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ABSTRACT The original MWC requires ideal analog lowpass filters to ac-
complish the reconstruction process. In practice, imphging ideal
filters is generally difficult and the usual option is to emyplagh-
‘order Butterworth or Chebyshev filters. Direct use of sudktlu-
shelf filters does not guarantee perfect reconstruction) {(RRhe
recovered signal. Indeed, this problem is encounteredermpthcti-
cal implementation of the MWC. Therefore, methods of consgen
tion for the imperfections of non-ideal lowpass filters ismportant
problem. This is the main motivation of this work.

In this paper we aim at extending the MWC to enable the use
of practical lowpass filters. Under the assumption of neafepe

Index Terms— Compressed sensing, modulated wideband constopband response, we show that, with only a moderate anodunt
verter, multiband sampling, non-ideal lowpass filters. oversampling, the imperfections caused by non-ideal dilean be
effectively corrected in the digital domain. The contribatof our
work is two-fold. First, we derive a perfect reconstructioondi-
tion that must be satisfied by lowpass filters in the MWC. Wensho
that the ideal lowpass filter is not the only choice that goieas
PR. Indeed, we prove that perfect reconstruction can bewasthiby
Nyquist filters [6], which are more general. For cases whieeed?R
condition is not satisfied, we propose a compensation meiped
ating in the digital domain for perfect reconstruction,ngsa simple
bank of finite impulse response (FIR) filters. The coeffigaritthe
FIR filters are designed to meet the PR condition and closaud-f
expressions for the filter coefficients are provided. Botmerical
simulations and real measured data demonstrate that tpegao
compensation method can significantly reduce the recariiiruer-
ror using low-order FIR filters.

t=nT, The paper is organized as follows. Section 2 provides a brief
é ) () Lyl[n] introduction to the MWC. In Section 3 we study the MWC with
non-ideal filters. We derive the PR condition and proposeliti¢al
compensation method. Section 4 provides experimentaltsesu

We investigate the impact of using non-ideal lowpass filterthe
modulated wideband (MWC) converter, which is a recent sub
Nyquist sampling system for sparse wideband analog signafts
begin by deriving a perfect reconstruction condition fomgel
lowpass filters, which coincides with the well-known Nyduiger-
symbol interference (ISI) criterion in communication theoThen,
we propose to compensate for the non-ideal lowpass filténg @s
digital FIR correction scheme. The proposed solution isdesdd

by experimental results.

1. INTRODUCTION

Efficient sampling of wideband analog signals is a challeggirob-
lem, since their Nyquist rates may exceed the specificatibrise
best analog-to-digital converters (ADCs) nowadays by rwrdsef
magnitude. The modulated wideband converter (MWC) [1, & is
recent sub-Nyquist system for sampling multiband signélside
spectral ranges. The MWC, depicted in Fig. 1 and further riteessd
in Section 2, consists of simple mixers and lowpass filteng.e®-
ploiting frequency sparsity of multiband signals, the MW&Cable
to significantly reduce the conversion rate.

T,
—
pi(t) MSSM—l ¢ t=nT;
Lowpass 2. THE MODULATED WIDEBAND CONVERTER

x(t) E 2 vi(t) l»y, [n]

V2T, eutoft The MWC is a sub-Nyquist sampling system for sampling sparse

. wideband analog signals. It consists of two stages: samplimd
Put) ° t=nT, reconstruction. In this section, we briefly introduce thech@mism
L]

® N i and principle of the MWC.
e
2.1. Sampling

Fig. 1. A block diagram of the modulated wideband converter. The
MwWC _C(:jr_\ssts Offm paralle:]cha_nnzls,_whl(lzh m;‘x thle Input a?_z&lnst ously. In theith channelz(¢) is multiplied by aT},- periodic mixing
mcpi)eno 'f \(/jvave (larms. The mixed signal is then lowpass filere ¢nction,(1). After mixing, the output is lowpass filtered with cut-
and sampled at a low rate. off frequencyl /(2T ) and then uniformly sampled at rat¢7’s. The
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In the sampling stage, the signa(t) entersm channels simultane-




resides withinN frequency intervals, or bands, such that the widthin order to recover:(t), it is sufficient to determine(w) for every
of each band does not exceBdHz. The band positions are arbitrary w € [—, 7.

and in particular unknown in advance. For example, in conicain
tions N represents the number of concurrent transmissiong3aisd
specified by the specific modulation techniques in use.

