to be minimized is expressed as

Jerr(A, ) =
1

2

NP
n=1

⇣
k↵nk2 + k nk2H +

1

µ

kenk2
⌘

subject to the contraints in (2). In this expression, A = [↵1, . . . ,↵N ]

and  = { n 2 H : n = 1, . . . , N}.
In order to take spatial correlation between pixels into account,

we shall use `1-type regularizers of the form [20, 23] to promote
piecewise constant transitions in the fractional abundance of each
endmember among neighboring pixels. The regularization function
is expressed as

Jsp(A) =

NP
n=1

P
m2N(n)

k↵n �↵mk1 (6)

where k k1 denotes the `1 norm, and N (n) the set of neighbors of
the pixel n. Without loss of generality, in this paper, we define the
neighborhood of a pixel n by taking the 4 nearest pixels n � 1 and
n+1 (row adjacency), n�w and n+w (column adjacency). In this
case, let us define the (N ⇥ N) matrices H and H! as the two
linear operators that compute the difference between any abundance
vector and its left-hand neighbor, and right-hand neighbor, respec-
tively. Similarly, let H" and H# be the linear operators that com-
pute that difference with the top neighbor and the down neighbor,
respectively. With these notations, the regularization function (6)
can be rewritten in matrix form as

Jsp(A) = kAHk1,1
with H the (N ⇥ 4N) matrix

�
H H!H"H#

�
and k k1,1 the

sum of the `1-norms of the columns of a matrix. Unfortunately,
while this regularization function is convex, it is non-smooth.

Now considering both the mismodeling error Jerr and the regu-
larization term Jsp, the optimization problem becomes

A⇤
, ⇤

=argmin

A, 

NP
n=1

1

2

⇣
k↵nk2+k nk2H+

1

µ

kenk2
⌘
+⌘ kAHk1,1

subject to A ⌫ 0 and A>1R = 1N (7)

The constraints over A define a convex set SA. For ease of exposi-
tion, we will denote the constraints by A 2 SA.

3. SOLVING THE PROBLEM
Although the optimization problem (7) is convex, it cannot be solved
easily because it combines a functional regression problem with a
large-dimensional non-smooth regularization term. In order to over-
come this, we rewrite (7) in the following equivalent form

min

A2SA, 

NP
n=1

1

2

⇣
k↵nk2 + k nk2H +

1

µ

kenk2
⌘
+ ⌘ kUk1,1

subject to V = A and U = V H (8)

where two new matrices U and V , and two additional constraints,
have been introduced. This variable-splitting approach was initially
proposed in [27]. The matrix U will allow us to decouple the non-
smooth `1-norm regularizer from the constrained LS-SVR problem.
The matrix V will make the LS-SVR problem tractable by relaxing
connections between pixels.

As studied in [27], the split-Bregman iteration algorithm is an ef-
ficient method to deal with a broad class of `1-regularized problems.
By applying this framework to (7), the following iterative formula-
tion is obtained

A(k+1)
, (k+1)

,V (k+1)
,U (k+1)

= argmin

A2SA, ,V ,U

NX

n=1

1

2

⇣
k↵nk2+k nk2H+

1

µ

kenk2
⌘
+⌘kUk1,1

+

⇣

2

kA� V �D
(k)
1 k2F +

⇣

2

kU � V H �D
(k)
2 k2F (9)



max

�n,�n,�n

L0
n(�n,�n,�n) = � ⇢

2⇣

0

@
�n

�n

�n

1

A
> 0

@
K M �M1R

M> I �1R

�1>
RM

> �1>
R R

1

A

0

@
�n

�n

�n

1

A
+

0

@
rn � ⇢M ⇠(k)n

�⇢ ⇠(k)n

⇢ ⇠(k)>n 1R � 1

1

A

> 0

@
�n
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A

subject to �n ⌫ 0

with K =

1

⇣

(K + µ I) +MM> and ⇢ =

⇣

1 + ⇣

(14)

with D
(k+1)
1 = D

(k)
1 + (V (k+1) �A(k+1)

)

D
(k+1)
2 = D

(k)
2 + (V (k+1)H �U (k+1)

)

(10)

where k k2F denotes the matrix Frobenius norm, and ⇣ is a positive
parameter. Because of how we have split the terms of the cost func-
tion, we can now perform the above minimization efficiently by it-
eratively minimizing with respect to (A, ), V and U separately.
The three steps we have to perform are:
Step 1 - Optimization with respect to A and  : The optimization
problem (9) reduces to

A(k+1)
, (k+1)

= argmin

A2SA, 

NP
n=1

1

2

⇣
k↵nk2 + k nk2H +

1

µ

kenk2

+ ⇣k↵n � ⇠(k)n k2
⌘

where ⇠(k)n = V
(k)
n + D

(k)
1,n. Here, V n and D1,n denote the n-

th column of V and D1, respectively. It can be observed that this
problem can be solved, independently, for each vector ↵n. This
results from the use of the matrix V . Let us now solve the local
optimization problem

