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A PDE-BASED APPROACH TO NONDOMINATED SORTING∗

JEFF CALDER† , SELIM ESEDOḠLU† , AND ALFRED O. HERO‡

Abstract. Nondominated sorting is a fundamental combinatorial problem in multiobjective
optimization and is equivalent to the longest chain problem in combinatorics and random growth
models for crystals in materials science. In a previous work [SIAM J. Math. Anal., 46 (2014),
pp. 603–638], we showed that nondominated sorting has a continuum limit that corresponds to
solving a Hamilton–Jacobi equation. In this work we present and analyze a fast numerical scheme
for this Hamilton–Jacobi equation and show how it can be used to design a fast algorithm for
approximate nondominated sorting.
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1. Introduction. Nondominated sorting is a combinatorial problem that is fun-
damental in multiobjective optimization, which is ubiquitous in scientific and engi-
neering contexts [12, 8, 9]. The sorting can be viewed as arranging a finite set of
points in Euclidean space into layers according to the componentwise partial order.
The layers are obtained by repeated removal of the set of minimal elements. More
formally, given a set Xn ⊂ R

d of n points equipped with the componentwise partial
order �,1 the first layer, often called the first Pareto front and denoted F1, is the set
of minimal elements in Xn. The second Pareto front F2 is the set of minimal elements
in Xn \ F1, and in general the kth Pareto front Fk is given by

Fk = mimimal elements of Xn \
⋃

i≤k−1

Fi.

In the context of multiobjective optimization, the d coordinates of each point in Xn

are the values of the d objective functions evaluated on a given feasible solution. In
this way, each point in Xn corresponds to a feasible solution and the layers provide
an effective ranking of all feasible solutions with respect to the given optimization
problem. Rankings obtained in this way are at the heart of genetic and evolutionary
algorithms for multiobjective optimization, which have proved to be valuable tools
for finding solutions numerically [8, 9, 14, 15, 27]. Figure 1 gives a visual illustration
of Pareto fronts for randomly generated points.

It is important to note that nondominated sorting is equivalent to the longest
chain problem in combinatorics, which has a long history beginning with Ulam’s
famous problem of finding the length of a longest increasing subsequence in a sequence
of numbers (see [30, 17, 3, 11, 5] and the references therein). The longest chain
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(a) n = 50 points
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(b) n = 106 points

Fig. 1. Examples of Pareto fronts for X1, . . .Xn chosen from the uniform distribution on
[0, 1]2. In (b), 29 equally spaced fronts are depicted out of the 1938 total fronts.

problem is then intimately related to several other problems in combinatorics and
graph theory [13, 23, 32], materials science [26], and molecular biology [25]. To see
this connection, let un(x) denote the length of a longest chain2 in Xn consisting of
points less than or equal to x with respect to �. If all points in Xn are distinct, then
a point x ∈ Xn is a member of F1 if and only if un(x) = 1. By peeling off F1 and
making the same argument, we see that x ∈ Xn is a member of F2 if and only if
un(x) = 2. In general, for any x ∈ Xn we have

x ∈ Fk ⇐⇒ un(x) = k.

This is a fundamental observation. It says that studying the shapes of the Pareto
fronts is equivalent to studying the longest chain function un.

The longest chain problem has well-understood asymptotics as n → ∞. In this
context, we assume that Xn = {X1, . . . , Xn}, where X1, . . . , Xn are independent
and identically distributed (i.i.d.) random variables in R

n and let �(n) denote the
length of a longest chain in Xn. The seminal work on the problem was done by
Hammersley [17], who studied the problem for X1, . . . , Xn i.i.d. uniform on [0, 1]2.

He utilized subadditive ergodic theory to show that n− 1
2 �(n) → c in probability,

where c > 0. He conjectured that c = 2, and this was later proved by Vershik
and Kerov [31] and Logan and Shepp [22]. Hammersley’s results were generalized

to higher dimensions by Bollobás and Winkler [3], who showed that n− 1
d �(n) → cd

almost surely, where 0 < cd < e are constants tending to e as d → ∞. The only
known values of cd are c1 = 1 and c2 = 2. Deuschel and Zeitouni [11] provided
another generalization of Hammersley’s results; for X1, . . . , Xn i.i.d. on [0, 1]2 with
C1 density function f : [0, 1]2 → R, bounded away from zero, they showed that

n− 1
2 �(n) → 2J in probability, where J is the supremum of the energy

J(ϕ) =

∫ 1

0

√
ϕ′(x)f(x, ϕ(x)) dx

over all ϕ : [0, 1] → [0, 1] nondecreasing and right continuous.
In [5], we studied the longest chain problem for X1, . . . , Xn i.i.d. on R

d with
density function f : Rd → R that satisfies the following:

2A chain is a totally ordered subset of Xn.
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(H) There exists an open and bounded set Ω ⊂ (0, 1)d with Lipschitz boundary
such that f |Ω is continuous and supp(f) ⊂ Ω.

This hypothesis simply states that X1, . . . , Xn live in the domain Ω and have a con-
tinuous density function f on that domain. Assuming (H) holds, we showed that

n− 1
d un −→ cdd

−1U in L∞(Rd) almost surely, where U is the viscosity solution of the
Hamilton–Jacobi equation

(P)

{
Ux1 · · ·Uxd

= f on R
d
+,

U = 0 on ∂Rd
+.

Here R+ = (0,∞) and R
d
+ = (R+)

d. The boundary condition U = 0 on ∂Rd
+ can be

interpreted as stipulating that the “zeroth” Pareto front lies on ∂Rd
+. We also showed

that when f satisfies (H) there exists a unique Pareto-monotone3 viscosity solution
of (P) satisfying the additional boundary condition at infinity given by (3.2). In a
another more recent work [4] we showed that this additional boundary condition is
actually redundant.

In this paper we study a fast numerical scheme for (P), first proposed in [5],
and prove convergence of this scheme. We then show how the scheme can be used
to design a fast approximate nondominated sorting algorithm, which we call PDE-
based ranking, and we evaluate the sorting accuracy of PDE-based ranking on both
real and synthetic data. A fast approximate algorithm for nondominated sorting
has the potential to be a valuable tool for multiobjective optimization, especially in
evolutionary algorithms which require frequent nondominated sorting [9]. There are
also potential applications in polynuclear growth of crystals in materials science [26].
Here, the scheme for (P) could be used to simulate polynuclear growth in the presence
of a macroscopically inhomogeneous growth rate.

The proof of convergence of our scheme is modeled on the well-known framework
of Barles and Souganidis [1]. The proof does not follow directly from [1] since (P)
does not satisfy the strong uniqueness property, which is a comparison principle for
semicontinuous viscosity solutions. We instead show that one can exploit a type of
approximate Hölder-regularity of the numerical solutions to bypass strong uniqueness
and substitute the ordinary uniqueness result that is known for (P).

The advantages of PDE-based ranking over existing algorithms are twofold. First,
it is computationally more efficient in relatively low dimensions, and, in applications
where only a subset of the data needs to be ranked, it can be sublinear in n. To
the best of our knowledge, there are no existing algorithms that compare computa-
tionally for low-dimensional problems. Second, although it is an approximate sorting
algorithm, it is theoretically justified and is guaranteed to give the exact sorting in the
continuum limit. In section 5.3 we propose another fast algorithm for nondominated
sorting based on sorting a small random subset of the data and interpolating. We call
this algorithm subset ranking, and it compares well computationally to PDE-based
ranking. However, it is not as accurate and is based on heuristics for which there is
no theoretical justification.