The vectorz(w) is sparse for each € [, ] due to the sparse
nature of the spectrum af(t). The sparsity of(w) assures that the
MWC can use a small number of channels to recaxey, which en-

The sub-Nyquist sampling of the MWC relies on the following ables sub-Nyquist sampling. For example, in the basic cordtgpn

key observation. The mixing operation scrambles the spectf

in which f; = f, = B, itis shown that [1] with a careful selection

z(t) such that the baseband frequencies that reside below the fibf mixing functions,m = 4N, whereN is the number of bands, is

ter cutoff contain a mixture of the spectral contents from ¢ntire
Nyquist range. To further illustrate this point, let us ddes a single
channel, and leP;(f) be the spectrum of the mixing functign(¢).
Sincep;(t) is Tp- periodic, P;(f) can be expressed as

“+ o0

> cad(f —1fp), (€N

l=—oc0

Pi(f) =

wheref, = 1/T,, ¢y are arbitrary coefficients ant-) is the Dirac
delta function. The spectrum of the mixed sig@a(t) = x(t)p:(t)
is then

—+oo

Xi(f) =P« X(f)= Y caX(f—1fp), @)

l=—o0

where X (f) is the spectrum of:(¢). Lowpass filtering with a filter
transfer functionH ( f) results in a signay; (¢) with spectrum

—+o0

> caX(f —Ufp)H(S). €)

l=—o0

Yilf) =

After sampling the continuous signgl(¢) at ratefs = 1/7s, the
discrete time Fourier transform (DTFT) of the sampjels] is

“+ o0
j W fS
(eI — 28—
Y;(e*) k;my (QW (w — 2km)
—+oo
fS fs
= i X[ =— —1 —k s H (= —k s ’
4)
for w € [—m, n]. In the standard MWCH ( f) is an ideal rect func-
tion with cutoff f, /2. ThusH (£2w —kf.),w € [, 7], is nonzero

only if £ = 0. To ease the exposition we further chobdg = 7.
Then, (4) can be expressed as

. Lo
Yi(e?) = Z caX <ﬁw - lfp> , wé€ [-mm7], (5)

I=—Lg

whereL is the smallest integer satisfyirtd.o + 1 > fava/fp-

The relation (5) ties the known DTFTs ¢f[n] to the unknown
X (f), which is the key to recovery af(t). For our purpose, it is
convenient to write (5) in matrix form

y(e’) = Az(w), (6)

wherey (e?“) is am x 1 vector with theith elementy; (e’“), z(w)
is an unknown vector of length = 2L, + 1 with theith element
zilw) = X (g—frw — (i —Lo — l)fp), and A is am x L matrix
containing the coefficients;;. We note thatX (g—frw — lf,,), for
|l] < Lo, covers all the spectral information aft). Therefore,

1This choice is relaxed in [1].

sufficient to recoveg(w).

2.2. Reconstruction

The reconstruction stage consists of two steps and is ingleed
completely in the time domain. First, the spectral suppsrtié-
termined, and then the signal is recovered from the samples b
closed-form expression.

Spectral support recovery relies on recent ideas develioged
context of analog compressed sensing [4] and are implehdayte
a series of digital computations, which are grouped togaiheer
the Continuous-to-Finite (CTF) block [1, 3]. Let the suppafrz(w)
be S = U, e[, SUPP(z(w)), where supp) is the set of indices
of the nonzero entries of a vector. In other words; i S then
zi(w) = 0 for all w € [—m,7]. By exploiting the sparsity of(w),
the CTF efficiently infers the suppastfrom a low-complexity finite
program.

Once the suppoif is determined, it follows from (6) that

Zs[n] = ATSy[n] )
zi[n] =0, ¢ ¢S,

wherez[n] = (z1[n], ..., zz[n])” andz;[n] is the inverse DTFT of

zi(w). zs[n] and A s mean the subvector and submatrix comprised

of the rows ofz[n] and A indexed bysS, respectively. The notation

()" denotes the pseudo inverse. Equation (7) allews] to be

generated at the input rafe. Every z;[n] is then interpolated to

a continuous baseband signal at rAtée.g, using digital-to-analog

devices) yielding (complex valued)(t):

oo

Z zi[n]h(t — nTy), ®

n=-—oo

Zi (t) =

whereh(t) = sindwt/Ts). Finally, z(¢) is reconstructed by modu-
lating z; (t) to their corresponding bands:

Z Re{z;(t)} cos(2mifpt) + Im {z;(t) } sin(27i fpt),

i€S,i>Lo
9)

where Ré-) and Im(-) denote the real and imaginary part of their
argument, respectively.