↵(k+1)
n , 

(k+1)
n

= argmin

↵n, n,en

1

2

⇣
k↵nk2+k nk2H+

1

µ

LP
`=1

e

2
n,`+⇣k↵n � ⇠(k)n k2

⌘

subject to en,` = rn,` � (↵>
nm�` +  n(m�`))

↵n ⌫ 0 and ↵>
n 1R = 1 (11)

By introducing the Lagrange multipliers �n,`, �n,` and �n, where
the superscript (k) of these variables has been omitted for simplicity
of notation, the Lagrange function associated with (11) is equal to

Ln =

1

2

⇣
k↵nk2 + k nk2H +

1

µ

LP
`=1

e

2
n,` + ⇣k↵n � ⇠(k)n k2

⌘

�
LP

`=1

�`(en,` � rn,` +↵
>
nm�` +  n(m�`))

�
RP

r=1

�r↵n,r + �n(↵
>
n 1R � 1) (12)

with �n,r � 0. The conditions for optimality of Ln are
8
><

>:

↵⇤
n =

1
⇣+1

⇣PL
`=1 �

⇤
n,`m�` + �

⇤
n � �

⇤
n1+ ⇣⇠(k)n

⌘

 

⇤
n =

PL
`=1 �

⇤
n,` (·, m�`)

e

⇤
n,` = µ�

⇤
n,`

(13)

where  denotes the reproducing kernel of H. By substituting (13)
into (12), we get the dual problem (14) (see above), where K is the
Gram matrix defined as [K]`p = (m�` ,m�p). The problem (14)
is a convex quadratic programming problem with respect to the dual
variables. Finally, provided that the optimal dual variables �⇤

n, �⇤
n

and �⇤
n have been determined, the vector of fractional abundances is

estimated by

↵⇤
n =

1
⇣+1

�
M>�⇤

n + �⇤
n � �

⇤
n1+ ⇣⇠(k)n

�

This process has to be repeated for n = 1, . . . , N to get A(k+1).
Step 2 - Optimization with respect to V : The optimization prob-
lem (9) now reduces to

V (k+1)
= argmin

V
kA(k+1) � V �D

(k)
1 k2F

+ kU (k) � V H �D
(k)
2 k2F

(15)

Equating to zero the gradient of this expression with respect to V
directly gives us the solution

V (k+1)
=

⇣
A(k+1)�D

(k)
1 + (U (k)�D

(k)
2 )H>

⌘
(I+HH>

)

�1

Step 3 - Optimization with respect to U : The optimization prob-
lem (9) reduces to

U (k+1)
= argmin

U
⌘kUk1,1+ ⇣

2

kU�V (k+1)H�D
(k)
2 k2F (16)

Its solution is expressed via the well-known soft threshold function

U (k+1)
= Thresh

�
V (k+1)H +D

(k)
2 , ⌘/⇣

�
(17)

where Thresh(·, ⌧) denotes the component-wise application of the
soft threshold function defined as [28]

Thresh(x, ⌧) = sign(x) max(|x|� ⌧, 0)

Note that, as they are spatially invariant, the multiplications by H in
the above expressions can be efficiently performed with an FFT.

4. EXPERIMENTAL RESULTS
4.1. Experiments with synthetic images
Two spatially correlated hyperspectral images were generated for the
following experiments. The endmembers were randomly selected
from the spectral library ASTER [29], where signatures have re-
flectance values measured over 224 spectral bands. Following [23],
two spatially correlated abundance distributions, with R = 5 and
R = 9 were used. See [23] for the data description. The reflectance
vectors were generated with two nonlinear mixture models described
hereafter, and corrupted by a zero-mean white Gaussian noise vn

with a SNR of 20 dB. The first mixture model was the bilinear model
defined as rn = M↵n+

PR
i=1

PR
j=i+1 ↵n,i ↵n,j mi⌦mj +vn,

with ⌦ the Hadamard product. The second one was a post-nonlinear
model (PNMM) given by rn = (M↵n)

0.7
+ vn. Several algo-

rithms were tested in order to compare their unmixing performance
on these two images. Their tuning parameters were set by prelim-
inary experiments: 1) The linear unmixing methods [3]: The fully
constrained least-square method (FCLS) was tested. By relaxing
the sum-to-one constraint, one obtains the nonnegative constrained
least-square method (NCLS), which was also considered. 2) The



Table 1. RMSE comparison with the synthetic data.
DC1 DC2 Comp. time (ms/pixel)

Bilinear PNMM Bilinear PNMM IM1 IM2
FCLS 0.1730±0.0092 0.1316±0.0052 0.1680±0.0265 0.1444±0.0098 0.07 0.08
NCLS 0.1351±0.0131 0.1468±0.0071 0.0784±0.0076 0.1378±0.0135 0.06 0.07

spatial.-reg. FCLS 0.1729±0.0091 0.1311±0.0052 0.1676±0.0263 0.1381±0.0074 0.91 1.00
spatial.-reg. NCLS 0.1159±0.0044 0.1472±0.0069 0.0685±0.0053 0.1304±0.0097 0.85 0.90

