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Abstract—We address high dimensional covariance estima-
tion for elliptical distributed samples, which are also known
as spherically invariant random vectors (SIRV) or compound-
Gaussian processes. Specifically we consider shrinkage methods
that are suitable for high dimensional problems with a small
number of samples (large p small n). We start from a classical
robust covariance estimator [Tyler(1987)], which is distribution-
free within the family of elliptical distribution but inapplicable
when n < p. Using a shrinkage coefficient, we regularize Tyler’s
fixed point iterations. We prove that, for all n and p, the proposed
fixed point iterations converge to a unique limit regardless
of the initial condition. Next, we propose a simple, closed-
form and data dependent choice for the shrinkage coefficient,
which is based on a minimum mean squared error framework.
Simulations demonstrate that the proposed method achieves low
estimation error and is robust to heavy-tailed samples. Finally, as
a real world application we demonstrate the performance of the
proposed technique in the context of activity/intrusion detection
using a wireless sensor network.

Index Terms—Covariance estimation, large p small n, shrink-
age methods, robust estimation, elliptical distribution, activ-
ity/intrusion detection, wireless sensor network

I. INTRODUCTION

Estimating a covariance matrix (or a dispersion matrix)
is a fundamental problem in statistical signal processing.
Many techniques for detection and estimation rely on accurate
estimation of the true covariance. In recent years, estimating
a high dimensional p × p covariance matrix under small
sample size n has attracted considerable attention. In these
“large p small n” problems, the classical sample covariance
suffers from a systematically distorted eigen-structure [6], and
improved estimators are required.

Much effort has been devoted to high-dimensional co-
variance estimation, which use Steinian shrinkage [1]–[3] or
other types of regularized methods such as [4], [5]. However,
most of the high-dimensional estimators assume Gaussian
distributed samples. This limits their usage in many important
applications involving non-Gaussian and heavy-tailed sam-
ples. One exception is the Ledoit-Wolf estimator [2], where
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the authors shrink the sample covariance towards a scaled
identity matrix and proposed a shrinkage coefficient which is
asymptotically optimal for any distribution. On the other hand,
traditional robust covariance estimators [8]–[10] designed for
non-Gaussian samples generally require n � p and are not
suitable for “large p small n” problems. Therefore, the goal
of our work is to develop a covariance estimator for problems
that are both high dimensional and non-Gaussian. In this paper,
we model the samples using the elliptical distribution [7],
which is also referred to as the spherically invariant random
vector model (SIRV) [26], [27] or the compound-Gaussian
process model [13]. As a flexible and popular alternative, the
elliptical family encompasses a large number of important
distributions such as Gaussian distribution, the multivariate
Cauchy distribution, the multivariate exponential distribution,
the multivariate Student-T distribution, the K-distribution and
the Weibull distribution. The capability of modelling heavy-
tails makes the elliptical distribution appealing in signal pro-
cessing and related fields. Typical applications include radar
detection [13], [17], [20], [22], speech signal processing [23],
remote sensing [24], wireless fading channels modelling [27],
financial engineering [25] and so forth.

A well-studied covariance estimator for elliptical distri-
butions is the ML estimator based on normalized samples
[9], [14], [16]. The estimator is derived as the solution to
a fixed point equation by using fixed point iterations. It is
distribution-free within the class of elliptical distributions and
its performance advantages are well known in the n � p
regime. However, it is not suitable for the “large p small n”
setting. Indeed, when n < p, the ML estimator as defined
does not even exist. To avoid this problem the authors of [21]
propose an iterative regularized ML estimator that employs
diagonal loading and uses a heuristic procedure for selecting
the regularization parameter. While they did not establish con-
vergence and uniqueness [21] they empirically demonstrated
that their algorithm has superior performance in the context
of a radar application. Our approach is similar to [21] but
is conceived in a Steinian shrinkage framework, where we
establish convergence and uniqueness of the resultant iterative
estimator. We also propose a general procedure of select-
ing the shrinkage coefficient for heavy-tailed homogeneous
samples. For a fixed shrinkage coefficient, we prove that
the regularized fixed iterations converge to a unique solution
for all n and p, regardless of the initial condition. Next,
following Ledoit-Wolf [2], we provide a simple closed-form
expression for the shrinkage coefficient, based on minimizing
mean-squared-error. The resultant coefficient is a function
of the unknown true covariance and cannot be implemented
in practice. Instead, we develop a data-dependent “plug-
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in” estimator approximation. Simulation results demonstrate
that our estimator achieves superior performance for samples
distributed within the elliptical family. Furthermore, for the
case that the samples are truly Gaussian, we report very
little performance degradation with respect to the shrinkage
estimators designed specifically for Gaussian samples [3].

As a real world application we demonstrate the proposed
estimator for activity/intrusion detection using an active wire-
less sensor network. We show that the measured data exhibit
strong non-Gaussian behavior and demonstrate significant
performance advantages of the proposed robust covariance
estimator when used in a covariance-based anomaly detection
algorithm.

