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Abstract—Flow cytometry is often used to characterize the
malignant cells in leukemia and lymphoma patients, traced to the
level of the individual cell. Typically, flow-cytometric data analysis
is performed through a series of 2-D projections onto the axes of
the data set. Through the years, clinicians have determined combi-
nations of different fluorescent markers which generate relatively
known expression patterns for specific subtypes of leukemia
and lymphoma - cancers of the hematopoietic system. By only
viewing a series of 2-D projections, the high-dimensional nature
of the data is rarely exploited. In this paper we present a means
of determining a low-dimensional projection which maintains
the high-dimensional relationships (i.e., information distance)
between differing oncological data sets. By using machine learning
techniques, we allow clinicians to visualize data in a low dimension
defined by a linear combination of all of the available markers,
rather than just two at a time. This provides an aid in diagnosing
similar forms of cancer, as well as a means for variable selection
in exploratory flow-cytometric research. We refer to our method
as information preserving component analysis (IPCA).

Index Terms—Dimensionality reduction, flow cytometry, infor-
mation geometry, multivariate data analysis, statistical manifold.

1. INTRODUCTION

LINICAL flow-cytometric data analysis usually involves
C the interpretation of data culled from sets (i.e., cancerous
blood samples) which contain the simultaneous analysis of sev-
eral measurements. This high-dimensional data set allows for
the expression of different fluorescent markers, traced to the
level of the single blood cell. Typically, diagnosis is determined
by analyzing individual 2-D scatter plots of the data, in which
each point represents a unique blood cell and the axes signify
the expression of different biomarkers. By viewing a series of
these histograms, a clinician is able to determine a diagnosis for
the patient through clinical experience of the manner in which
certain leukemias and lymphomas express certain markers.
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Given that the standard method of cytometric analysis in-
volves projections onto the axes of the data (i.e., visualizing the
scatter plot of a data set with respect to two specified markers),
the multidimensional nature of the data is not fully exploited.
As such, typical flow-cytometric analysis is comparable to hier-
archical clustering methods, in which data is segmented on an
axis-by-axis basis. Marker combinations have been determined
through years of clinical experience, leading to relative confi-
dence in analysis given certain axes projections. These projec-
tion methods, however, contain the underlying assumption that
marker combinations are independent of each other, and do not
utilize the dependencies which may exist within the data. Ide-
ally, clinicians would like to analyze the full-dimensional data,
but this cannot be visualized outside of three dimensions.

There have been previous attempts at using machine learning
to aid in flow-cytometry diagnosis. Some have focused on clus-
tering in the high-dimensional space [1], [2], while others have
utilized information geometry to identify differences in sample
subsets and between data sets [3], [4]. These methods have not
satisfied the problem because they do not significantly approach
the aspect of visualization for “human in the loop” diagnosis,
and the ones that do [5], [6] only apply dimensionality reduc-
tion to a single set at a time. The most relevant work, compared
to what we are about to present, is that which we have recently
presented [7] where we utilized information geometry to simul-
taneously embed each patient data set into the same low-dimen-
sional space, representing each patient as a single vector. The
current task differs in that we do not wish to reduce each set to a
single point for comparative analysis, but to use dimensionality
reduction as a means to individually study the distributions of
each patient. As such, we aim to reduce the dimension of each
patient data set while maintaining the number of data points (i.e.,
cells).

With input from the Department of Pathology at the Uni-
versity of Michigan, we have determined that the ideal form
of dimensionality reduction for flow-cytometric visualization
would contain several properties. The data needs to be preserved
without scaling or skewing, as this is most similar to the current
methods in practice (i.e., axes projections). Hence, the ideal pro-
jection should be orthonormal. Secondly, the methods should be
unsupervised, relying solely on the geometry of the data. This
requirement is straight forward as the dimensionality reduction
would be an aid for diagnosis, so no labels would be available.
As such, common supervised methods geared towards dimen-
sionality reduction for classification tasks (e.g., LDA methods
[81, [9]) are not applicable towards this problem.

Clinicians would also like to work in a low-dimensional space
similar to what they have grown accustomed to through years

1932-4553/$25.00 © 2009 IEEE
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Fig. 1. Using PCA for dimensionality reduction for the comparison of two pa-
tients with differing diseases. The PCA projection (dashed line) does not discern
the ideal direction due to the variance of the patient 2. Each point represents a
unique blood cell analyzed with two different markers.

of experience. Once determined, the subspace should be consis-
tent, and should not change when processing new data. There-
fore, nonlinear methods of dimensionality reduction such as
[10], [11] are not ideal for this task. Adding new data to non-
linear methods forces a re-computation of the subspace, which
may be noticeably different than previous spaces (e.g., scaled
or rotated differently). This has been approached with out-of-
sample extension methods [12], but it is still a relatively open
problem. Finally, the projection space needs to preserve the re-
lationship between data sets; patients in the same disease class
should show similar expressions in the low-dimensional space,
while differing disease classes should be distinct from one an-
other. This requirement leads directly to a projection method
which maintains the similarity between multiple data sets, rather
than preserving similarities between the elements of a single set.