(t) =

3. THE MWC USING NON-IDEAL LOWPASS FILTERS

The lowpass filters in the standard MWC are treated as ideal re
functions in the frequency domain in order to obtain (5) fréth
However, in practice, ideal analog filters are difficult teigem and a
practical lowpass filter usually has the following impetfeos:

1. H(f) is not necessarily flat in the pass band;

2. H(f) does not have sharp edges;

3. The stopband response is not exactly zero.

In this section, we investigate how those imperfectionsaotper-
fectrecovery of the input(¢) through (9) and propose compensation
schemes to correct for these imperfections.



3.1. The perfect reconstruction condition

We start our analysis from (4), which applies to any analdgrfil
H(f). There are two summation operations on the right-hand-side
of (4). The sum indexed by subscripts introduced by the mixing
functionp; (t). The sum indexed by is due to non-ideal stopband of
H(f), which is undesirable since it renders the matixn (6) to a
function ofw. The MWC with aw-dependenf is beyond the scope
of this paper; this setting is discussed in [5]. Instead, ssime that
the stopband response is designed to be sufficiently snadlittban

be neglectedd.g, less than -60 dB), based on which we propose to

oversampley; (¢) at ratef, which is larger than the stopband width.
This assumption will be continued to the following discossi

By assuming thaf{ (f) is zero beyond—f./2, fs/2], (4) can
be expressed as

Lo
Y (") = Z caQi(w), (10)
I=—Lg
where
@@ =x (Lo-p)u(Le).

Therefore, from (7) we actually solve f6); (w) rather tharg; (w).
After interpolation in (8) and modulation in (9), the resualtspec-
trum of the reconstructed signal is calculated as

s @ (i), (12)
l=—Lg
Substituting (11) in (12) we obtain
Lo
X(f) = ( > H(f+lfp)> X(f). (13)
I=—Lg

SinceX (f) is only non-zero within— fnvo /2, favo/2], the PR con-
dition for H(f) is then

We note that the PR condition in (14) coincides with the well-
known Nyquist ISI criterion [6], and any lowpass filter thatisfies
(14) is usually referred to asMyquist filter Typical examples in-
clude raised cosine functions, Kaiser windows and othdrsA6y
such filter will lead to PR without requiring any further pessing.

b Jnve. Invo
2 2

Z H(f+1fy) =1, fe[ (14)

I=—Lg

3.2. Digital compensating FIR filters

In the above discussion we demonstrated that any Nyquist filt
which satisfies (14) ensures PR. For lowpass filters that dmeet

the PR condition, we now propose a simple compensation in the

digital domain. The compensation scheme is illustratedgn Zfor
a single channel. LeD(e’*) be the digital frequency response of

T

Fig. 2. lllustration of one channel of the digital correction satee

t=nTy
=~ yiln]

—>| D(ed¥)|—>

vi(t)

the compensation filter, where we use the notatitihto emphasis
that the DTFT i2w-periodic. The relationship in (10) still holds by

replacing@; (w) with
) D (ej“’) .

Therefore, to ensure perfect reconstruction we need tguesdig-

[s

- lfp) (éf—ﬁw (15)

Quw) =X <

ital filter D(e*) such that the frequency response of the corrected

analog filter

T(f) = H()D (¢*771) (26)

satisfies (14). ‘

Here we show that we can implemeb(e’”) by an FIR filter.
Let {dn}HZN be the coefficients of an FIR filter with ord2iN +
1. The digital frequency respong@(e’*) is

7

Combining (16) and (17),
T(f)

whereh(f) = H(f)*(e=92NoTsf eJ'Q"NoTsf)T, andd is the
coefficient vectord = (d—n,- .., dn,)”. The design objective is
to seek coefficient$d,, }N“ No such thatl'(f) in (18) best meets
the PR condition in terms of mtegrated squared error:

h(f)"d, (18)