The paper is organized as follows. Section II provides a
brief review of elliptical distributions and of Tyler’s covariance
estimation method. The regularized covariance estimator is
introduced and derived in Section III. We provide simulations
and experimental results in Section IV and Section V, respec-
tively. Section VI summarizes our principal conclusions. The
proof of theorems and lemmas are provided in the Appendix.

Notations: In the following, we depict vectors in lowercase
boldface letters and matrices in uppercase boldface letters.
(·)T and (·)H denote the transpose and conjugate transpose
operator, respectively. Tr(·) and det(·) are the trace and the
determinant of a matrix, respectively.

II. ML COVARIANCE ESTIMATION FOR ELLIPTICAL
DISTRIBUTIONS

A. Elliptical distribution

Let x be a p × 1 real random vector generated by the
following model

x = νu, (1)

where ν is a real, positive random variable and u is a
p × 1 zero-mean, real Gaussian random vector with positive
definite covariance Σ. We assume that ν and u are statistically
independent. The resulting random vector x is elliptically
distributed and its probability density function (pdf) can be
expressed by

p(x) = φ
(
xTΣ−1x

)
, (2)

where φ(·) is the characteristic function (Definition 2, pp. 5,
[25]) related to the pdf of ν. The elliptical family encompasses
many useful distributions in signal processing and related
fields and includes: the Gaussian distribution itself, the K dis-
tribution, the Weibull distribution and many others. As stated
above, elliptically distributed samples are also referred to as
Spherically Invariant Random Vectors (SIRV) or compound
Gaussian processes in signal processing.

B. ML estimation

Let {xi}ni=1 be a set of n independent and identically
distributed (i.i.d.) samples drawn according to (1). As the
covariance of x may not exist, our problem is formulated
to estimate the covariance (dispersion) matrix Σ of u from
{xi}ni=1. The model (1) is invariant to scaling of the covariance
matrix Σ. Therefore, without loss of generality, we assume

that the covariance matrix is trace-normalized in the sense
that Tr(Σ) = p.

The commonly used sample covariance, defined as

Ŝ =
1

n

n∑
i=1

xix
T
i , (3)

is known to be a poor estimator of Σ, especially when the
samples are high-dimensional (large p) and/or heavy-tailed.
Tyler’s method [9] addresses this problem by working with
the normalized samples:

si =
xi
‖xi‖2

=
ui
‖ui‖2

, (4)

for which the term ν in (1) drops out. The pdf of si is given
by [25]

p(si; Σ) =
Γ(p/2)

2πp/2
·
√

det(Σ−1) ·
(
sTi Σ−1si

)−p/2
. (5)

Taking the derivative and equating to zero, the maximum
likelihood estimator based on {si}ni=1 is the solution to

Σ =
p

n
·
n∑
i=1

sis
T
i

sTi Σ−1si
. (6)

When n > p, the ML estimator can be found using the
following fixed point iterations:

Σ̂j+1 =
p

n
·
n∑
i=1

sis
T
i

sTi Σ̂−1j si
, (7)

where the initial Σ̂0 is usually set to the identity matrix.
Assuming that n > p and that any p samples out of {si}ni=1

are linearly independent with probability one, it can be shown
that the iteration process in (7) converges and that the limiting
value is unique up to constant scale, which does not depend on
the initial value of Σ̂0. In practice, a final normalization step
is needed, which ensures that the iteration limit Σ̂∞ satisfies
Tr(Σ̂∞) = p.

The ML estimate corresponds to the Huber-type M-
estimator and has many good properties when n� p, such as
asymptotic normality and strong consistency. Furthermore, it
has been pointed out [9] that the ML estimate (7) is the “most
robust” covariance estimator in the class of elliptical distri-
butions in the sense of minimizing the maximum asymptotic
variance. We note that (7) can be also motivated from other
approaches as proposed in [14], [16].

III. ROBUST SHRINKAGE COVARIANCE ESTIMATION

Here we extend Tyler’s method to the high dimensional
setting using shrinkage regularization. It is easy to see that
there is no solution to (6) when n < p (its left-hand-side is
full rank whereas its right-hand-side of is rank deficient). This
motivates us to develop a regularized covariance estimator for
elliptical samples. Following [2], [3], we propose to regularize
the fixed point iterations as

Σ̃j+1 = (1− ρ)
p

n

n∑
i=1

sis
T
i

sTi Σ̂−1j si
+ ρI, (8)

Σ̂j+1 =
Σ̃j+1

Tr(Σ̃j+1)/p
, (9)
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where ρ is the so-called shrinkage coefficient, which is a
constant between 0 and 1. When ρ = 0 and n > p the proposed
shrinkage estimator reduces to Tyler’s unbiased method in
(6) and when ρ = 1 the estimator reduces to the trivial
uncorrelated case yielding a scaled identity matrix. The term
ρI ensures that Σ̂j+1 is always well-conditioned and thus
allows continuation of the iterative process without the need
for restarts. Therefore, the proposed iteration can be applied to
high dimensional estimation problems. We emphasize that the
normalization (9) is important and necessary for convergence.
We establish provable convergence and uniqueness of the limit
in the following theorem.