Given the desired properties, one might immediately consider
principal component analysis (PCA) [13] for unsupervised,
linear dimensionality reduction. However, PCA has well known
issues with data sets in which the interesting directions do not
have the largest variance. This is illustrated in Fig. 1, where
we illustrate two different patient data sets with two distinct
diseases (see Section IV-C), and attempt to use PCA to find a
1-D projection. This projection would have the adverse effect
of making distinguishable (albeit potentially difficult) patients
practically indistinguishable in the lower dimensional space.
While other methods such as projection pursuit (PP) [14] and
independent component analysis (ICA) [15] may not suffer
from the same setbacks, they too have their own drawbacks
in relation to the cytometry problem. Namely, while this is an
unsupervised problem w.r.t. disease classes, these methods do
not operate with any measure of similarity between patient
data sets. While we only illustrate two patients, this problem
becomes significantly more complex as additional patient data
is included.

In this paper, we present a method of dimensionality reduc-
tion — which we refer to as Information Preserving Component
Analysis (IPCA) — that preserves the Fisher information distance
between data sets. We have shown in previous work [16], [17]
that the Fisher information distance is the appropriate means for
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determining the similarity between non-Euclidean data. This is
the case for flow-cytometry data, as certain channels may repre-
sent light scatter angles, while other channels correspond to the
expression of a specific fluorescent marker. Hence, there is no
straightforward Euclidean representation of the data.

By preserving the Fisher information distance between sets,
IPCA ensures that the low-dimensional representation main-
tains the similarities between data sets which are contained in
the full-dimensional data, minimizing the loss of information.
This low-dimensional representation is a linear combination
of the various markers, enabling clinicians to visualize all of
the data simultaneously, rather than the current process of
axes projections, which only relays information in relation to
two markers at a time. Additionally, analysis of the loading
vectors within the IPCA projection matrix offers a form of
variable selection, which relays information describing which
marker combinations yield the most information. This has the
significant benefit of allowing for exploratory data analysis.

This paper proceeds as follows: Section II gives a background
of flow cytometry and the typical clinical analysis process, as
well as a formulation of the problem we will attempt to solve.
We present our methods for finding the IPCA projection in
Section III. Simulation results for clinical cytometric data are
illustrated in Section I'V, followed by a discussion and areas for
future work in Section V.

II. BACKGROUND

Clinical flow cytometry is widely used in the diagnosis and
management of malignant disorders of the blood, bone marrow,
and lymph nodes (leukemia and lymphoma). In its basic form,
flow cytometry involves the transmission of a stream of cells
through a laser light source, with characteristics of each cell de-
termined by the nature of the light scattered by the cell through
disruption of the laser light. Application to leukemia and lym-
phoma diagnosis is usually in the form of flow-cytometric im-
munophenotyping, whereby cells are labeled with antibodies to
specific cellular antigens, and the presence of these antigens de-
tected by light emitted from fluorescent molecules (of different
“colors”) conjugated to the target antibody.

Clinical grade flow cytometers typically assess the size and
shape of cells through the detection of light scattered at two pre-
determined angles (forward angle light scatter, and side angle or
orthogonal light scatter), and are also capable of simultaneously
detecting the expression patterns of numerous cellular antigens
in a single prepared cell suspension (“tube”). The analysis of
multiple tubes then allows for any number of antigen expres-
sion patterns to be assessed. Although 8-color flow cytometry
is possible with the latest generation of clinical grade analyzers,
most clinical flow-cytometry laboratories utilize three or four
color approaches.

In routine flow-cytometric immunophenotyping, the expres-
sion patterns of each marker in a given tube can be traced to
the level of the single cell, giving flow cytometry a uniquely
spatial characteristic when compared to other immunopheno-
typing or proteomic analysis methods. When measurements of
forward and side angle light scatter characteristics are included,
each cell analyzed via 4-color flow cytometry can be thought of
as occupying a unique point in 6-D space, with the dimensions
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Fig. 2. Typically, flow-cytometric analysis is performed using multiple 2-D projections onto the various marker combinations. This can lead to ambiguity and
does not fully exploit the high-dimensional nature of the data. We illustrate this difficulty in distinguishing a patient with an unfavorable immunophenotype to that
of a favorable patient, using their marginal PDFs over 3 of a possible 15 marker combinations from the 6-marker assay. (a) CD5 versus CD19. (b) CDS5 versus

CD38. (c) CD38 versus CD19.

of each point defined by the magnitude of expression of each
antigen or light scatter characteristic. Since all 6 dimensions
cannot be projected simultaneously onto a single histogram, di-
agnosticians typically analyze a series of 2-D histograms—mar-
ginal probability density functions (PDFs)—defined by any two
of the six characteristics measured in a given tube (see Fig. 2).
Often one or more measured characteristics are used to restrict
immunophenotypic analysis to a specific subset of cells in a
process commonly known as gating, which allows for limited
exploitation of the dimensionality of the flow-cytometry data.