2

df.

fayq/2 Lo

/

Since (19) is a least-squares problem, it has a closed-foluticn.
It can be shown that the optimal solution is:

min 1f)%d —1

h(f -

I=—Lg

(19)

fnvq/2

favq/2

dopt - |:/
Lo

whereg(f) = 3>, ; h(f—1fp). Whenh(f) containsf ( f) and
is not specified analytlcally, computing the integrals if)(2an be
performed using humerical methods.

fnvq/2

g(fHdf (20

favo/2 —fnvq/2

g(f)g(f)de] /

4. EXPERIMENTAL VALIDATION

In this section we demonstrate the proposed compensatitimoche
by experimental results, where two examples are studied.

In the first example we simulate the MWC system with non-
ideal filters and evaluate the overall performance of theased
compensation. The input(¢) is a multiband signal consisting of 3
pairs of bands, each of width = 50 MHz, defined as

t) = Z \/Ei—BSino(B(t — 1)) cos(2m fi(t — 7)),

i=1

(1)

where the energy coefficients; = {1, 2, 3}, the time offsets; =

{1.1,0.3,0.7} usecs, and the carriers are seffte= {1.8,1.2,2.8}

GHz. The Nyquist rate of(¢) is fnyg = 10 GHz. We choose
Lo =97andf, = fnvo/(2Lo 4+ 1) ~ 51.3 MHz. The number of
channels isn = 50 and the same mixing functions (¢) are used
as in [1]. The main difference between the simulation in fid e
one proposed here is that we use an 8-order Butterworthifileszch



channel. The 3-dB bandwidth of the Butterworth filter is sef.
With a moderate oversamplingj is chosen ags = 5/3 f,,. Finally,

all the continuous signals are represented by a dense grie9n
samples observed withi0, 1.6] usecs, where the time resolution is
1/(5fnvq). As predicted by our analysis, direct reconstruction us-
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Fig. 3. Reconstructions using Butterworth filters. (a) The maltit
input signalz(t). (b) Direct reconstruction signal. (c) Reconstructed
signal after digital corrections.

ing the standard approach yields distortions in the re@al/signal,
which can be found be comparing Fig. 3(b) with Fig. 3(c). We
use a 21-order FIR filter to correct the non-ideal Buttertvdiiter
in each channel. The coefficients are determined by (20) e et
constructed signal after applying digital correctionslatted in Fig.
3(c). As expected, near perfect recovery is achieved. Fuoindu
demonstration, we examine the PR condition of the employad B
terworth filter 7 ( f) and the corrected filtef' (f) (obtained by (16))
in Fig. 4, whered", H(f + Ifp) and)_, T'(f + L f,) are plotted in
dB. It can be seen that fdd (f) there exists significant distortions,
which illustrates why direct reconstruction does not eafR.
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Fig. 6. Coefficients of the correcting FIR filter for the real filter.

5. CONCLUSION

In this paper, we treated the problem of compensating the MWC
when the lowpass filters are not ideal. A PR condition for gaeine
filters was developed. We demonstrated that, using a madevet-
sampling, perfect reconstruction could be achieved by ayyubét
filter. Then, for lowpass filters which do not satisfy the PRuaie
tion, we proposed to correct them in the digital domain ugtig
filters. We presented a least-squares approach for detegrtime
coefficients of the compensation filter. Both numerical datians
and real measured data demonstrated that the proposed rsanpe
tion method is effective for recovering near prefect retarmsion.
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In the second example, we employ the proposed method to cor-

rect a real analog lowpass filter implemented in a recentviemel
realization of the MWC system [7]. The frequency responsada-
sured by an Agilent HP8753E network analyzer and the maggmitu
is shown in Fig. 5. Here we s¢t = 60 MHz and f; = 100 MHz,
The results of the correcting FIR filter and the PR conditist tire

shown in Fig. 6 and Fig. 7. These results indicate that our pro

posed compensator can be applied to practical applicaitiosignal
processing and communications.

n
I
ST 7

it
I
[

it
1
AN IRd

o N

3

N

Frequency
response (dB)

After correction
- — = Without correction

D B

=200 -150 -100 -50 50 100 150 200

0
f (MHz)

Fig. 7. Tests of the PR condition for the real filter.