This paper is organized as follows. In section 3 we prove that the numerical
solutions converge to the viscosity solution of (P). We also prove a regularity result for
the numerical solutions (see Lemma 3.3) and other important properties. In section 4

3We say a function u : O ⊂ Rd → R is Pareto-monotone if x � y =⇒ u(x) ≤ u(y) for all
x, y ∈ O.
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we demonstrate the numerical scheme on several density functions, and in section 5
we propose a fast algorithm for approximate nondominated sorting that is based on
numerical solving (P).

2. Numerical scheme. Let us first fix some notation. Given x, y ∈ R
d we write

x ≤ y if x � y and x 	= y. We write x < y when xi < yi for all i. For s, t ∈ R, ≤ and
< will retain their usual definitions. For x � y we define

[x, y] = {z ∈ R
d : x � z � y}, (x, y] = {z ∈ R

d : x < z � y}

and make similar definitions for [x, y) and (x, y). For any x ∈ R
d and h > 0, there

exists unique y ∈ hZd and z ∈ [0, h)d such that x = y + z. We will denote y by 
x�h
so that z = x − 
x�h. We also denote 0 = (0, . . . , 0) ∈ R

d and 1 = (1, . . . , 1) ∈ R
d.

For z ∈ [0,∞), we denote by πz : Rd → [0, z] the projection mapping R
d onto [0, z].

For x ∈ [0,∞) this mapping is given explicitly by

πz(x) = (min(x1, z1), . . . ,min(xd, zd)).

We now recall the numerical scheme from [5]. Let h > 0 be the grid spacing. For
a given x ∈ [0,∞), the domain of dependence for (P) is {y : y � x}. This can be
seen from the connection to nondominated sorting and the longest chain problem. It
is thus natural to consider a scheme for (P) based on backward difference quotients,
yielding

(2.1)

d∏
i=1

(Uh(x)− Uh(x− hei)) = hdf(x),

where Uh : hNd
0 → R is the numerical solution of (P) and e1, . . . , ed are the standard

basis vectors in R
d. Given Uh(x−he1), . . . , Uh(x−hed) and f(x), there are in general

d values of Uh(x) that solve (2.1). However, since we are interested in the Pareto-
monotone viscosity solution of (P), we should impose the constraint

(2.2) Uh(x) ≥ max(Uh(x− he1), . . . , Uh(x− hed)),

Since the left-hand side of (2.1) is increasing in Uh(x) when (2.2) holds, we see that
for f(x) ≥ 0 there is exactly one value for Uh(x) that satisfies (2.1) and (2.2). We
define our numerical scheme by taking this distinguished value. At each grid point
x ∈ hNd, Uh(x) satisfying (2.1)–(2.2) can be computed numerically by either a binary
search and/or Newton’s method restricted to the interval

[max(Uh(x− he1), . . . , Uh(x− hed)),max(Uh(x− he1), . . . , Uh(x− hed)) + hf(x)1/d].

In the case of d = 2, we can solve the scheme explicitly via the quadratic formula

Uh(x) =
1

2
(Uh(x− he1) + Uh(x− he2)) +

1

2

√
(Uh(x− he1)− Uh(x− he2))2 + 4h2f(x).

The numerical solution Uh is computed by visiting each grid point exactly once via
any sweeping pattern that respects the partial order � and by imposing the boundary
condition Uh(x) = 0 for x ∈ ∂Rd

+. The scheme therefore has linear complexity in the
number of grid points.
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Now extend Uh to a function Uh : [0,∞) → R by setting Uh(x) = Uh(
x�h).
Defining Γh = [0,∞) \ (h1,∞), we see that Uh is a Pareto-monotone solution of the
discrete scheme

(S)

{
S(h, x, Uh) = f(
x�h) if x ∈ (h1,∞),

Uh(x) = 0 if x ∈ Γh,

where S : R+ × (h1,∞)×X → R is defined by

(2.3) S(h, x, u) =

d∏
i=1

u(x)− u(x− hei)

h
.

Here, X is the space of functions u : [0,∞) → R. In the next section we will study
properties of solutions Uh of (S).

3. Convergence of numerical scheme. In this section we prove that the nu-
merical solutions Uh defined by (S) converge uniformly to the viscosity solution of
(P). As in [5], we place the following assumption on f : Rd → [0,∞):

(H) There exists an open and bounded set Ω ⊂ (0, 1)d with Lipschitz boundary
such that f |Ω is continuous and supp(f) ⊂ Ω.

It is worthwhile to take a moment to further motivate the hypothesis (H). Consider
the multiobjective optimization problem

(3.1) min{F (x) : x ∈ K},
where F (x) = (f1(x), . . . , fd(x)) with fi : K → [0,∞) for all i, and K is the set of
feasible solutions. This formulation includes many types of constrained optimization
problems, where the constraints are implicitly encoded into K. If x1, . . . , xn are fea-
sible solutions in K, then these solutions are ranked, with respect to the optimization
problem (3.1), by performing nondominated sorting on X1 = F (x1), . . . , Xn = F (xn).
Thus the domain Ω of X1, . . . , Xn is given by Ω = F (K). Supposing that x1, . . . , xn
are, say, uniformly distributed on K, then the induced density f of X1, . . . , Xn on R

d

will be nonzero on Ω and identically zero on R
d \Ω. Thus, the constraint that feasible

solutions must lie in K can induce a discontinuity in f along ∂Ω.
In [5] we showed that, under hypothesis (H), there exists a unique Pareto-monotone

viscosity solution U of (P) satisfying the additional boundary condition

(3.2) U(x) = U(π1(x)) for all x ∈ [0,∞).

The boundary condition (3.2) is natural for this problem. Indeed, since supp(f) ⊂
(0, 1)d, there are almost surely no random variables drawn outside of (0, 1)d. Hence,
for any x ∈ [0,∞) we can write

un(x) = max
y∈[0,1]d : y�x

un(y).

Since un is Pareto-monotone, the maximum above is attained at y = π1(x), and hence
un(x) = un(π1(x)).

For completeness, let us now give a brief outline of the proof of uniqueness for
(P). For more details, we refer the reader to [5]. The proof is based on the auxiliary
function technique, now standard in the theory of viscosity solutions [7]. However, the
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technique must be modified to account for the fact that f is possibly discontinuous
on ∂Ω and hence does not possess the required uniform continuity. A commonly
employed technique is to modify the auxiliary function so that only a type of one-
sided uniform continuity is required of f [28, 10]. This allows f to, for example, have
a discontinuity along a Lipschitz curve, provided the jump in f is locally in the same
direction (see [10] for more details). We cannot directly use these results because they
require coercivity or uniform continuity of the Hamiltonian and/or Lipschitzness of
solutions—none of which hold for (P). Our technique for proving uniqueness for (P)
employs instead an important property of viscosity solutions of (P)—namely, that for
any z ∈ R

d
+, U

z := U ◦ πz is a viscosity subsolution of (P). This property, called
truncatability in [5], follows immediately from the variational principle [5]

U(x) = sup
γ′�0 : γ(1)=x

∫ 1

0

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
d dt.

This allows us to prove a comparison principle with no additional assumptions on the
Hamiltonian.