The use of each single measured characteristic as an axis on
a 2-D histogram is a convenient method for visualizing results
and observing relationships between cell surface markers, but is
equivalent to viewing a geometric shape head-on, and therefore
does not necessarily take full advantage of the multidimensional
nature of flow cytometry. Just as it is possible to rotate an object
in space to more effectively observe that object’s characteristics,
$0 too is it possible to “rotate” the 2-D projection of a 6-D flow-
cytometry analysis to optimally view the relationships among
the six measured characteristics.

A. Problem Formulation

Given the critical importance of visualization in the task of
flow-cytometric diagnosis, we wish to find the low-dimensional
projection which best preserves the relationships between pa-
tient data sets. Rather than viewing a series of axes projections
determined by clinical experience as in Fig. 2 (where we illus-
trate only three of the 15 possible axes projections of the 6-D
data set), a projection which is a linear combination of several
biomarkers will allow a clinician to visualize all of the data in a
single low-dimensional space, with minimal loss of information.
An example is shown in Fig. 3, where it is easy to differentiate
the patient with an unfavorable immunophenotype from that of
a favorable patient!. This ability becomes even more substantial
with ever advancing technology, leading to flow cytometers that
have nine or more available parameters (yielding 36+ 2-D plots
for analysis).

Specifically, given a collection of flow-cytometer outputs
X ={X,..., Xy} in which each element of X; exists in R,

IThe data presented here is from patients with chronic lymphocytic leukemia,
and is further explained in Section IV-B
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Fig.3. Projecting the same data in Fig. 2 down to two dimensions using a linear
combination of all available markers. It is a much easier task to discriminate
these joint PDFs.

we can define similarity between data sets X; and X; (e.g.,
patients ¢ and j) with some metric as D(X;, X ;). Can we find
a mapping

A: X =Y

in which the elements of Y exist in R™, m < d (m = 2 or 3 for
visualization) such that

D(X,;,X;)=D(Y,)Y;), Vi, j?

Can we define this mapping as a linear projection A € R™*4?
Can we ensure that the projection minimally alters the data itself
(i.e., ensure A is orthonormal)? Additionally, by analyzing the
loadings in A, can we determine which biomarkers are best at
differentiating between disease classes?

III. METHODS

In our previous work on Fisher information nonparametric
embedding (FINE) [16], [17], we have shown that we can derive
an information-based embedding for the purposes of flow-cyto-
metric analysis [7]. By viewing each patient as a PDF on a sta-
tistical manifold, we were able to embed that manifold into a
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low-dimensional Euclidean space, in which each patient is rep-
resented by a single point. This visualization allows for a diag-
nostician to view each patient in relation to other selected pa-
tients in a space where disease classes are well distinguished.
The similarity between patients was determined by using an ap-
proximation of the Fisher information distance between PDFs
parameterized by § = [6!, ..., 6™]. The Fisher information dis-

’ ’

tance between two distributions p(z; 61) and p(z; f2) is

Dr(01.02) = in [\/(%)T[I(ﬂ)] (%) o

6(0)=6,
6(1)=0,

where 6 = 6(t) is the parameter path along the manifold [18],
[19] and [Z(#)] is the Fisher information matrix whose elements
are

dlog f(X;0) Olog f(X;0)
00 007

[Z(0)]i; = / f(X;0) dX. (2)

The Fisher information distance is the best way to charac-
terize similarity between PDFs as it is an exact measure of the
geodesic (i.e., shortest path) between points along the manifold.
While the Fisher information distance cannot be exactly com-
puted without knowing the parameterization of the manifold, it
may be approximated with metrics such as the Kullback-Leibler
(KL) divergence, Hellinger distance, and Rényi-alpha entropy
[18]. For our work, we focus on the KL divergence, which is
defined as

= z)lo (@) T
KLpil) = [ m(@)los 28 G

where p; and py are PDFs of possibly unknown parameteriza-
tion. It should be noted that the KL divergence is not a distance
metric, as it is not symmetric, K L(p1||p2) # K L(p1||p2). To
obtain this symmetry, we will define the KL divergence as

Dgr(p1,p2) = KL(p1llp2) + K L(p2||p1)- )

The KL divergence approximates the Fisher information dis-
tance [18]

Drr(p1.p2) = Dr(p1,p2) (5)

as p; — pso. Hence, we are able to use the KL divergence
as a means for calculating similarity between patient data sets.
For our purposes, we choose to nonparametrically estimate pa-
tient PDFs and KL divergences through kernel density estima-
tion [17], although other methods are available (e.g., mixture
models, k-nearest neighbor methods).

A. Objective Function

In FINE, we found an embedding which mapped information
distances between PDFs as Euclidean distances in a low-dimen-
sional space. This allowed us to embed an entire PDF, and there-
fore all of the cells which were realizations of that PDF, into a

single low-dimensional vector. This provided for the direct com-
parison of patients in the same normalized space. In our current
task, we are not interested in embedding a group of patients into
the same space, but rather projecting each patient individually
in its own space. However, it is important that we maintain dif-
ferences between patients, as we have found that is a great way
to differentiate disease classes.

