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Abstract 
Channel identification for a binary phase-shift keyed 

(BPSK) direct-sequence spread-spectrum (DS/SS) system 
operating over a fading channel with sampling at the chip 
rate is considered in this work. The system is mapped 
to a discrete oversampled system, thereby allowing chan- 
nel identification via second order statistics under a few 
nonrestrictive conditions. Using the method of subchannel 
response matching (SRM), the offline solution to this chan- 
nel identification problem involves the determination of the 
eigenvector corresponding to the minimum eigenvalue of a 
matrix that depends on the correlation statistics of the 
samples of the received signal. A low complexity stochas- 
tic gradient method for finding this eigenvalue adaptively 
is derived and a convergence analysis under a few weak 
assumptions presented. For comparison, a method that 
utilizes trellis searching for joint data and channel identi- 
fication when the system is not oversampled is extended 
in an obvious way to  oversampled systems and a different 
adaptive algorithm developed than has been used in the 
past. Numerical results in the form of channel estimation 
error are obtained for the case when the spreading code 
is unknown but periodic with period equal to  the symbol 
period. 

1 Introduction 
In this paper, channel identification for uncoded single- 

user direct-sequence spread spectrum (DS/SS) systems is 
considered. The systems will be characterized by symbol 
transmission period [0, T,] and employ a rectangular chip 
pulse restricted to [0, T,], T, << T,, where the processing 
gain is defined as N = T,/T,. Although it is not sub- 
optimal for an ideal system on an additive white Gaussian 
noise (AWGN) channel with no intersymbol interference 
(ISI) to  correlate with the full spreading waveform and 
sample only once per symbol period, in actual application 
the sampling is normally done at a much higher rate. In 
many cases, sampling is done at the chip rate and, af- 
ter multiplication by the appropriate spreading sequence 
bit, the results summed to form the decision statistic for 
a given information bit, which then can be thresholded to  
determine an information estimate. For an IS1 system that 
is oversampled, however, it is no longer possible to  obtain 
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a sufficient statistic for metric calculation of a given path 
of the Viterbi algorithm, the optimal sequence estimator 
for a system corrupted by ISI, by multiplying the samples 
within a symbol period by a transmitter spreading coeffi- 
cient and then summing. The optimal combining of the 
samples in a given symbol period depends on the channel 
impulse response at each sample period, not just at the 
symbol period. This is the motivation for channel identifi- 
cation of oversampled systems at the sample period. 

Since the DS/SS system is oversampled in continuous 
time, one predicts that it can be mapped to  an oversam- 
pled system in discrete time. This is important as classical 
blind equalization results show that unique channel identi- 
fication is not possible (unless the channel is known to have 
minumum phase) through the use of second order statis- 
tics for non-oversampled discrete systems when the input 
sequence is ergodic and wide-sense stationary [l]. Recent 
work [2], however, has shown that if the input symbols to  
the channel in a digital communications system are inde- 
pendent and identically distributed (IID) and the output 
of the channel is sampled at a rate that is a multiple of 
the input symbol rate, the oversampling of the cyclosta- 
tionary input waveform makes the sampled process also 
cyclostationary, thus allowing for blind channel identifica- 
tion based on only second order statistics. Because estima- 
tion of second order statistics requires fewer samples than 
that of higher order statistics for a given level of accuracy, 
one expects algorithms based on second order statistics to  
exhibit faster convergence. 

2 
The input data bits, denoted by the sequence ( s k ) ,  are 

assumed to  be IID. The spreading sequence will be de- 
noted ( a ( ) .  Since binary phase-shift keying is being em- 
ployed, the output of the transmitter can be expressed 
as (using complex baseband notation throughout) z ( t )  = 
# s ( t ) a ( t ) e i o  where Eb is the energy per data bit, 6' 
is the transmitter phase (which will be assumed to be 
worked into the channel response and suppressed from 
here forward), s ( t )  = Er==_, s k p ~ , ( t  - ICT,), and a ( t )  = 

almc(t - [T,), where p ~ ( t )  is defined to be unit- 
amplitude pulse that is nonzero on [0, TI. 

The time-nonselective, frequency-selective continuous 
channel response is denoted by g( t ) .  The received signal 
is given by r ( t )  = g ( t )  * ~ ( t )  + n(t)  where n(t)  is com- 

DS./SS Systems over IS1 Channels 

0-7803-2489-7195 $4.00 0 1995 IEEE 368 11.5-1 

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 7, 2009 at 11:56 from IEEE Xplore.  Restrictions apply.



plex Gaussian channel noise. The receiver, using a chip- 
matched filter matched to  the rectangular pulse, calculates 
the complex statistic 

kT. +( n + l)Tc 
Yn ( k )  = Y (  hTs + nTc) = J r(t)dt .  

kT.  t n T c  

It is straightforward to  show that the response gm at 
sample time mTc due to  a unit amplitude pulse on [O,Tc] 
is given by 

gm = g(r) lTc PT,(~ + mTc - r)dtdr 
--oo 

which implies by linearity that hk , the response at sample 
time kT, + mT, due to the spreading waveform uk( t )  = 
CpZ0 QT,(~ - PT, - kT,) on [U,, ( k  + l)T,], is given by N - 1  

N - l  

p=o 

where one period of the spreading sequence { i i k ,p  = 
0 , .  . . , N - 1 )  is defined in the obvious way. 

Thus, it has been established that the overall channel 
response can be written as a convolution of the spreading 
sequence for a period and an effective channel response. 
Note that the index k that was carried through the calcu- 
lation allows for the spreading sequence to  vary over each 
symbol period. However, for the work considered in this 
paper, it is assumed that the spreading sequence is un- 
known and periodic in the symbol period. For this reason, 
the superscript k will be dropped from h in succeeding 
sect ions. 