A general framework for proving convergence of a finite-difference scheme to the
viscosity solution of a nonlinear second order PDE was developed by Barles and
Souganidis [1]. Their framework requires that the scheme be stable, monotone, and
consistent and that the PDE satisfy a strong uniqueness property [1]. The mono-
tonicity condition is equivalent to ellipticity for second order equations and plays a
similar role for first order equations, enabling one to prove maximum and/or compar-
ison principles for the discrete scheme. The strong uniqueness property refers to a
comparison principle that holds for semicontinuous viscosity sub- and supersolutions.

The numerical scheme (S) is easily seen to be consistent; this simply means that

lim
y→x
h→0

S(h, y, ϕ) = ϕx1(x) · · ·ϕxd
(x)

for all ϕ ∈ C1(Rd
+). The scheme is stable [1] if the numerical solutions Uh are uniformly

bounded in L∞, independent of h. It is not immediately obvious that (S) is stable;
stability follows from the discrete comparison principle for (S) (Lemma 3.1) and is
proved in Lemma 3.3. The monotonicity property requires the following:

S(h, x, u) ≤ S(h, x, v) whenever u ≥ v and u(x) = v(x).

It is straightforward to verify that (S) is monotone when restricted to Pareto-monotone
u, v. This is sufficient since we are only interested in the Pareto-monotone viscosity
solution of (P). All that is left is to establish a strong uniqueness result for (P).
Unfortunately such a result is not available under the hypothesis (H). Since f may be
discontinuous along ∂Ω, we can only establish a comparison principle for continuous
viscosity sub- and supersolutions (see [5, Theorem 4]).

One way to rectify this situation is to break the proof into two steps. First, prove
convergence of the numerical scheme for f Lipschitz on R

d
+. It is straightforward in

this case to establish a strong uniqueness result for (P). Second, extend the result
to f satisfying (H) by an approximation argument using inf and sup convolutions.
Although this approach is fruitful, we take an alternative approach as it yields an
interesting regularity property for the numerical solutions. In particular, in Lemma
3.3 we establish approximate Hölder regularity of Uh of the form

(3.3) |Uh(x)− Uh(y)| ≤ C(|x − y| 1d + h
1
d ).
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As we verify in Appendix A, the approximate Hölder estimate (3.3) along with the
stability of (S) allows us to apply the Arzelà–Ascoli theorem to the sequence Uh and
extract a subsequence that converges uniformly to a Hölder-continuous function u.
Since (S) is consistent and monotone, it is a standard result that u is a viscosity
solution of (P). The convergence proof is then completed by invoking uniqueness of
Pareto-monotone viscosity solutions of (P) [5, Theorem 5].

3.1. Analysis of the numerical scheme. We first prove a discrete comparison
principle for the scheme (S). This comparison principle is essential in proving stability
of (S) and the approximate Hölder regularity result in Lemma 3.3. For the remainder
of this section, we fix h > 0.

Lemma 3.1 (comparison principle). Let z∈(h1,∞) and suppose u, v∈L∞
loc

([0,∞)) are Pareto-monotone and satisfy

(3.4) S(h, x, u) ≤ S(h, x, v) for all x ∈ (h1, z].

Then u ≤ v on Γh ∩ [0, z] implies that u ≤ v on [0, z].
Proof. Suppose that sup[0,z](u− v) > 0 and set

Tr = {x ∈ [0,∞) : (x1 + · · ·+ xd) ≤ rd} and R = sup{r > 0 : u ≤ v on Tr ∩ [0, z]}.

Since u ≤ v on Γh ∩ [0, z) and sup[0,z](u − v) > 0, we must have R ∈ [h, s], where

s = d−1(z1+ · · ·+ zd). By the definition of R, there exists x ∈ (h1, z] and s < R such
that

u(x) > v(x) and x− hei ∈ Ts for i = 1, . . . , d.

Since s < R, we have u ≤ v on Ts ∩ [0, z] and hence

(3.5) u(x− hei) ≤ v(x− hei) ≤ v(x) for i = 1, . . . , d.

The second inequality above follows from Pareto-monotonicity of v. Since u and v
are Pareto-monotone and u(x) > v(x) we have

d∏
i=1

(u(x)− u(x− hei)) >

d∏
i=1

(v(x) − u(x− hei))
(3.5)

≥
d∏

i=1

(v(x) − v(x− hei)).

Hence S(h, x, u) > S(h, x, v), contradicting the hypothesis.
Using the comparison principle, we can establish that numerical solutions of (S)

satisfy the boundary condition at infinity (3.2).
Proposition 3.2. Let u ∈ L∞

loc([0,∞)) be Pareto-monotone with u = 0 on Γh.
Suppose that for some z ∈ (h1,∞) we have

(3.6) supp{x �→ S(h, x, u)} ⊂ [0, z].

Then we have u = u ◦ πz.
Proof. Define v = u ◦ πz and fix x ∈ [0,∞). Since u is Pareto-monotone and

πz(x) � x, we have v(x) = u(πz(x)) ≤ u(x). Hence v ≤ u. Since u = v on [0, z] we
have

S(h, x, u) = S(h, x, v) for all x ∈ [0, z] \ Γh.
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For x 	∈ [0, z]∪Γh we have S(h, x, u) = 0 by assumption. Since v is Pareto-monotone
we have S(h, x, v) ≥ 0 = S(h, x, u) for such x, and hence S(h, x, v) ≥ S(h, x, u) for all
x ∈ [0,∞) \ Γh. Since v = u = 0 on Γh we can apply Lemma 3.1 to find that u ≤ v
on [0,∞), and hence u = v = u ◦ πz .

An important consequence of the comparison principle is the following approxi-
mate Hölder regularity result.

Lemma 3.3. Let u ∈ L∞
loc([0,∞)) be Pareto-monotone with u = 0 on Γh. Then

for any R > 0 we have

(3.7) |u(x)− u(y)| ≤ 2d2R
d−1
d ‖S(h, ·, u)‖ 1

d

L∞((h,R]d)
(|x− y| 1d + h

1
d )

for all x, y ∈ (h,R]d.
Proof. Let R > 0 and x0, y0 ∈ (h,R]d. We first deal with the case where x0 � y0.

Set û(x) = u(πx0(x)) and define ψ : Rd → R by

(3.8) ψ(x) =

{
d(x1 · · ·xd) 1

d if x ∈ (0,∞),

0 otherwise.

By the concavity of t �→ t
1
d we have

ψ(x)− ψ(x− hei) = d(x1 · · ·xd) 1
dx

− 1
d

i (x
1
d

i − (xi − h)
1
d ) ≥ x−1

i (x1 · · ·xd) 1
dh

for any x ∈ (h1,∞) and hence

(3.9) S(h, x, ψ) ≥ 1 for all x ∈ (h1,∞).

By the translation invariance of S and (3.9) we have

(3.10) S(h, x, ψ(· − b)) ≥ 1 for all b ∈ [0,∞), x ∈ (b+ h1,∞).