Theorem 1. Let 0 < ρ < 1 be a shrinkage coefficient. Then,
the fixed point iterations in (8) and (9) converge to a unique
limit for any positive definite initial matrix Σ̂0.

The proof of Theorem 1 follows directly from the concave
Perron-Frobenius theory [28] and is provided in the Appendix.
We note that the regularization presented in (8) and (9) is
similar to diagonal loading [21]. However, unlike the diagonal
loading approach of [21], the proposed shrinkage approach
provides a systematic way to choose the regularization pa-
rameter ρ, discussed in the next section.

A. Choosing the shrinkage coefficient

We now turn to the problem of choosing a good, data-
dependent, shrinkage coefficient ρ, as as an alternative to
cross-validation schemes which incur intensive computational
costs. As in Ledoit-Wolf [2], we begin by assuming we
“know” the true covariance Σ. Then we define the following
clairvoyant “estimator”:

Σ̃(ρ) = (1− ρ)
p

n

n∑
i=1

sis
T
i

sTi Σ−1si
+ ρI, (10)

where the coefficient ρ is chosen to minimize the minimum
mean-squared error:

ρO = arg min
ρ
E

{∥∥∥Σ̃(ρ)−Σ
∥∥∥2
F

}
. (11)

The following theorem shows that there is a closed-form
solution to the problem (11), which we refer to as the “oracle”
coefficient.

Theorem 2. For i.i.d. elliptical distributed samples the solu-
tion to (11) is

ρO =
p2 + (1− 2/p)Tr(Σ2)

(p2 − np− 2n) + (n+ 1 + 2(n− 1)/p)Tr(Σ2)
,

(12)
under the condition Tr(Σ) = p.

The proof of Theorem 2 requires the calculation of the
fourth moments of an isotropically distributed random vector
[30]–[32] and is provided in the Appendix.

The oracle coefficient cannot be implemented since ρO is
a function of the unknown true covariance Σ. Therefore, we
propose a plug-in estimate for ρO:

ρ̂ =
p2 + (1− 2/p)Tr(M̂2)

(p2 − np− 2n) + (n+ 1 + 2(n− 1)/p)Tr(M̂2)
, (13)

where M̂ can be any consistent estimator of Σ, e.g., the
trace-normalized Ledoit-Wolf estimator. Another appealing
candidate for plug-in is the (trace-normalized) normalized
sample covariance R̂ [12] defined by:

R̂ =
p

n

n∑
i=1

sis
T
i . (14)

We note that the only requirement on the covariance estimator
M̂ is that it provide a good approximation to Tr(Σ2). It does
not have to be well-conditioned nor does it have to be an
accurate estimator of the true covariance matrix Σ.

By using the plug-in estimate ρ̂ in place of ρ, the robust
shrinkage estimator is computed via the fixed point iteration
in (8) and (9).

We note that our proposed minimum MSE based approach
to estimate the shrinkage coefficient is completely general and
makes a minimum of assumptions on the provenance of the
data. In specific applications such as adaptive beamforming, a
specifically tailored coefficient estimator may be advantageous
[21].

B. Extension to the complex case

Here we consider the scenario where the random vector x in
(1) is complex elliptical distributed. In this case, ν is still a real,
positive random variable but u is a complex Gaussian random
vector with covariance matrix Σ. Note that Σ is Hermitian
and is assumed to be trace-normalized, i.e., Tr(Σ) = p. The
complex version of our fixed point iterations is

Σ̃j+1 = (1− ρ)
p

n

n∑
i=1

sis
H
i

sHi Σ̂−1j si
+ ρI,

Σ̂j+1 =
Σ̃j+1

Tr(Σ̃j+1)/p
,

(15)

where si is defined by (4). As in the real case, the shrinkage
coefficient ρ is chosen to minimize (11), where the complex
clairvoyant estimator Σ̃(ρ) is re-defined as

Σ̃(ρ) = (1− ρ)
p

n

n∑
i=1

sis
H
i

sHi Σ−1si
+ ρI. (16)

The following theorem extends Theorems 1 and 2 to the
complex case.

Theorem 3. For any 0 < ρ < 1 the complex valued iterations
in (15) converge to a unique limit for any positive definitive
Hermitian matrix Σ̂0. For Σ̃(ρ) defined in (16), the solution
to (11) is

ρO =
p2 − 1/pTr(ΣΣH)

(p2 − pn− n) + (n+ (n− 1)/p)Tr(ΣΣH)
(17)

under the condition Tr(Σ) = p.