We define our Information Preserving Component Anal-
ysis (IPCA) projection as one that preserves the Fisher
information distance between data sets. Specifically, let
X = {X1,...,Xn} where X; corresponds to the flow-cy-
tometer output of the i*" patient containing n; blood cells
measured with d different markers; estimating the PDF of
X, as p;. With an abuse of notation, we refer to D1 (pi, p;)
as Dgr(X;, X ;) with the knowledge that the divergence is
calculated with respect to PDFs, not realizations. We wish to
find a single projection matrix A such that

DKL(AXi, AX]) = DKL(Xi,Xj), VL,J
Formatting as an optimization problem, we would like to solve

A=arg min |[D(X) - D(X; A% (6)
where T is the identity matrix, D(X) is a dissimilarity ma-
trix such that D;;(X) = Dgr(X;,X;), and D(X;A) is a
similar matrix where the elements are perturbed by A, i.e.,
Dij(X; A) = DKL(AX,L'./ AX])

Since pathologists view projections in order to diagnose
based on similar marker expression patterns, maintaining sim-
ilarities within disease class (and differences between class)
is of the utmost importance. These measures are expressed
quantitatively through information. By finding the projection
solving the objective function (6), we ensure that the amount of
information between patients which is lost due to the projection
is minimized.

B. Gradient Descent

Gradient descent (or the method of steepest descent) allows
for the solution of convex optimization problems by traversing
a surface or curve in the direction of greatest change, iterating
until the minimum is reached. Specifically, let J(z) be a real-
valued objective function which is differentiable about some
point z;. The direction in which J(z) decreases the fastest,
from the point z;, is that of the negative gradient of J at z;,
—(0/0z)J(x;). By calculating the location of the next iteration
point as

0
Tiy1 = Ti — M%J(l’i)

where p is a small number regulating the step size, we ensure
that .J(x;) > J(2;41). Continued iterations will result in .J(z)
converging to a local minimum. Gradient descent does not guar-
antee that the process will converge to an absolute minimum,
so typically it is important to initialize zo near the estimated
minimum.
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Let J(A) = ||[D(X)— D(X; A)||% be our objective function,
measuring the error between our projected subspace and our
full-dimensional space. The direction of the gradient is solved
by taking the partial derivative of .J w.r.t. projection matrix A

%J(A):; > % [Dij(X; A)? = 2D45(X) Dy (X5 A)] .

Given the direction of the gradient, the projection matrix can be
updated as

A=A- ,La%J(A) (7
where
254y = 2 0(4) + QoA + nQ1A
DA A

is the direction of the gradient, constrained to force A to remain
orthonormal. Variables Qg and @) are defined as

Qo= — % ((%J(A)) AT + A <8%J(A)>T>

1/ 0
Ql—i(a—A

J(A) + QOA) (%J(A) + Q0A>T .

The full derivation of this constraint can be found in
Appendix A. This process of gradient descent is iterated
until the error J(A) converges.

Algorithm

Algorithm 1 Information Preserving Component Analysis

Input: Collection of data sets X = {X1,...,Xn},

’

X; € R?¥"i; the desired projection dimension 1m; search step
size [

1: Calculate D(X'), the Kullback-Leibler dissimilarity matrix
2: Initialize A; € R™*? as an orthonormal projection matrix

3: Calculate D(X'; A1), the Kullback-Leibler dissimilarity
matrix in the projected space

4: for 2+ = 1 to co do

5: Calculate (3/0A;)J(A;), the direction of the gradient,
constrained to A; AT =T

6: Aipr = A; — u(8/9A;)J(A;)

7: Calculate D(X; A;41)

8: J(Ais1) = |D(X) = D(X; Aign)|3
9: Repeat until convergence of .J

10: end for

Output: Projection matrix A € R™*?, which preserves the
information distances between sets in X'.

The full method for IPCA is described in Algorithm 1. We
note that typically A is initialized as a random orthonormal pro-
jection matrix due to the desire to not bias the estimation. While

this may result in finding a local minimum rather than an ab-
solute minimum, experimental results on our available flow-
cytometry data have shown that the algorithm converges near
the same result given several random initializations. If a priori
knowledge of the global minimum was available, one would ini-
tialize A in its vicinity. At this point, we stress that we utilize
gradient descent due to its ease of implementation. There are
more efficient methods of optimization, but that is out of the
scope of the current contribution and is an area for future work.

C. Variable Selection

One immediate benefit of IPCA is that we may use the loading
vectors of A towards the problem of variable selection. [IPCA
finds the linear combination of channels which best preserves
the information divergence between patient data sets (i.e., real-
izations of PDFs). Given the definition of the Kullback-Leibler
divergence (3), the dimensions which contribute most to the in-
formation are those in which data sets differ most in probability
distribution. For example, if two multivariate PDFs p and q are
independent and identically distributed in a certain dimension,
that dimension will offer zero contribution to the KL divergence
between p and ¢. When finding a projection which preserves
the information divergence between p and ¢, A is going to be
highly weighted towards the variables which contribute most to
that distance. Hence, the loading vectors of A essentially give a
ranking of the discriminative value of each variable. This form
of variable selection is useful in exploratory data analysis.