Set bi = (x0,i − h)ei ∈ R
d. For x ∈ [0,∞) set

w(x) = û(x) + ‖S(h, ·, u)‖ 1
d

L∞((h,R]d)

d∑
i=1

ψ(x− bi),

and note that w is Pareto-monotone. Let x ∈ (h1,∞) \ (h1, x0]. Then for some k we
have xk > x0,k, and hence x > bk + h1. We therefore have

S(h, x, w) ≥ 1

hd

d∏
i=1

(
û(x) − û(x− hei)

+ ‖S(h, ·, u)‖ 1
d

L∞((h,R]d)
(ψ(x− bk)− ψ(x− bk − hei))

)
≥ S(h, x, û) + ‖S(h, ·, u)‖L∞((h,R]d)S(h, x, ψ(· − bk))

(3.10)

≥ S(h, x, û) + ‖S(h, ·, u)‖L∞((h,R]d)

≥ S(h, x, u).

Suppose now that x ∈ (h1, x0]. Then since u = û on [0, x0] we have S(h, x, û) =
S(h, x, u) and hence S(h, x, w) ≥ S(h, x, u). Since w ≥ u = 0 on Γh ∩ [0, R]d, we can
apply Lemma 3.1 to obtain w ≥ u on [0, R]d, which yields
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u(y0)− û(y0) ≤ ‖S(h, ·, u)‖ 1
d

L∞((h,R]d)

d∑
i=1

ψ(y0 − bi)

≤ dR
d−1
d ‖S(h, ·, u)‖ 1

d

L∞((h,R]d)

d∑
i=1

(y0,i − x0,i + h)
1
d

≤ d2R
d−1
d ‖S(h, ·, u)‖ 1

d

L∞((h,R]d)
(|x0 − y0| 1d + h

1
d ).(3.11)

Noting that πx0(y0) = x0 we have û(y0) = u(πx0(y0)) = u(x0), which completes the
proof for the case that x0 � y0.

Suppose now that x0, y0 ∈ (h,R]d such that x0 	� y0. Set x = πx0(y0) = πy0(x0).
Then |x0 − x| ≤ |x0 − y0|, |y0 − x| ≤ |x0 − y0|, x � x0, and x � y0. It follows that

|u(x0)− u(y0)| ≤ |u(x0)− u(x)|+ |u(y0)− u(x)|
≤ 2d2R

d−1
d ‖S(h, ·, u)‖ 1

d

L∞((h,R]d)
(|x0 − y0| 1d + h

1
d ),

which completes the proof.

3.2. Convergence theorem. Our main result is the following convergence state-
ment for the scheme (S).

Theorem 3.4. Let f be nonnegative and satisfy (H). Let U be the unique Pareto-
monotone viscosity solution of (P) satisfying (3.2). For every h > 0 let Uh : [0,∞) →
R be the unique Pareto-monotone solution of (S). Then Uh → U uniformly on [0,∞)
as h→ 0.

Proof. By (H) we have that f(x) = 0 for x 	∈ (0, 1)d, and hence supp(f(
·�h)) ⊂
[0, 1]d. Therefore, by Proposition 3.2, we have that Uh satisfies (3.2). Combining this
with Lemma 3.3 we have

(3.12) ‖Uh‖L∞([0,∞)) ≤ C‖f‖ 1
d

L∞([0,∞))

for all h > 0. Similarly, combining (3.2) with Lemma 3.3 we have

(3.13) |Uh(x)− Uh(y)| ≤ 2d2‖f‖ 1
d

L∞([0,∞))(|x− y| 1d + h
1
d ) for all x, y ∈ [0,∞)

for every h > 0. The estimates in (3.12) and (3.13) show uniform boundedness and a
type of equicontinuity, respectively, for the sequence Uh. By an argument similar to
the proof of the Arzelà–Ascoli theorem (see the appendix), there exists a subsequence

hk → 0 and u ∈ C0, 1d ([0,∞)) such that Uhk
→ u uniformly on compact sets in

[0,∞). By (3.2), we actually have Uhk
→ u uniformly on [0,∞). Since the scheme

(S) is monotone and consistent, it is a standard result that u is a viscosity solution
of (P) [1]. Note that Uh is Pareto-monotone, Uh = 0 on Γh, and Uh satisfies (3.2).
Since Uhk

→ u uniformly, it follows that u is Pareto-monotone, u = 0 on ∂Rd
+, and

u satisfies (3.2). By uniqueness for (P) [5, Theorem 5] we have u = U . Since we can
apply the same argument to any subsequence of Uh, it follows that Uh → U uniformly
on [0,∞).

In section 4, we observe that the numerical scheme provides a fairly consistent
underestimate of the exact solution of (P). The following lemma shows that this is
indeed the case whenever the solution U of (P) is concave.
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Lemma 3.5. Let f be nonnegative and satisfy (H). Let U be the unique Pareto-
monotone viscosity solution of (P) satisfying (3.2). For every h > 0 let Uh : [0,∞) →
R be the unique Pareto-monotone solution of (S). If U is concave on [0,∞), then
Uh ≤ U for every h > 0.

Proof. Fix h > 0. Since U is concave, it is differentiable almost everywhere.4 Let
x ∈ (h1,∞) be a point at which U is differentiable and f is continuous. Since U is
concave we have

U(x)− U(x− hei) ≥ hUxi(x) for all i.

Since U is a viscosity solution of (P) and f is continuous at x we have

S(h, x, U) ≥ Ux1(x) · · ·Uxd
(x) = f(x).

Since x �→ S(h, x, U) is continuous, we see that S(h, x, U) ≥ f∗(x) = f(x) for all
x ∈ (h1,∞]. Now define Wh(x) = U(
x�h). Then we have

S(h, x,Wh) ≥ f(
x�h) for all x ∈ (h1, x],

and Wh = 0 on Γh. It follows from Lemma 3.1 that Uh ≤ Wh. Since U is Pareto-
monotone, we have Wh ≤ U , which completes the proof.

4. Numerical results. We now present some numerical results using the scheme
(S) to approximate the viscosity solution of (P). We consider four special cases where
the exact solution of (P) can be expressed in analytical form. Let f1(x) = 1, f2(x) =
2d

πd/2 e
−|x|2 ,

f3(x) = 1− χ[0,1/2]d(x) and f4(x) =

(
d∑

i=1

x9i

)1−d d∏
i=1

(
9x9i +

d∑
i=1

x9i

)
.

Here, χA denotes the characteristic function of the set A. The corresponding solutions
of (P) are U1(x) = d(x1 · · ·xd) 1

d , U2(x) = d(
∏d

i=1 erf (xi))
1
d , and

U3(x) = d max
i∈{1,...,d}

⎧⎨⎩
(
xi − 1

2

)
+

∏
j 	=i

xj

⎫⎬⎭
1
d

, U4(x) = d

(
d∏

i=1

xi ·
d∑

i=1

x9i

) 1
d

,

where erf (x) is the error function defined by erf (x) = 2/
√
π
∫ x

0
e−t2 dt, and x+ :=

max(0, x). The solutions U1 and U2 are special cases of the formula

(4.1) U(x) = d

(∫
[0,x]

f(y) dy

) 1
d

,

which holds when f is separable, i.e., f(x) = f1(x1) · · · fd(xd) [5]. The solution U3

can be obtained by the method of characteristics. We chose to evaluate the proposed
numerical scheme for U4 because it has nonconvex level sets, and then computed f4 via
(P). In the probabilistic interpretation of (P) as the continuum limit of non-dominated
sorting, nonconvex Pareto fronts play an important role [12, 5].

4The fact that U is Pareto-monotone also implies differentiability almost everywhere.
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Fig. 2. Comparison of numerical solutions and exact solutions of (P) for d = 2. The thin and
thick lines represent the level sets of the exact and numerical solutions, respectively.