The proof of Theorem 3 is similar to that of Theorem 1 and
Theorem 2 and is provided in the Appendix. In practice, ρO
can be approximated by plugging any consistent estimator of
Tr(ΣΣH) in (17).



4

IV. NUMERICAL SIMULATION

In this section we use simulations to demonstrate the su-
perior performance of the proposed shrinkage approach. First
we show that our estimator outperforms other estimators for
the case of heavy-tailed samples generated by a multivariate
Student-T distribution, where ν in (1) is a function of a Chi-
square random variable:

ν =

√
d

χ2
d

; (18)

The degree-of-freedom d of this multivariate Student-T statis-
tic is set to 3. The dimensionality p is chosen to be 100 and
we let Σ be the covariance matrix of an AR(1) process,

Σ(i, j) = r|i−j|, (19)

where Σ(i, j) denotes the entry of Σ in row i and column
j. The parameter r is set to 0.7 in this simulation. The
sample size n varies from 5 to 225 with step size 10. All
the simulations are repeated for 100 trials and the average
empirical performance is reported.

We use (13) with M̂ = R̂ and employ iterations defined by
(8) and (9) with ρ = ρ̂. For comparison, we also plot the results
of the trace-normalized oracle in (12), the trace-normalized
Ledoit-Wolf estimator [2], and the non-regularized solution
in (7) (when n > p). As the Ledoit-Wolf estimator operates
on the sample covariance which is sensitive to outliers, we
also compare to a trace-normalized version of a clairvoyant
Ledoit-Wolf estimator implemented according to the procedure
in [2] with known ν. More specifically, the samples xi
are firstly normalized by the known realizations νi, yielding
truly Gaussian samples; then the sample covariance of the
normalized xi’s is computed, which is used to estimate the
Ledoit-Wolf shrinkage parameters and estimate the covariance
via equation (14) in [2]. The MSE is plotted in Fig. 1 for the
case that r = 0.7. It can be observed that the proposed method
performs significantly better than the Ledoit-Wolf estimator
in Fig. 1, and that the performance is very close to the ideal
oracle estimator using the optimal shrinkage parameter (12).
Even the clairvoyant Ledoit-Wolf implemented with known
νi does not outperform the proposed estimator in the small
sample size regime. These results demonstrate the robustness
of the proposed approach. Although the Ledoit-Wolf estimator
performs better when r = 0, the case where Σ = I, the
proposed approach still significantly outperforms it, especially
for small sample size n (results not shown).

As a graphical illustration, in Fig. 2 we provide covariance
visualizations for a realization of the estimated covariances
using the Ledoit-Wolf method and the proposed approach.
The covariance matrix estimates are rendered as a heatmap
in Fig. 2(a). The sample size in this example is set to 50,
which is smaller than the dimension 100. Compared to the true
covariance, it is clear that the proposed covariance estimator
preserves the structure of the true covariance, while in the
Ledoit-Wolf covariance procudure produces “block pattern”
artifacts caused by heavy-tails of the multivariate Student-T.

When n > p, we also observe a substantial improvement of
the proposed method over the ML covariance estimate, which

provides further evidence of the power of Steinian shrinkage
for reducing MSE.
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Fig. 1. Multivariate Student-T samples: Comparison of different trace-
normalized covariance estimators when p = 100, where r is set to 0.7.
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Fig. 2. Multivariate Student-T samples: Heatmap visualizations of the co-
variance matrix estimates using the Ledoit-Wolf and the proposed approaches.
p = 100, n = 50. Note that n < p in this case.

In order to assess the tradeoff between accuracy and ro-
bustness we investigate the case when the samples are truly
Gaussian distributed. We use the same simulation parameters
as in the previous example, the only difference being that
the samples are now generated from a Gaussian distribution.
The performance comparison is shown in Fig. 3, where four
different (trace-normalized) methods are included: the oracle
estimator derived from Gaussian assumptions (Gaussian or-
acle) [3], the iterative approximation of the Gaussian oracle
(Gaussian OAS) proposed in [3], the Ledoit-Wolf estimator
and the proposed method. It can be seen that for truly Gaussian
samples the proposed method performs very closely to the
Gaussian OAS, which is specifically designed for Gaussian
distributions. Indeed, for small sample size (n < 20), the
proposed method performs even better than the Ledoit-Wolf
estimator. This indicates that, although the proposed robust
method is developed for the entire elliptical family, it actually
sacrifices very little performance for the case that the distri-
bution is Gaussian.

V. APPLICATION TO ANOMALY DETECTION IN WIRELESS
SENSOR NETWORKS

In this section we demonstrate the proposed robust covari-
ance estimator in a real application: activity detection using a
wireless sensor network.