IV. SIMULATIONS

We now present simulation results for using IPCA to find a
projection matrix for flow-cytometric data analysis. We demon-
strate three distinct studies involving differing disease classes
to show that our methods are not just beneficial to a single ex-
ample. We offer a proof of concept that shall allow pathologists
to utilize our methods on many different studies and for ex-
ploratory data analysis. In all cases, patient data was obtained
and diagnosed by the Department of Pathology at the Univer-
sity of Michigan.

A. Lymphoid Leukemia Study

For our first study, we will compare patients with two
distinct but immunophenotypically similar forms of lym-
phoid leukemia—mantle cell lymphoma (MCL) and chronic
lymphocytic leukemia (CLL). These diseases display similar
characteristics with respect to many expressed surface antigens,
but are generally distinct in their patterns of expression of two
common B lymphocyte antigens: CD23 and FMC7. Typically,
CLL is positive for expression of CD23 and negative for ex-
pression of FMC7, while MCL is positive for expression of
FMC?7 and negative for expression of CD23. These distinctions
should lead to a difference in densities between patients in each
disease class.

The data set X = {X3,...,X43} consists of 43 patients,
23 of which have been diagnosed with CLL and 20 diagnosed
with MCL. Each X; is a 6-D matrix, with each dimension cor-
responding to a different marker (see Table I), and each element
representing a unique blood cell, totaling n; ~ 5000 total cells
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Fig. 4. CLL and MCL study: Contour plots (i.e., PDFs) of the IPCA projected data. The top row corresponds to the PDFs the CLL patients, while the bottom row

represents PDFs of MCL patients. The selected patients are those most similar between disease classes, the centroids of disease classes, and those least similar
between disease classes, as highlighted in Fig. 6(b). (a) Most similar. (b) Centroids. (c) Least similar.

TABLE I
DATA DIMENSIONS AND CORRESPONDING MARKERS
FOR ANALYSIS OF CLL AND MCL

Dimension | Marker

1 Forward Light Scatter
2 Side Light Scatter

3 FMC7

4 CD23

5 CD45

6 Empty

per patient. We calculate D(X'), the matrix of Kullback-Leibler
similarities, and desire to find the projection matrix A that will
preserve those similarities when all data sets are projected to di-
mension d = 2.

Using the methods described in this paper, we found the IPCA
projection as

A= (—0.118 0.069

0.898 0.251 0.335 —0.003
0.008 —0.268 )

—0.154 0.924 —0.222 0.027
®)
This projection was calculated by minimizing the objective
function with respect to A, as illustrated in Fig. 5 in which the
squared error (per element pair) is plotted as a function of time.
As the iteration ¢ increases, J converges and A; is determined
to be the IPCA projection matrix. We note that while dimension
6 corresponds to no marker (it is a channel of just noise), we
do not remove the channel from the data sets, as the projection
determines this automatically (i.e., loading values approach 0).
Additionally, due to computational complexity issues, each data
set was randomly subsampled such that n; = 500. While we
would not necessarily suggest this decimation in practice, we
have found it to have a minimal effect during experimentation.
Given the IPCA projection, we illustrate the 2-D PDFs of
several different patients in the projected space in Fig. 4. We
selected patients based on the KL divergence values between
patients of different disease class. Specifically, we selected the

90

851 b
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651
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60" |
55 1
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451 |

40 : ‘ ‘

0 40 60 80
Iteration

Fig.5. CLL and MCL study: Evaluating the objective as a function of time. As

the iterations increase, the objective function eventually converges.

20 100

CLL and MCL patients with a small divergence (i.e., most sim-
ilar PDFs), patients with a large divergence (i.e., least similar
PDFs), and patients which represented the centroid of each dis-
ease class. These low-dimensional PDFs, which are what would
be utilized by a diagnostician, are visibly different between dis-
ease classes. While the most similar CLL and MCL patients do
share much similarity in their IPCA PDFs, there is still a sig-
nificant enough difference to distinguish them, especially given
the similarities to other patient PDFs.

We now illustrate the embedding of the projected data ob-
tained with FINE, which performs classical multidimensional
scaling on the matrix of dissimilarities formed by the KL di-
vergence (see [7], [17] for additional details). The embedding
results are shown in Fig. 6(b), in which the separation between
classes is preserved when using the projected data as compared
to using the full-dimensional data in Fig. 6(a). Each point repre-
sents an entire patient data set, and those which are circled cor-
respond to the PDFs shown in Fig. 4. By finding the projection
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Fig. 6. CLL and MCL study: Comparison of embeddings, obtained with FINE, using the full dimensional data and the data projected with IPCA. IPCA preserves
the separation between disease classes. The circled points correspond to the density plots in Fig. 4, numbered respectively. (a) Full dimension. (b) IPCA projection.
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Fig. 7. CLL prognosis study: the value of the objective function versus time.