We computed the numerical solutions for d = 2 and d = 3. For d = 2 we used a
100×100 grid, and for d = 3 we used a 50×50×50 grid and solved the scheme at each
grid point via a binary search with precision ε = 10−4. Figures 2 and 3 compare the
level sets of the exact solutions to those of the numerical solutions for d = 2 and d = 3,
respectively. In Figure 2, the thin lines correspond to the exact solution, while the
thick lines correspond to the numerical solutions, with the exception of Figure 2(d),
where both are thin lines for increased visibility. In Figure 3, the darker surfaces
correspond to the numerical solution, while the lighter surfaces represent the exact
solution. For both d = 2 and d = 3, we can see that the level sets of the numerical
solutions consistently overestimate the true solution, indicating that the numerical
solutions are converging from below to the exact solutions. We proved in Lemma 3.5
that Uh ≤ U whenever U is concave, so this observation is to be expected. Note,
however, that U3 is not convex, yet the overestimation is still present, indicating that
Lemma 3.5 may hold under more general hypotheses on U . We also observe that U3

has a shock, which is resolved reasonably well for d = 2 and d = 3, given the grid
sizes used.

4.1. Rate of convergence. We show here the results of some numerical ex-
periments concerning the rate of convergence of Uh → U and n− 1

d un → cdd
−1U .

Figure 4(a) shows ‖Uh − U‖L1([0,1]2) and ‖Uh − U‖L∞(Rd
+) versus h for the density

f3(x) = 1− χ[0,1/2]d(x) from the beginning of section 4. Both norms appear to have
convergence rates on the order of O(hα), and a regression analysis yields α = 0.5006



A PDE-BASED APPROACH TO NONDOMINATED SORTING 93

(a) U1 (b) U2

(c) U3 (d) U4

Fig. 3. Comparison of numerical solutions and exact solutions of (P) for d = 3. The light and
dark surfaces represent the level sets of the exact and numerical solutions, respectively.

for the L∞ norm and α = 0.8787 for the L1 norm. Thus, it is reasonable to suspect
an L∞ convergence rate of the form

(4.2) ‖Uh − U‖L∞(Rd
+) ≤ Ch

1
d

for some constant C > 0. We intend to investigate this in a future work. It is quite
natural that the convergence rate for the L1 norm is substantially better than the
L∞ norm, due to the nondifferentiability of U3 at the boundary ∂R2

+. This induces a
large error near ∂R2

+ which has a more significant impact on the L∞ norm.

To measure the rate of convergence of n− 1
d un → cdd

−1U , we consider the following
two norms:

(4.3) |n− 1
d un − cdd

−1U |L∞ := max
1≤i≤n

|n− 1
d un(Xi)− cdd

−1U(Xi)|

and

(4.4) |n− 1
dun − cdd

−1U |L1 :=
1

n

n∑
i=1

|n− 1
d un(Xi)− cdd

−1U(Xi)|.

Figure 4(b) shows (4.3) and (4.4) versus n for the same density f3. For each n the
values of (4.3) and (4.4) were computed by taking the average over 10 independent
realizations. It appears that both norms decay on the order of O(n−α), and a re-
gression analysis yields α = 0.3281 for the L1 norm (4.4) and α = 0.3144 for the L∞
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Fig. 4. Convergence rates for (a) the scheme (S) as a function of the grid resolution h, and (b)

the stochastic convergence n− 1
d un → cdd

−1U as a function of the number n of random samples.

norm (4.3). These results are in line with the known convergence rates for the longest
chain problem with a uniform distribution on [0, 1]d [2].

The results for the other densities f1, f2, and f4 are similar. We demonstrated
the convergence rates on f3 due to the fact that it has many important features;
namely, it is discontinuous, yields nonconvex Pareto-fronts, and induces a shock in
the viscosity solution U3 of (P).

5. Fast approximate nondominated sorting. We demonstrate now how the
numerical scheme (S) can be used for fast approximate non-dominated sorting and
give a real-world application to anomaly detection in section 5.4. We assume here that
we are given data X1, . . . , Xn that i.i.d. samples from a reasonably smooth density
function f , and that n is large enough so that n− 1

d un is well approximated by cdd
−1U .

In this regime, it is reasonable to consider an approximate nondominated sorting
algorithm based on numerically solving (P). A natural algorithm is as follows.

In practice, one is given only the data X1, . . . , Xn and does not know the under-
lying distribution f , which is required for solving (P). Therefore, the first step in our

algorithm will be to form an estimate f̂ of f from the samples X1, . . . , Xn. In the
large sample regime, this can be done very accurately using, for example, a kernel
density estimator [29] or a k-nearest neighbor estimator [21]. To keep the algorithm as
simple as possible, we opt for a simple histogram to estimate f , aligned with the same
grid used for numerically solving (P). Let us denote the grid spacing by h. When n
is large, the estimation of f can be done with only a random subset of X1, . . . , Xn of
cardinality k � n, which avoids considering all n samples. The second step is to use
the numerical scheme (S) to solve (P) on a fixed grid of size h, using the estimated

density f̂h on the right-hand side of (P). This yields an estimate Ûh of U , and the final

step is to evaluate Ûh at each sample X1, . . . , Xn to yield approximate Pareto ranks
for each point. The final evaluation step can be viewed as an interpolation; we know
the values of Ûh on each grid point and wish to evaluate Ûh at an arbitrary point. A
simple linear interpolation is sufficient for this step. However, in the spirit of utilizing
the PDE (P), we solve the scheme (S) at each point X1, . . . , Xn using the values of

Ûh at neighboring grid points, i.e., given Ûh(x− hei) for all i, and y ∈ [x− h1, x], we



A PDE-BASED APPROACH TO NONDOMINATED SORTING 95

Fig. 5. Depiction of the grid used for computing ̂Uh(y) according to (5.1). The values of
̂Uh(y−h1e1) and ̂Uh(y−h2e2) are computed by linear interpolation using adjacent grid points, i.e.,
̂Uh(y − h1e1) is computed via linearly interpolating between ̂Uh(x− he1) and ̂Uh(x− h(e1 + e2)).

compute Ûh(y) by solving

(5.1)

d∏
i=1

(Ûh(y)− Ûh(y − hiei)) = h1 · · ·hdf̂h(x),

where hi = yi − (xi − h). In (5.1) we compute Ûh(y − hiei) by linear interpolation

using adjacent grid points. Figure 5 illustrates the grid used for computing Ûh(y).
We call this algorithm PDE-based ranking, and the algorithm is summarized be-

low.
Algorithm 1 (PDE-based ranking). Fast approximate nondominated

sorting.

1. Select k points from X1, . . . , Xn at random. Call them Y1, . . . , Yk.
2. Select a grid spacing h for solving the PDE and estimate f with a histogram

aligned to the grid hNd
0, i.e.,

(5.2) f̂h(x) =
1

khd
·#
{
Yi : x � Yi � x+ h1

}
for x ∈ hNd

0.

3. Compute the numerical solution Ûh on hNd
0 ∩ [0, 1]d via (S).

4. Evaluate Ûh(Xi) for i = 1, . . . , n via interpolation.
For simplicity of discussion, we have assumed that X1, . . . , Xn are drawn from

[0, 1]d, but this is not essential as the scheme (S) can be easily adapted to any hyper-
cube in R

d, and this is in fact what we do in our implementation of Algorithm 1.