The experiment was set up on an Mica2 sensor network
platform, as shown in Fig. 4, which consists of 14 sensor
nodes randomly deployed inside and outside a laboratory at
the University of Michigan. Wireless sensors communicated
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Fig. 3. Gaussian samples: Comparison of trace-normalized different covari-
ance estimators when p = 100.

with each other asynchronously by broadcasting an RF signal
every 0.5 seconds. The received signal strength (RSS), de-
fined as the voltage measured by a receiver’s received signal
strength indicator circuit (RSSI), was recorded for each pair of
transmitting and receiving nodes. There were 14 × 13 = 182
pairs of RSSI measurements over a 30 minute period, and
samples were acquired every 0.5 sec. During the experiment
period, persons walked into and out of the lab at random times,
causing anomaly patterns in the RSSI measurements. Finally,
for ground truth, a web camera was employed to record the
actual activity.

Fig. 4. Experimental platform: wireless Mica2 sensor nodes.

Fig. 5 shows all the received signals and the ground truth
indicator extracted from the video. The objective of this
experiment was intrusion (anomaly) detection. We emphasize
that, with the exception of the results shown in Fig. 10, the
ground truth indicator is only used for performance evaluation
and the detection algorithms presented here were completely
unsupervised.

To remove temperature drifts [36] of receivers we detrended
the data as follows. Let xi[k] be the k-th sample of the i-th
RSS signal and denote

x[k] = (x1[k], x2[k], . . . , x182[k])
T
. (20)

The local mean value of x[k] is defined by

x̄[k] =
1

2m+ 1

k+m∑
i=k−m

x[k], (21)

where the integer m determines local window size and is set
to 50 in this study. We detrend the data by subtracting this
local mean

y[k] = x[k]− x̄[k], (22)
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data

Fig. 5. At bottom 182 RSS sequences sampled from each pair of transmitting
and receiving nodes in intrusion detection experiment. Ground truth indicators
at top are extracted from video captured from a web camera that recorded the
scene.

yielding a detrended sample y[k] used in our anomaly detec-
tion.

We established that the detrended measurements were
heavy-tailed non-Gaussian by performing several statistical
tests. First the Lilliefors test [37] of Gaussianity was performed
on the detrended RSS measurements. This resulted in rejection
of the Gaussian hypothesis at a level of significance of 10−6.
As visual evidence, we show the quantile-quantile plot (QQ
plot) for one of the detrended RSS sequences in Fig. 6 which
illustrates that the samples are non-Gaussian. In Fig. 7, we plot
the histograms and scatter plots of two of the detrended RSS
sequences, which shows the heavy-tail nature of the sample
distribution. This strongly suggests that the RSS samples can
be better described by a heavy-tailed elliptical distribution than
by a Gaussian distribution. As additional evidence, we fitted a
Student-T distribution to the first detrended RSS sequence, and
used maximum likelihood to estimate the degree-of-freedom
as d = 2 with a 95% confidence interval (CI) [1.8460, 2.2879].
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Fig. 6. QQ plot of data versus the standard Gaussian distribution.

Consider the following discriminant based on the detrended
data:

tk = sT [k]Σ−1s[k], (23)

where, similarly to (4), s[k] = y[k]/‖y[k]‖2 and Σ is given by



6

−50 0 50
0

100

200

300

400

500

600

 

 

−50 0 50
0

100

200

300

400

 

 

−40 −20 0 20 40
−30

−20

−10

0

10

20

30

−40 −20 0 20 40
−30

−20

−10

0

10

20

30

Histogram

Dist. fit

Histogram

Dist. fit

Fig. 7. Histograms and scatter plots of the first two de-trended RSS
sequences, which are fit by a multivariate Student-T distribution with degree-
of-freedom d = 2.

the solution to (6). A time sample is declared to be anomalous
if the test statistic tk exceeds a specified threshold. The statistic
(23) is equivalent to a robustified version of the Mahalanobis
distance anomaly detector [33]. Note that direct application of
shrinkage to the sample covariance of y[k] would be prob-
lematic since a multivariate Student-T vector with 2 degrees
of freedom has no second order moments. The test statistic
(23) can be interpreted as a shrinkage robustified Mahalanobis
distance test applied to the better behaved variable s[k] that has
finite moments of all orders. Specifically, we constructed the
182 × 182 sample covariance by randomly subsampling 200
time slices from the RSS data shown in Fig. 5. Note, that these
200 samples correspond to a training set that is contaminated
by anomalies at the same anomaly rate (approximately 10%) as
the entire sample set. The detection performance was evaluated
using the receiver operating characteristic (ROC) curve, where
the averaged curves from 200 independent Monte-Carlo trials
are shown in Fig. 8. For comparison, we also implemented
the activity detector (23) with other covariance estimates
including: the sample covariance, the Ledoit-Wolf estimator
and Tyler’s ML estimator.
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Fig. 8. Performance comparison for different covariance estimators, p =
182, n = 200.