TABLE II
DATA DIMENSIONS AND CORRESPONDING MARKERS FOR ANALYSIS OF CLL

Marker

Forward Light Scatter
Side Light Scatter
CD5

CD38

CD45

CDI19

Dimension

(o VLR SOV SR

which minimizes the difference in KL divergence between the
full and projected data, we maintain the relationships between
different sets, allowing for a consistent analysis.

Using the projection matrix (8) for variable selection, the
loading vectors are highly concentrated towards the 3rd and
4th dimensions, which correspond to fluorescent markers FMC7
and CD23. We acknowledge that this marker combination is
well known and currently utilized in the clinical pathology com-
munity for differentiating CLL and MCL2. We stress, however,
that what had previously been determined through years of clin-
ical experience was able to be independently validated quickly

2CD45 and light scatter characteristics are often used as gating parameters
for selection of lymphocytes among other cell types prior to analysis, but CD23
and FMC7 are the main analytical biomarkers in this 3-color assay.

using IPCA. This is important as it could enable pathologists to
experiment with new combinations of fluorescent markers and
see which may have strong effects on the discernment of similar
leukemias and lymphomas.

B. Chronic Lymphocytic Leukemia Study

Continuing our study of patients with chronic lymphocytic
leukemia, we wish to determine subclasses within the CLL dis-
ease class. Specifically, we now use IPCA to find a low-dimen-
sional space which preserves the differentiation between pa-
tients with good and poor prognoses (i.e., favorable and un-
favorable immunophenotypes). Literature [20] has shown that
patients whose leukemic cells are strong expressors of CD38
have significantly worse survival outcome. Genotypic studies
have shown that the absence of somatic mutation within im-
munoglobulin genes of CLL cells (a so-called “pre-follicular”
genotype) is a potent predictor of worse outcome. High levels
of CD38 expression are an effective surrogate marker for the
absence of somatic immunoglobulin gene mutation, and also
have been shown to be an independent predictor of outcome in
some studies. Since patients can generally be stratified by CD38
expression levels, and CD38 has been shown to emerge as a
defining variable of CLL subsets in hierarchical immunophe-
notypic clustering [21], we would expect IPCA to localize the
CD38 variable as one of importance when analyzing CLL data.

Using the same patients (those diagnosed with CLL) as in
the above simulation, we define X = {Xy,..., X3}, where
each X; was analyzed with by the series of markers in Table II.
Minimizing the objective function (see Fig. 7), we calculate the
IPCA projection matrix as

A:<—0.070 0.095 0.501

—0.378

—0.836 0.183

—0.052
—0.171 —0.043 —0.099 0.699 0.573 )°

This projection matrix has very high loadings in variables 4, 5,
and 6, which correspond to markers CD38, CD45, and CD19 re-
spectively. This identifies the isolation of B cells by CD19 ex-
pression (a B lymphocyte restricted antigen always expressed
on CLL cells) and assessment of CD38 on these B cells. As
expected, we identify CD38 as a marker of importance in dif-
ferentiating patient groups. We also identify the possibility that
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Fig. 8. CLL prognosis study: Comparison of embeddings, obtained with FINE, using the IPCA projection matrix A and the full dimensional data. The patients
with a poor prognosis (CD38hi) are generally well clustered against those with a favorable prognosis (CD38lo) in both embedddings. (a) Full dimensional. (b)

IPCA projection.

TABLE IIT
DATA DIMENSIONS AND CORRESPONDING MARKERS
FOR ANALYSIS OF ALL AND HP

Dimension | Marker

1 Forward Light Scatter
2 Side Light Scatter

3 CD38

+4 CDI19

5 CD45

6 CDI10

CD45 and CD19 expression are areas which may help prog-
nostic ability. This is an area for further interrogation.

Using FINE to embed the data (Fig. 8) for comparative visual-
ization, we see that the IPCA projection preserves the grouping
of patients with unfavorable immunophenotype (CD38hi) and
favorable immunophenotype (CD38lo). CD38hi versus CD38lo
for each patient was determined using cutoff values endorsed in
the literature [20]. Although complete follow-up data for this
retrospective cohort were not available, the findings were in-
directly further validated by the fact that, of the patients with
follow-up information available, zero of six CD38lo patients
died, while four of nine CD38hi patients died within a me-
dian follow-up interval of 25 months (range 1 to 102 months).
Hence, we find that IPCA can help identify subclasses and may
be useful for possible help towards prognosis.