5.1. Convergence rates for PDE-based ranking. It is important to under-
stand how the parameters k and h in PDE-based ranking (Algorithm 1) affect the

accuracy of the estimate Ûh. We first consider the estimate f̂h. By (5.2), we can write

hdf̂h(x) =
1

k

k∑
i=1

χ[x,x+h1](Yi).

Hence hdf̂h(x) is the average of i.i.d. Bernoulli random variables with parameter

(5.3) p =

∫
[x,x+h1]

f(y) dy.
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By the central limit theorem, the fluctuations of f̂h(x) about its mean satisfy

(5.4)
∣∣∣f̂h(x)− p

hd

∣∣∣ ≤ C
1√
khd

with high probability.
Let us suppose now that f is globally Lipschitz. The following can be easily

modified for f more or less regular, yielding similar results. Then by (5.3) we have∣∣∣f(x)− p

hd

∣∣∣ ≤ C
√
dh.

Combining this with (5.4) we have

(5.5) ‖f̂h − f‖L∞([0,1]d∩hNd) ≤ C

(
1√
khd

+ h

)
with high probability. By the discrete comparison principle (Lemma 3.1) and (5.5)
we have that

(5.6) ‖Ûh − Uh‖L∞([0,1]d) ≤ d‖f̂h − f‖ 1
d

L∞([0,1]d∩hNd)
≤ C

(
k−

1
2dh−1 + h

1
d

)
with high probability. Based on the numerical evidence presented in section 4.1, it is
reasonable to suspect that ‖U − Uh‖L∞([0,1]d) ≤ Ch

1
d . If this is indeed the case, then

in light of (5.6) we have

(5.7) ‖Ûh − U‖L∞([0,1]d) ≤ C
(
k−

1
2d h−1 + h

1
d

)
with high probability.

The right side of the inequality (5.7) is composed of two competing additive terms.

The first term Ck−
1
2dh−1 captures the effect of random errors (variance) due to an

insufficient number k of samples. The second term Ch
1
d captures the effect of non-

random errors (bias) due to insufficient resolution h of the proposed numerical scheme
(S). This decomposition into random and nonrandom errors is analogous to the mean
integrated squared error decomposition in the theory of nonparametric regression and
image reconstruction [20]. Similarly to [20] we can use the bound in (5.7) to obtain
rules of thumb on how to choose k and h. For example, we may first choose some
value for k, and then choose h so as to equate the two competing terms in (5.7). This

yields h = k−
1

2(d+1) and (5.7) becomes

(5.8) ‖Ûh − U‖L∞([0,1]d) ≤ Ck−
1

2d(d+1) = Ch
1
d

with high probability.
In PDE-based ranking, we rank the samples with Ûh in place of un. Consider the

corresponding L1 sorting error∣∣cdd−1Ûh(Xi)− n− 1
dun(Xi)

∣∣
L1 ≤ ∣∣cdd−1Ûh(Xi)− U(Xi)

∣∣
L1

+
∣∣cdd−1U(Xi)− n− 1

d un(Xi)
∣∣
L1

(5.7)

≤ C
(
k−

1
2dh−1 + h

1
d

)
+
∣∣cdd−1U(Xi)− n− 1

d un(Xi)
∣∣
L1 ,(5.9)

which holds with high probability. The right-hand side of (5.9) decomposes the sorting
error into two terms. The first term captures the effect of errors in estimating f and
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solving (P) numerically, while the second term captures errors due to approximating
nondominated sorting by its continuum limit.

Notice that steps 1–3 in PDE-based ranking, i.e., computing Ûh, require O(k +
h−d) operations. In practice, it is often the case that one need not rank all n samples
(e.g., in a streaming application [16]). So suppose we are required to sort, relative to
the entire dataset, a subset size N � n, and suppose we have a sorting error tolerance
of ε > 0. We can use (5.9) to choose k and h so that

(5.10)
∣∣cdd−1Ûh(Xi)− n− 1

d un(Xi)
∣∣
L1 ≤ ε

2
+
∣∣cdd−1U(Xi)− n− 1

d un(Xi)
∣∣
L1

holds with high probability. For example, we can choose h = k−
1

2(d+1) to equate the
two terms in (5.7) and then choose k large enough. Using PDE-based ranking to sort
the subset of size N then has complexity O(k + h−d +N). When n is large enough,
the L1 sorting error will be less than ε by (5.10). If N is constant in n, or a sublinear
function of n, then PDE-based ranking provides a sublinear in n algorithm for ranking
all N points relative to the entire dataset with an error less than ε. Existing non-
dominated sorting algorithms would need to sort all n points in order to rank a subset
of size N and hence have complexity at least O(n log n).

We emphasize that the sublinear nature of the algorithm lies in the computation
of Ûh, which allows one to approximately rank any point in O(1) time. Ranking all

samples, i.e., evaluating Ûh at each of X1, . . . , Xn, of course requires O(n) operations.
We show in section 5.2 that even in this case, PDE-based ranking is 8 to 10 times
faster than nondominated sorting in two dimensions.

5.2. Evaluation of PDE-based ranking. In this section, we evaluate PDE-
based ranking in dimension d = 2 for the discontinuous density f3(x) = 1−χ[0,1/2]d(x)

and a mixture of Gaussians density given by f(x) = 1
4

∑4
i=1 gi(x), where each gi :

R
2 → R is a multivariate Gaussian density with covariance matrix Σi and mean μi.

We write the covariance matrix in the form Σi = Rθidiag(λi,1, λi,2)R
T
θi
, where Rθ

denotes a rotation matrix, and λi,1, λi,2 are the eigenvalues. The values for λi,j , μi

and θi are given in Table 1, and the density is illustrated in Figure 6.

In section 5.4, we provide further evaluation of our proposed PDE-based ranking
on real-world data from an anomaly detection problem.

In practical applications of nondominated sorting, the numerical ranks assigned
to each data point are important only inasmuch as they provide a relative ranking

Table 1

Parameter values for mixture of
Gaussians density

λi,1 λi,2 θi (μi,1,μi,2)

g1 0.01 0.00025 π
3 (0.2,0.5)

g2 0.0576 0.00064 0 (0.5,0.3)

g3 0.04 0.00025 −π
6 (0.4,0.8)

g4 0.01 0.01 0 (0.8,0.8)

Fig. 6. Depiction of random samples from
the mixture of Gaussians density.
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among samples. Thus, rankings that differ only by composition with monotone in-
creasing functions should be regarded as equivalent. As a consequence, the usual Lp

norms are inadequate and irrelevant for measuring sorting accuracy. We propose an
accuracy measure for comparing PDE-based ranking to exact nondominated sorting
that measures the fraction of pairs (Xi, Xj) that are ordered correctly. In this way,
the accuracy score only takes into account the relative orderings between pairs of data
points. Since the true Pareto rank of Xi is given by un(Xi), this accuracy score can
be expressed as

(5.11) Accuracy =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

ψ(un(Xi)− un(Xj), Ûh(Xi)− Ûh(Xj)),

where ψ(x, y) = 1 if xy > 0 and ψ(x, y) = 0 otherwise. In other words, for each
pair (Xi, Xj) we add 1 to the accuracy score if and only if un(Xi) − un(Xj) and

Ûh(Xi)− Ûh(Xj) have the same sign and are both nonzero, i.e., the relative ordering
between Xi and Xj given by PDE-based ranking is correct. The accuracy score is
then normalized by the number of pairs, which is

(
n
2

)
= n(n− 1)/2. It turns out that

the accuracy scores for our algorithm are often very close to 1. In order to make the
plots easier to interpret visually, we have chosen to plot − log(1 −Accuracy) instead
of Accuracy in all plots.