From the mean ROCs we can see that the detection perfor-
mances are rank ordered as follows: Proposed > Ledoit-Wolf
> Tyler’s ML > Sample covariance. The sample covariance

performs poorly in this setting due to the small sample size
(n = 200, p = 182) and its sensitivity to the heavy-tailed
distribution shown in Fig. 6 and 7. The Tyler ML method
and the Ledoit-Wolf estimator improve upon the sample co-
variance since they compensate for heavy tails and for small
sample size, respectively. Our proposed method compensates
for both effects simultaneously and achieves the best detection
performance.

We also plot the 90% confidence envelopes, determined
by cross-validation, on the ROCs in Fig. 9. The width of
the confidence interval reflects the sensitivity of the anomaly
detector to variations in the training set. Indeed, the upper and
lower endpoints of the confidence interval are the optimistic
and the pessimistic predictions of detection performance. The
proposed method achieves the smallest width among the four
computed 90% confidence envelopes.
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Fig. 9. Performance comparison for different covariance estimators, including
the mean value and 90% confidence intervals. (a): Sample covariance. (b):
Proposed. (c): Ledoit-Wolf. (d): Tyler’s ML. The 200 training samples are
randomly selected from the entire data set.

Finally, for completeness we provide performance com-
parison of covariance-based supervised activity detection al-
gorithms in Fig. 10. The training period is selected to be
[251, 450] based on ground truth where no anomalies appear.
It can be observed that, by excluding the outliers caused by
anomalies, the performance of the Ledoit-Wolf based intrusion
detection algorithm is close to that of the proposed method.
We conclude that the activity detection performance of the
proposed covariance estimator is more robust than the other
three estimators with respect to outlier contamination in the
training samples.

VI. CONCLUSION

In this paper, we proposed a shrinkage covariance estimator
which is robust over the class of elliptically distributed sam-
ples. The proposed estimator is obtained by fixed point itera-
tions, and we established theoretical guarantees for existence,
convergence and uniqueness. The optimal shrinkage coefficient
was derived using a minimum mean-squared-error framework
and has a closed-form expression in terms of the unknown true
covariance. This expression can be well approximated by a
simple plug-in estimator. Simulations suggest that the iterative
approach converges to a limit which is robust to heavy-tailed
multivariate Student-T samples. Furthermore, we show that
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Fig. 10. Performance comparison for different covariance estimators, p =
182, n = 200. The covariance matrix is estimated in a supervised manner.

for the Gaussian case, the proposed estimator performs very
closely to previous estimators designed expressly for Gaussian
samples.

As a real world application we demonstrated the perfor-
mance of the proposed estimator in intrusion detection using
a wireless sensor network. Implementation of a standard
covariance-based detection algorithm using our robust covari-
ance estimator achieved superior performances as compared
to conventional covariance estimators.

The basis of the proposed method is the ML estimator
originally proposed by Tyler in [9]. However, the approach
presented in this paper can be extended to other M-estimators.

One of the main contributions of our work is the proof
of uniqueness and convergence of the estimator. This proof
extends the results of [9], [18] to the regularized case. Re-
cently, an alternative proof to the non-regularized case using
convexity on manifolds was presented in [35]. This latter proof
highlights the geometrical structure of the problem and gives
additional insight. We are currently investigating its extension
to the regularized case.
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VIII. APPENDIX

A. Proof of Theorem 1

In this appendix we prove Theorem 1. The original con-
vergence proof for the non-regularized case in [9], [18] is
based on careful exploitation of the specific form of (6). In
the contrast, our proof for the regularized case is based on a
direct connection from concave Perron-Frobenius theory [28],
[29]. We begin by summarizing the required concave Perron-
Frobenius result in the following lemma.

Lemma 1 ( [28]). Let (E, ‖·‖) be a Banach space with K ⊂ E
being a closed, convex cone on which ‖·‖ is increasing, i.e., for

which x ≤ y implies ‖x‖ ≤ ‖y‖, where the operator ≤ on the
convex cone K means that if x ≤ y then y − x ∈ K. Define
U = {x|x ∈ K, ||x|| = 1}. Let T : K → K be a concave
operator such that

T (µx+ (1− µ)y) ≥ µT (x) + (1− µ)T (y),

for all µ ∈ [0, 1], all x, y ∈ K.
(24)

If for some e ∈ K − {0} and constants a > 0, b > 0 there is

ae ≤ T (x) ≤ be, for all x ∈ U, (25)

then there exists a unique x∗ ∈ U to which the iteration of
the normalized operator T̃ (x) = T (x)/‖T (x)‖, x ∈ K − {0}
converges:

lim
k→∞

T̃ k(x) = x∗, for all x ∈ K − {0}. (26)