K-Hype 0.0781±0.0050 0.0895±0.0072 0.0755±0.0080 0.1107±0.0104 5.7 6.0
NK-Hype 0.0771±0.0054 0.0873±0.0066 0.0919±0.0082 0.1059±0.0096 5.7 6.0

spatial.-reg. K-Hype (proposed) 0.0444±0.0016 0.0480±0.0480 0.0521±0.0033 0.0849±0.0042 56.5 68.8
spatial.-reg. NK-Hype (proposed) 0.0493±0.0026 0.0458±0.0042 0.0647±0.0032 0.0773±0.0044 55.1 69.8

Fig. 1. Indian Pines classification map. From left to right: ground-truth, FCLS (61.36%), K-HYPE (71.39%), Proposed (96.80%).

spatially-regularized FCLS/NCLS: For comparison purposes, regu-
larizer (6) was considered with FCLS/NCLS algorithms, solved by
split-Bregman iterations. 3) The nonlinear unmixing algorithm K-
Hype [15]: Unmixing was performed in this case by solving prob-
lem (5). Its nonnegative counterpart obtained by relaxing the sum-
to-one constraint (NK-Hype) was also tested. The polynomial kernel
defined by (m�` ,m�`) = [1+(m�` �1/2)

>
(m�` �1/2)/R

2
]

2

was used, as in [15]. 4) The proposed nonlinear algorithms incorpo-
rating spatial regularization: K-Hype and its nonnegative counterpart
NK-Hype were both considered with spatial regularization. The pa-
rameter ⇣ was adjusted in an adaptive way based on primal and dual
residual norms at each iteration, see [30]. Finally, the optimization
algorithm was stopped when the number of iterations exceeded 10,
or both kV �AkF

N⇥R and kU�V HkF
4N⇥R became smaller than 10

�5.
The RMSE

RMSE=

s
1

NR

NP
n=1

k↵n �↵⇤
nk2 (18)

was used for comparing these algorithms, as reported in Table 1.
Clearly, it can be observed that FCLS had large estimation errors.
Relaxing the sum-to-one constraint with NCLS algorithm allowed
to improve the performance in some cases, especially for DC2 with
the bilinear model. The spatially-regularized FCLS and NCLS algo-
rithms offered limited performance improvement. Nonlinear meth-
ods notably reduced this error in the mean sense, except for DC2
with the bilinear model. In this case, because most of the areas in
the image are characterized by a dominant element with fractional
abundance almost equal to one (see [23] for visual illustration), mix-
ing phenomena associated with the bilinear model are significantly
weaker. Finally, the proposed spatially-regularized methods showed
lower errors than all other tested algorithms.

4.2. Experiments with AVIRIS data
In order to circumvent the difficulty that, in the literature, there is
no available ground-truth for unmixing problems with real data,
we adopted an indirect strategy to evaluate the proposed algorithm,
via abundance-based classification. The estimated abundances were

Table 2. Classification performance with abundance-based features.
5% 10% 15%

FCLS 56.41 61.36 62.32

K-Hype 67.67 71.39 74.68

Proposed 93.82 96.80 97.02

used as features to feed a classifier, and classification results were
compared with labeled classification ground-truth. The scene used
in our experiment is the well-known data set captured on the Indian
Pines region by AVIRIS. The scene comprises 145 ⇥ 145 samples,
consisting of 220 contiguous spectral bands. The ground-truth data
contains 16 mutually exclusive classes. This widely used bench-
mark data set is known to be dominated by mixed pixels, even if
ground-truth information assigns each pixel to a unique class. In
this experiment, the so-called unmixing based classification chain
#4 in [31] was used. We tested FCLS, K-Hype, and the proposed al-
gorithm for extracting abundance-based features. A one-against-all
multi-class SVM with Gaussian kernel was applied to these data. We
constructed five training sets by randomly selecting 5%, 10%, and
15% of the samples available per class. All the required parameters
were optimized by preliminary experiments. Table 2 summarizes
the classification accuracies of SVM operating on features extracted
with the unmixing algorithms. Fig. 1 presents these results in the
case of an SVM trained with 10% of the samples available per class.
It appears that our nonlinear unmixing algorithms are more efficient
than the linear one for feature extraction. Finally, we observe that
spatial regularization greatly improved the classification accuracy.

5. CONCLUSION
We considered the problem of nonlinear unmixing of hyperspec-
tral images. A nonlinear algorithm operating in reproducing kernel
Hilbert spaces was proposed. Spatial information was incorporated
using an `1-norm local variation regularizer. Split-Bregman itera-
tions were used to solve this convex non-smooth optimization prob-
lem. Experiments illustrated the effectiveness of this scheme.
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