The complexity of computing the accuracy score via (5.11) is O(n2), which is
intractable for even moderate values of n. We note, however, that (5.11) is, at least
formally, a Monte Carlo approximation of∫

Rd

∫
Rd

ψ(U(x) − U(y), Uh(x) − Uh(y))f(x)f(y) dxdy.

Hence it is natural to use a truncated Monte Carlo approximation to estimate (5.11).
This is done by selecting n pairs (Xi1 , Xj1), . . . , (Xin , Xjn) at random and computing

1

n

n∑
k=1

ψ(un(Xik)− un(Xjk), Ûh(Xik)− Ûh(Xjk)).

The complexity of the Monte Carlo approximation is O(n). In all plots in the paper,
we computed the Monte Carlo approximation 10 times and plotted means and error
bars corresponding to a 95% confidence interval. In all of the figures, the confidence
intervals are small enough so that they are contained within the data point itself.

Figure 7 shows the sorting accuracy versus the number n of points to sort for
various grid sizes and number k of subsamples. We see in Figure 7 that we can
achieve excellent accuracy while maintaining a fixed grid and subsample size as a
function of n. We also see that, as expected, the accuracy increases when one uses
more grid points for solving the PDE and/or more subsamples for estimating the
density.

We compared the performance of our algorithm against the fast two-dimensional
nondominated sorting algorithm presented in [13], which takes O(n log n) operations
to sort n points. The code for both algorithms was written in C++ and was com-
piled on the same architecture with the same compiler optimization flags. Figure
8(a) shows a comparison of the CPU time used by each algorithm. For our fast ap-
proximate sorting, we show the CPU time required to solve the PDE (steps 1–3 in
PDE-based ranking) separately from the CPU time required to execute all of PDE-
based ranking, since the former is sublinear in n. We see in Figure 8(a) that using
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Fig. 7. Comparison of accuracy versus number of samples for various grid sizes and number
of subsamples k used to estimate f .
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Fig. 8. (a) Comparison of CPU time versus number of samples for a grid size of 250 × 250
and k = 107 subsamples for estimating the density. (b) Comparison of accuracy versus grid size for
k = 106 and k = 3 × 108 subsamples for nondominated sorting of n = 3 × 108 points. Notice that
when k is small compared to n it is not always beneficial to use a finer grid for solving the PDE
and estimating the density.

PDE-based ranking to rank all n data points is approximately 8 to 10 times faster than
nondominated sorting. While this is a substantial improvement, the more important
observation from Figure 8(a) is that estimating the density and accurately solving the

PDE to compute the Pareto ranking function Ûh has roughly constant complexity in
n. Many applications, such as the anomaly detection problem discussed in section 5.4,
only require estimating this ranking function, and in these cases PDE-based ranking
provides a sublinear, in fact constant time, algorithm.

It is interesting to consider more closely the relationship between the grid size
and the number of subsamples k. In Figure 8(b), we show accuracy versus grid size
for k = 106 and k = 3 × 108 subsamples for nondominated sorting of n = 3 × 108

points. Notice that for k = 106 subsamples, it is not beneficial to use a finer grid than
approximately 500× 500. This is quite natural in light of the error estimate on PDE-
based ranking (5.7). Intuitively, when k = 106 and the grid size is greater 1000, there
are more grid cells, or histogram bins, than the number k of points used for estimating
the density. Hence it is very likely that each bin contains at most 1 sample, and many
bins contain no samples. The error from the corresponding histogram estimation is
therefore so large that it overwhelms any improvement one would expect to see from
solving the PDE on a finer grid.
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Fig. 9. Comparison of PDE-based ranking (Algorithm 1) and subset interpolation ranking for
sorting n = 108 samples. Accuracy scores are shown for various numbers of subsamples ranging
from k = 103 to k = 108.

5.3. Comparison to a heuristic algorithm. There are certainly other ways
one may think of to perform fast approximate sorting without invoking the PDE (P).
One natural idea would be to perform nondominated sorting on a random subset of
X1, . . . , Xn and then rank all n points via some form of interpolation. We will call
such an algorithm subset ranking (in contrast to the PDE-based ranking we have
proposed). Although such an approach is quite intuitive, it is important to note that
there is, at present, no theoretical justification for such an approach.

Let us describe how one might implement a subset ranking algorithm. As de-
scribed above, the first step is to select a random subset of size k from X1, . . . , Xn.
Let us call the subset Y1, . . . , Yk. We then apply nondominated sorting to Y1, . . . , Yk,
which generates Pareto rankings uk(Yi) for each Yi. The final step is to rankX1, . . . , Xn

via interpolation. There are many ways one might approach this. In similar spirit to
our PDE-based ranking (Algorithm 1), we use grid interpolation, using the same grid
size as used to solve the PDE. For grid cells α ∈ N

d that contain at least one sample
from Y1, . . . , Yk, we assign a rank rα by averaging all samples that fall in that cell. For
grid cells that contain no samples from Y1, . . . , Yk, we define the rank recursively by
rα = maxi{rα−ei}, and we set rα = 0 for α 	∈ N

d. This can be computed by sweeping
through the grid once in any direction that respects the partial order �. The ranking
of an arbitrary sample Xi is then computed by linear interpolation using the ranks
of neighboring grid points. In this way, the rank of Xi is an average of the ranks
of nearby samples from Y1, . . . , Yk, and there is a grid size parameter which allows a
meaningful comparison with PDE-based ranking (Algorithm 1).

Figure 9 shows the accuracy scores for PDE-based ranking (Algorithm 1) and
subset ranking of n = 108 samples drawn from the mixture of Gaussian distribution
and f3. A grid size of 250×250was used for both algorithms, and we varied the number
of subsamples from k = 103 to k = 108. Notice a consistent accuracy improvement
when using PDE-based ranking versus subset ranking, when the number of subsamples
is significantly less than n. It is somewhat surprising to note that subset ranking has
much better than expected performance. As mentioned previously, to our knowledge
there is no theoretical justification for such a performance when k is small.

5.4. Application to anomaly detection. We now demonstrate PDE-based
ranking on a large-scale real data application of anomaly detection [18]. The data
consists of thousands of pedestrian trajectories, captured from an overhead camera,
and the goal is to differentiate nominal from anomalous pedestrian behavior in an
unsupervised setting. The data is part of the Edinburgh Informatics Forum Pedestrian
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(b) 50000 Pareto points
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(c) Pareto fronts

Fig. 10. (a) Example pedestrian trajectories; (b) plot of 50,000 of the approximately 6 × 109

Pareto points; (c) 30 evenly spaced Pareto fronts computed from the 50,000 points in (b).

Database and was captured in the main building of the School of Informatics at
the University of Edinburgh [24]. Figure 10(a) shows 100 of the more than 100,000
trajectories captured from the overhead camera.