Lemma 1 can be obtained by combining results from
Lemma 2 and Theorem in Section 4 of [28]. Here we show that
the proof of Theorem 1 is a direct result of applying Lemma
1 with proper definitions of E, K, U and T :
• E: the set of all symmetric matrices;
• K: the set of all positive semi-definite matrices on E;
• ‖Σ‖: the normalized nuclear norm of Σ, i.e.,

‖Σ‖ =
1

p

p∑
j=1

|λj |, (27)

where λj is the j-th eigenvalue of Σ and |·| is the absolute
value operator. Note that for any Σ ∈ K, the nuclear
norm ‖ · ‖ is identical to Tr(·)/p and is increasing;

• U : the set U = {Σ|Σ ∈ K, ‖Σ‖ = 1};
• T : the mapping from K to K defined by

T (Σ) = (1− ρ)
p

n

n∑
i=1

w(si,Σ)sis
T
i + ρI, (28)

where the weight function w(si,Σ) is defined as

w(si,Σ) = inf
zT si 6=0

zTΣz

(sTi z)2
, (29)

for any Σ ∈ K.
Proof: With the above definitions we show that Theorem

1 is a direct result of Lemma 1. We begin by showing that
the mapping operator T is concave. Indeed, it is sufficient to
show that w(si,Σ) in concave in Σ, which is true because it
is the infinimum of affine functions of Σ.

Next, we show that T satisfies condition (25) with e = I.
It is easy to see that

ρI ≤ T (Σ), (30)

for any Σ ∈ U . Then we show that

w(si,Σ) ≤ p, (31)

for any Σ ∈ U . Indeed,

w(si,Σ) = inf
zT si 6=0

zTΣz

(sTi z)2
≤ sTi Σsi

(sTi si)2
≤ λmax

sTi si
= λmax,

(32)
where λmax is the maximum eigenvalue of Σ. The last equality
in the right-hand-side of (32) comes from the fact that si is of
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unit norm by definition (4). (31) is thus obtained by noticing
that Σ ∈ U and λmax ≤ p. Substituting (31) into (28) we have

T (Σ) ≤ (1− ρ)p2R̂ + ρI ≤
(
(1− ρ)p2αmax + ρ

)
I, (33)

where

R̂ =
1

n

n∑
i=1

sis
T
i ,

and αmax is the maximum eigenvalue of R̂. Again, as si is
of unit norm, αmax ≤ Tr(R̂) = 1 and

T (Σ) ≤
(
(1− ρ)p2 + ρ

)
I. (34)

Therefore, we have shown that T satisfies condition (25),
where e = I, a = ρ and b = (1 − ρ)p2 + ρ. In addition,
(25) establishes that the mapping T from U always yields a
positive definite matrix. Therefore, the convergent limit of the
fixed-point iteration is positive definite.

Finally, we note that, for any Σ � 0, we have

‖Σ‖ =
Tr(Σ)

p
, (35)

and

w(si,Σ) = inf
zT si 6=0

zTΣz

(sTi z)2
=

1

sTi Σ−1si
. (36)

The limit (26) is then identical to the limit of proposed
iterations (8) and (9) for any Σ � 0. Therefore, Theorem
1 has been proved.

B. Proof of Theorem 2

Proof: To ease the notation we define C̃ as

C̃ =
p

n

n∑
i=1

sis
T
i

sTi Σ−1si
. (37)

The shrinkage estimator in (10) is then

Σ̃(ρ) = (1− ρ)C̃ + ρI. (38)

By substituting (38) into (10) and taking derivatives of ρ, we
obtain that

ρO =
E
{

Tr
(

(I− C̃)(Σ− C̃)
)}

E

{∥∥∥I− C̃
∥∥∥2
F

}
=
m2 −m11 −m12 + Tr(Σ)

m2 − 2m11 + p
,

(39)

where
m2 = E

{
Tr(C̃2)

}
, (40)

m11 = E
{

Tr(C̃)
}
, (41)

and
m12 = E

{
Tr(C̃Σ)

}
. (42)

Next, we calculate the moments. We begin by eigen-
decomposing Σ as

Σ = UDUT , (43)

and denote
Λ = UD1/2. (44)

Then, we define

zi =
Λ−1si
‖Λ−1si‖2

=
Λ−1ui
‖Λ−1ui‖2

. (45)

Noting that ui is a Gaussian distributed random vector with
covariance Σ, it is easy to see that ‖zi‖2 = 1 and zi and zj
are independent with each other for i 6= j. Furthermore, zi is
isotropically distributed [30]–[32] and satisfies [3]

E
{
ziz

T
i

}
=

1

p
I, (46)

E
{(

zTi Dzi
)2}

=
1

p(p+ 2)

(
2Tr(D2) + Tr2(D)

)
=

1

p(p+ 2)

(
2Tr(Σ2) + Tr2(Σ)

)
,

(47)

and

E
{(

zTi Dzj
)2}

=
1

p2
Tr(D2) =

1

p2
Tr(Σ2), i 6= j. (48)