C. Acute Lymphoblastic Leukemia vs. Hematogone
Hyperplasia Study

We now demonstrate a study involving the diseases acute
lymphoblastic leukemia (ALL) and a benign condition known
as hematogone hyperplasia (HP). ALL is marked by the
neoplastic proliferation of abnormal lymphocyte precursors
(Iymphoblasts). Our study specifically focused upon ALL
consisting of B cell precursor lymphobalsts (B-precursor
ALL), the most common form of this disease, since the normal
counterpart to B-precursor lymphoblasts, termed hematogones,
are detectable in the bone marrow of most healthy individuals,
and hematogones can proliferate in benign reversible fashion
in numerous clinical states [22]. The distinction between
hematogones and leukemic B-precursor lymphoblasts is highly
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Fig. 9. Value of the objective function (versus time) for the analysis of ALL
and HP diagnosis.

relevant in clinical practice since these cell types exhibit sub-
stantial immunophenotypic overlap, many transient conditions
associated with hematogone hyperplasia can present with clin-
ical suspicion for leukemia, and patients with ALL can develop
HP during recovery from chemotherapy for their leukemia.
For this study, let us define the dataset X = {X1,..., X54},
which consists of 54 patients, 31 of which have been diagnosed
with ALL and 23 diagnosed with HP. Patient samples were an-
alyzed with a series of markers (see Table III) designed for the
isolation of hematogones and aberrant lymphoblast populations,
based on known differential patterns of these markers in these
cell types. Specific details of how the data was retrieved can be
found in [7].
By minimizing the objective function (Fig. 9), we find the
IPCA projection as
0.131
0.924) )

A <—0.181 —0.145

—0.034 0.114
Using FINE, we compare the embedding of the full-dimensional
data to that of the projected data in Fig. 10. The embeddings
are very similar, which illustrates once again that IPCA pre-
serves the similarities between different sets. This allows for a

0.869  0.085
—0.029 0.251

0.408
—0.261
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Fig. 10. ALL and HP study: Comparison of embeddings, obtained with FINE, using the full dimensional data and the IPCA projection matrix A. The embedding
is very similar when using the projected data, which preserves the similarities between patients. (a) Full dimensional. (b) IPCA projection.

low-dimensional analysis in the projected space with the secu-
rity of knowing the relationships between patients have been
minimally effected.

We also observe that the IPCA projection matrix has strong
loadings corresponding to markers CD38 and CD10. In clinical
practice, it is often noted that hematogones have a very uniform
and strong CD38 expression pattern, while lymphoblasts can
have quite a range of CD38 expression [22]. This analysis seems
to provide independent validation for that observation. Further-
more, this analysis identifies CD10 as a principal distinguishing
marker among the others analyzed in this 4-color assay. This
finding is not intuitive, since in day-to-day practice CD10 is
not obviously of greater distinguishing value than marker such
as CD45 or side angle light scatter. These markers, like CD10,
are used for their different expression patterns in lymphoblasts
versus hematogones, but that may show considerable overlap in
expression intensity between these two cell types. Our identifi-
cation of CD10 as a marker of importance identifies an area for
further clinical investigation.

D. Performance Comparison

We now compare IPCA to the PCA and ICA projection ma-
trices for the preceding studies. Given that an ultimate task is vi-
sualization for diagnosis and validation, it is important that the
disease classes are easily distinguished. For our comparison, we
utilize the Bhattacharya distance to measure how distinguish-
able the “worst case” scenarios are in the projected space — es-
sentially we desire the most similar patients in differing disease
classes (i.e., “worst case”) to have as little similarity as possible.
The Bhattacharya distance has been used to bound classifica-
tion error in dimension reduction problems [23], and is directly
related to the Chernoff performance bound [13]. Results are il-
lustrated in Table IV, where the best performance is emphasized
(larger numbers are more desirable). It is clear that IPCA consis-
tently outperforms both other methods of dimension reduction;
concluding that the projection subspace defined by IPCA is best
at distinguishing between disease types. Although we do not
present them here, we have observed similar results with several
other measures of probabilistic distance and cluster similarity.
Note that ICA was performed using the FastICA algorithm [15],

TABLE IV
“WORST CASE” PERFORMANCE COMPARISON OF DIMENSION REDUCTION (DR)
METHODS FOR FLOW CYTOMETRY STUDIES. RESULTS REPORTED FOR EACH
CASE STUDY ARE OF THE LOWEST VALUES OF THE BHATTACHARYA DISTANCE
BETWEEN PATIENT PAIRS WITH DIFFERING DISEASES IN THE PROJECTED
SPACE. IPCA OUTPERFORMS BOTH PCA AND ICA IN ALL CASES

Study DR Method

IPCA PCA ICA
Lymphoid | 0.1573 | 0.0821 | 0.0220
CLL 0.0550 | 0.0409 | 0.0326
ALL/HP 0.0624 | 0.0532 | 0.0335

and the data was pre-processed by whitening and PCA in accor-
dance with [24].