The approach to anomaly detection employed in [18] utilizes multiple criteria
to measure the dissimilarity between trajectories and combines the information us-
ing a Pareto-front method and, in particular, nondominated sorting. The database
consists of a collection of trajectories {γ1, . . . , γM}, where M = 110035, and the
criteria used in [18] are a walking speed dissimilarity and a trajectory shape dis-
similarity. Given two trajectories γi, γj : [0, 1] → [0, 1]2, the walking speed dissim-
ilarity cspeed(γi, γj) is the L2 distance between velocity histograms of each trajec-
tory, and the trajectory shape dissimilarity is the L2 distance between the trajecto-
ries themselves, i.e., cshape(γi, γj) = ‖γi − γj‖L2(0,1). There is then a Pareto point
Xi,j = (cspeed(γi, γj), cshape(γi, γj)) for every pair of trajectories (γi, γj), yielding(
M
2

) ≈ 6× 109 Pareto points. Figure 10(b) shows an example of 50,000 Pareto points
and Figure 10(c) shows the respective Pareto fronts. In [18], only 1666 trajecto-
ries from one day were used, due to the computational complexity of computing the
dissimilarities and nondominated sorting.

The anomaly detection algorithm from [18] performs nondominated sorting on
the Pareto points {Xi,j}1≤i<j≤M and uses this sorting to define an anomaly score

for every trajectory γi. Let n =
(
M
2

)
and let un : R

2 → R denote the longest
chain function corresponding to this nondominated sorting. The anomaly score for a
particular trajectory γi is defined as

si =
1

M

M∑
j=1

un(cspeed(γi, γj), cshape(γi, γj)),

and trajectories with an anomaly score higher than a predefined threshold σ are
deemed anomalous.

Using PDE-based ranking, we can approximate un using only a small fraction
of the Pareto points {Xi,j}1≤1<j≤M , thus alleviating the computational burden of
computing all pairwise dissimilarities. Figure 11 shows the accuracy scores for PDE-
based ranking and subset ranking versus the number of subsamples k used in each
algorithm. Due to the memory requirements for nondominated sorting, we cannot
sort datasets significantly larger than than 109 points. Although there is no such
limitation on PDE-based ranking, it is important to have a ground truth sorting to
compare against. Therefore we have used only 44,722 out of 110,035 trajectories,
yielding approximately 109 Pareto points. For both algorithms, a 500× 500 grid was
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Fig. 11. Accuracy scores for PDE-based ranking and subset ranking for sorting 109 Pareto
points from the pedestrian anomaly detection problem versus the number of subsamples k.

used for solving the PDE and interpolation. Notice the accuracy scores are similar to
those obtained for the test data in Figure 7. This is an intriguing observation in light
of the fact that {Xi,j}1≤i<j≤M are not i.i.d., since they are elements of a Euclidean
dissimilarity matrix.

5.5. Discussion. We have provided theory demonstrating that for X1, . . . , Xn

i.i.d. in R
2 with a nicely behaved density function f , the numerical scheme (S) for (P)

can be utilized to perform fast approximate nondominated sorting with a high degree
of accuracy. We have also shown that in a real world example with non-i.i.d. data,
the scheme (S) still obtains excellent sorting accuracy. We expect the same algorithm
to be useful in dimensions d = 3 and d = 4 as well, but of course the complexity
of solving (P) on a grid increases exponentially fast in d. In higher dimensions, one
could explore other numerical techniques for solving (P) which do not utilize a fixed
grid [6]. At present, there is also no good algorithm for nondominated sorting in
high dimensions. The fastest known algorithm is O(n(log n)d−1) [19], which becomes
intractable when n and d are large.

This algorithm has the potential to be particularly useful in the context of big
data streaming problems [16], where it would be important to be able to construct an
approximation of the Pareto depth function un without visiting all the data points
X1, . . . , Xn. For example, the data may be arriving piece by piece, and it may be
impossible to keep a history of all samples. In such a setting, one could slightly modify
PDE-based ranking so that upon receiving a new sample, the estimate f̂h is updated,
and every so often the scheme (S) is applied to recompute the estimate of Ûh.

There are certainly many situations in practice where the samples X1, . . . , Xn

are not i.i.d., or the density f is not nicely behaved. In these cases, there is no
reason to expect our algorithm to have success, and hence we make no claim of
universal applicability. However, there are many cases of practical interest where
these assumptions are valid, and hence this algorithm can be used to perform fast
nondominated sorting in these cases. Furthermore, as we have demonstrated in section
5.4, there are situations in practice where the i.i.d. assumption is violated, yet our
proposed algorithm maintains excellent accuracy and performance.

We proposed a simple subset ranking algorithm based on sorting a small subset
of size k and then performing interpolation to rank all n samples. Although there is
currently no theoretical basis for such an algorithm, we showed that subset ranking
achieves surprisingly high accuracy scores and is only narrowly outperformed by our
proposed PDE-based ranking. The simplicity of subset ranking makes it particularly
appealing, but more research is needed to prove that it will always achieve such high
accuracy scores for moderate values of k.
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We should note that there are many obvious ways to improve our algorithm.
For instance, one would expect to obtain better results by using more sophisticated
density estimators. It would also be natural to perform some sort of histogram equal-
ization to X1, . . . , Xn prior to applying our algorithm in order to spread the samples
out more uniformly and smooth out the effective density f . Provided such a transfor-
mation preserves the partial order � it would not affect the nondominated sorting of
X1, . . . , Xn. In the case that f is separable (a product density), one can perform his-
togram equalization on each coordinate independently to obtain uniformly distributed
samples. We leave these and other potential improvements to future work; our pur-
pose in this paper has been to demonstrate that one can obtain excellent results with
a very basic algorithm.

Appendix A. Let X be a compact metric space. We say that a sequence {fn}∞n=1

of real-valued functions on X is approximately equicontinuous if for every ε > 0 there
exists δ > 0 such that

(A.1) for all x, y ∈ X, |x− y| < δ =⇒ |fn(x)− fn(y)| < ε+
1

n

for every n ∈ N.
Theorem A.1. Let {fn}∞n=1 be approximately equicontinuous and uniformly

bounded. Then there exists a subsequence of {fn}∞n=1 converging uniformly on X
to a continuous function f : X → R.

Proof. Let {xi}∞i=1 be a countably dense set inX . By a Cantor diagonal argument,
we can extract a subsequence {fnk

}∞k=1 such that for all i ∈ N, {fnk
(xi)}∞k=1 is a

convergent sequence.
Let ε > 0. Since {fn}∞n=1 is approximately equicontinuous there exists δ > 0 such

that for all n we have

(A.2) |fn(x) − fn(y)| < ε

4
+

1

n
for all x, y ∈ X with |x− y| < δ.

The collection of open balls {Bδ/2(z)}z∈X forms an open cover of X . Since X is
compact, there exists a finite subcover B1, . . . , BM for some integer M . Without loss
of generality we may assume that xi ∈ Bi. Now let x ∈ X . By (A.2) we have

|fnk
(x) − fnj (x)| ≤ |fnk

(x)− fnk
(xi)|+ |fnk

(xi)− fnj (xi)|+ |fnj (xi)− fnj (x)|
<
ε

2
+

1

nk
+

1

nj
+ |fnk

(xi)− fnj (xi)|

for some i ∈ {1,M} and any k, j. Hence we have

‖fnk
− fnj‖L∞(X) ≤ ε

2
+

1

nk
+

1

nj
+ sup

1≤i≤M
|fnk

(xi)− fnj (xi)|.

It follows that {fnk
}∞k=1 is Cauchy in L∞, which completes the proof.
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