Expressing C̃ in terms of zi, there is

C̃ =
p

n
Λ

n∑
i=1

ziz
T
i ΛT . (49)

Then,

E
{

C̃
}

=
p

n
Λ

n∑
i=1

E
{
ziz

T
i

}
ΛT = Σ, (50)

and accordingly we have

m11 = E
{

Tr(C̃)
}

= Tr(Σ), (51)

and
m12 = E

{
Tr(C̃Σ)

}
= Tr(Σ2). (52)

For m2 there is

m2 =
p2

n2
E

Tr

Λ

n∑
i=1

ziz
T
i ΛTΛ

n∑
j=1

zjz
T
j ΛT


=
p2

n2
E

Tr

 n∑
i=1

n∑
j=1

ziz
T
i ΛTΛzjz

T
j ΛTΛ


=
p2

n2
E

Tr

 n∑
i=1

n∑
j=1

ziz
T
i Dzjz

T
j D


=
p2

n2

n∑
i=1

n∑
j=1

E
{(

zTi Dzj
)2}

.

(53)

Now substitute (47) and (48) to (53):

m2 =
p2

n2

(
n

p(p+ 2)

(
2Tr(Σ2) + Tr2(Σ)

)
+

n(n− 1)

p2
Tr(Σ2)

)
=

1

n(1 + 2/p)

(
2Tr(Σ2) + Tr2(Σ)

)
+ (1− 1

n
)Tr(Σ2)

=

(
1− 1

n
+

2

n(1 + 2/p)

)
Tr(Σ2) +

Tr2(Σ)

n(1 + 2/p)
.

(54)
Recalling Tr(Σ) = p, (12) is finally obtained by substituting

(51), (52) and (54) into (39).
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C. Proof of Theorem 3

The proof of convergence and uniqueness is a simple
extension of the proof in Appendix A by re-defining E as
the set of all Hermitian matrices and the mapping function
T (Σ) as

T (Σ) = (1− ρ)
p

n

n∑
i=1

w(si,Σ)sis
H
i + ρI, (55)

where

w(si,Σ) = inf
zHsi 6=0

zHΣz

|sHi z|2
. (56)

For the oracle coefficient, define

C̃ =
n

p

n∑
i=1

sis
H
i

sHi Σ−1si
. (57)

Then Σ̃(ρ) = (1− ρ)C̃ + ρI. It can be shown that

ρO =
E
{

Re
(

Tr
(

(I− C̃)(Σ− C̃)H
))}

E
{
‖I− C̃‖2F

}
=
m2 −m11 −m12 + Tr(ΣH)

m2 − 2m11 + p
,

(58)

where m2, m11 and m12 are re-defined as

m2 = E
{

Tr
(
C̃C̃H

)}
, (59)

m11 = E
{

Re
(

Tr
(
C̃H

))}
(60)

and
m12 = E

{
Re
(

Tr
(
C̃ΣH

))}
, (61)

respectively.
Next, we eigen-decompose the Hermitian positive definite

matrix Σ as
Σ = UDUH , (62)

where D is a real diagonal matrix and U is a complex unitary
matrix. Define

Λ = UD1/2 (63)

and
zi =

Λ−1si
‖Λ−1si‖2

. (64)

{zi}ni=1 are then complex valued isotropically distributed
random vectors and are independent to each other [30]–[32].
Using results from [34], it can be shown that

E
{
ziz

H
i

}
=

1

p
I, (65)

E
{∣∣zHi Dzi

∣∣2} =
1

p(p+ 1)

(
Tr(D2) + Tr2(D)

)
=

1

p(p+ 1)

(
Tr(ΣΣH) + Tr2(Σ)

) (66)

and

E
{∣∣zHi Dzj

∣∣2} =
1

p2
Tr(D2) =

1

p2
Tr(ΣΣH), i 6= j. (67)

Eq. (65) ∼ (67) are complex versions of (46) ∼ (48).
Expressing C̃ in terms of zi, there is

C̃ =
p

n
Λ

n∑
i=1

ziz
H
i ΛH , (68)

and accordingly
E
{

C̃
}

= Σ. (69)

As Re(·), Tr(·) and E {·} are exchangeable to each other, we
have

m11 = Re
(
Tr(ΣH)

)
= Tr(Σ) (70)

and
m12 = Tr(ΣΣH). (71)

For m2, using a similar derivation as in Appendix B, it can
be shown that

m2 =
p2

n2

n∑
i=1

n∑
j=1

E
{∣∣zHi Dzj

∣∣2}
=

(
1− 1

n(p+ 1)

)
Tr(ΣΣH) +

p

n(p+ 1)
Tr2(Σ).

(72)
As Tr(ΣH) = Tr(Σ) = p, (17) can be finally obtained by
substituting (70), (71) and (72) to (58).
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