E. Subsampling Performance

One concern when implementing IPCA is the number of data
sets necessary to find a proper projection. Specifically, given a
subset of patients Xs C X', how close does IPCA approach the
value of the objective function obtained when utilizing the entire
patient collection X'? To determine this, we return to our lym-
phoid leukemia study and subsample from X', with Ng patients
randomly selected from each disease class (Ng € [2, 5,10, 15]),
and use IPCA to determine the projection matrix A. We then
calculate the value of the objective function on the entire set X’
projected by A. The mean results over a tenfold cross valida-
tion are illustrated in Fig. 11, where we signify the value of the
objection function when using IPCA on the entire data set with
the dashed line. Given that the value of the objection function
with the initial random projection matrix was .JJ/N? = 89.0802,
the relative performance of IPCA with few available data sets is
promising.

V. CONCLUSIONS

In this paper, we have shown the ability to find an informa-
tion-based projection for flow-cytometric data analysis using
Information Preserving Component Analysis (IPCA). By pre-
serving the Fisher information distance between oncological
data sets (i.e., patients), we find a low-dimensional projection
that allows for visualization in which the data is discernable
between cancerous disease classes. As such, we use machine-
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Fig. 11. IPCA performance using subset of patients X's C X from the lym-
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with the IPCA projection determined by X" shown as a lower bound with the
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learning to provide a projection space that is usable for verifica-
tion of cancer diagnosis. Additionally, analysis of the loading
vectors in the projection matrix allows for a means of vari-
able selection. We have shown independent verification for de-
termining optimal marker combinations in distinguishing im-
munophenotypically similar cancers, as well as validating vari-
ables which help to identify prognostic groups. Verifying these
known results through independent methods provides a solid
proof-of-concept for the ability to utilize IPCA for exploratory
research of different marker assays.

In future work, we plan to study the effects of preserving
only the local distances between data sets. As we have stated,
the KL divergence becomes a weak approximation as the den-
sities separate on the statistical manifold. As such, performance
may improve by putting more emphasis on preserving the close
distances. However, this may have the adverse effect of dimin-
ishing the ability to distinguish between disease classes if they
are well separated, as those far distances may not be well pre-
served. Additionally, we would like to utilize different methods
for optimizing the cost function. While we currently utilize gra-
dient descent for ease of implementation, it is relatively slow and
there are more efficient methods to use (e.g., fixed point itera-
tion). The optimization method is not the focus of our work, but
faster methods may be required for practical usage. Finally, we
would like to apply our methods towards exploratory research
and determine other applications of interest.

APPENDIX
ORTHONORMALITY CONSTRAINT ON GRADIENT DESCENT

We derive the orthonormality constraint for our gradient-de-
scent optimization in the following manner; solving

min

A =arg
A:AAT =T

J(4)

where I is the identity matrix. Using Lagrangian multiplier M,
this is equivalent to solving

A = arg mAin J(A)
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where J(A) = J(A) + tr(AT M A). We can iterate the projec-
tion matrix A, using gradient descent, as

9 -
where (9/0A)J(A) = (3/0A)J(A) + (M + MT)A is the
gradient of the cost function w.r.t. matrix A. To ease notation,
let A 2 (0/0A)J(A)and A £ (8/DA).J(A). Continuing with
the constraint AAT = I, we right-multiply (9) by AT and obtain

0= — pAAT — uAAT + 1 2AAT, UAAT = AAT + AAT,
WA+ (M + MTYA)(A + (M + MT)A)T

=(AAM + MTYA)AT + A(AAT(M + MT)A).  (10)
LetQ = M+ M7 hence A = A + QA. Substituting this into
(10), we obtain

(AAT + QAAT + AATQ + QQT)=AAT + AAT +2Q.

(1D
Next, we substitute the Taylor series expansion of () around p =
Obackinto (11): Q = Z;’;O 17 Q ;. The dependence of @ on 1 is
somewhat artificial, but helps to establish a relationship between
Q@ and the gradients. By equating corresponding powers of u
(i.e., setting 37 /Op? | ,—o(+) = 0), we identify

1 1
Qo = —§(AAT +AAT), Q1 = §(A +QoA)(A + QoA)".
Replacing the expansion of Q in A = A + QA
P 1
A=A— 5(AAT+AAT)A+MQlA+,ﬁQzA+--- .

Finally, we would like to assure a sufficiently small step size to
control the error in forcing the constraint due to a finite Taylor
series approximation of ). Using the Ls norm of A allows us
to calculate an upper bound on the Taylor series expansion

" 1
1A <[ A=S(AAT+AAT) Al 44 [|Qr All+47 | Q2 AN+

We condition the norm of the first order term in the Taylor

series approximation to be significantly smaller than the

norm of the zeroth-order term. If 4 < ||A — (1/2)(AAT +

AAT)AJI/11Q1A]|, then
0

)

0

=54 12)

J(A) + QoA+ p1 A

where

o4 (o))
Q1= % <%J(A) + Q0A> (%J(A) + Q0A>T

is a good approximation of the gradient constrained to AAT =
1. We omit the higher order terms as we experimentally find that
they are unnecessary, especially as even p®> — 0. We note that
while there are other methods for forcing the gradient to obey
orthogonality [25], [26], we find our method is straightforward
and sufficient for our purposes.
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