3 Adaptive Algorithms Using Subchannel 

3.1 Subchannel Response Matching 
Since the SRM algorithm, an offline algorithm for chan- 

nel identification in oversampled systems, is explained 
thoroughly elsewhere [3] ,  the aim is only to set up the 
problem and present the final solution. 

Let the impulse response {hm, m = O , l , .  . ., LN - 1 )  of 
the overall channel be of duration L N  samples. Consider 
the division of the oversampled output into N subchannels, 
one subchannel for each offset T, from the input sample 
time. Each subchannel qperates at sample rate T, on the 
IID channel input symbols, and the output at time k of 
the nth subchannel can be written as 

Response Matching 

L-1 

~ n ( k )  = ~ ( l ) s ( k  - 1 )  + j n ( k >  
l=O 

where h n ( l )  = h [ N f n  is the l th sample of the nth subchan- 
ne1 of the impulse response, and j n ( k )  is the zero-mean 
observation noise variance a’ on this sample. 

The basic idea of the subchannel response matching al- 
gorithm is that since any two subchannels m and n have 
the same input, y m ( k )  * h,(k)  = yn(k) * h,(k) .  Thus, for 
a given pair, it is sought to match the output from the 
application of an estimate of channel n’s impulse response 
on m’s output to the application of an estimate of m’s im- 
pulse response on n’s output. If this is done in the mean 
squared sense for all distinct pairs of channels, one seeks 
to  minimize 

N - 2  N - 1  

subject to  the constraint that 1 1 & 1 2  = 1 where 6 = 
[ A ~ ( o ) .  . . A ~ ( L  - 1 )  A , ( o ) .  . . i N - l ( ~  - 1)lT. 

Define gn(k) = [yn (k )  y,(k - 1 ) .  . .yn(k - L + 1)IT and 
Rmn = E[ym(k)gf(k)]. The offline problem can be rewrit- 
ten as: find the conjugate of the eigenvector corresponding 
to  the minimum eigenvalue of the matrix S where 

N - 1  

n=O 

[ Roo Rio . . .  R(N-1)O 1 

Thus, S consists of the difference of two matrices, one that 
consists of L by L identical blocks on the diagonal and one 
that is seen to  be not an outer product when considered 
carefully. Note that if the channel is identifiable via second 
order statistics [4], there will be a unique minimum eigen- 
value and the conjugate of its eigenvector will be the unique 
solution. In the case of a noiseless system, S will be a pos- 
itive semidefinite matrix, denoted S Z ,  with a nullspace of 
dimension one. In a noisy system, S = SZ + ( N  - l)a21 
and thus will be positive definite. 

3.2 Adaptive Algorithm 
Although finding the eigenvector associated with the 

minimum eigenvalue of a matrix corresponds closely to  Pis- 
arenko’s harmonic retrieval method [5] ,  S is not simply an 
outer product of the observed vector unless N = 2, so 
Pisarenko’s results cannot be applied. As an alternative, 
a low complexity stochastic gradient method that can be 
performed online is derived. The error signal considered is 
the Rayleigh quotient of S* 

( 1 )  
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which is minimized at the conjugate of the miminumeigen- 
vector of S. 

Since the adaptive algorithm is implemented with sam- 
ple averages as opposed to ensemble averages, the matrix 
s k  is introduced which is the estimate of S at  time k based 
on the observed channel outputs at time IC, IC - 1,.  . . , k - 
L + 1 (i.e. S with the expectations removed). This def- 
inition suggests an empirical objective function at step k 
given by 

where X E [0,1] is a forgetting factor. For the rest of this 
paper, it will be assumed that X = 0, leading to  the simpler 
objective function 

The standard update for the estimated channel, L k ,  in 
the stochastic gradient algorithm is then given by,bk = 
bk-l - p v . (Ak- , )  where p is a user specified gain factor. 
Thus, the key is the efficient calculation of the gradient of 
e @ ) .  Direct calculation using the definition in equation 
(1) yields 

Due to the complicated form of s k ,  “brute force” compu- 
tation of the above requires O ( L 2 N 2 )  operations because 
of the matrix-vector multiplication Sib. However, noting 
the conjugate symmetry of s, v(hTSkh*) = 2sih, and it 
can be shown that 

j = O  n = O  

The analysis of the number of operations now goes as 
follows: the two sums over n must be done for each I and 
i (or j ) ,  thus leading to  O ( L 2 N )  operations; given these 
sums, v ( h T S k h * )  can be found in O ( L N )  inner products 
of vectors of length L.  Thus, the total number of opera- 
tions required to obtain Sib (and thus ve(h)) is O ( L 2 N ) ,  
leading to a considerable savings if the processing gain is 
large. 

3.3 Convergence Analysis 
A gain factor ,U must be specified for the stochastic gra- 

dient algorithm that guarantees convergence of 141, to  the 

desired solution h p t . .  Convergence of the stochastic gradi- 
ent search for a particular sample path cannot be guaran- 
teed; as a first approximation, convergence conditions are 
derived in this section for the gradient search assuming 
the matrix S is measured with no error. Even under this 
assumption, global convergence is still difficult to demon- 
strate due to the complexity of the error surface, including 
flat portions leading to  algorithm stagnation at  each of 
the eigenvectors. Therefore, a desireable goal is to  choose 
p such that the algorithm will converge to the correct so- 
lution when it  is near the minimizing eigenvector. 

The error a t  iteration k of the algorithm is given by 

In the following, the term involving u2 will be ignored as 
(N - l)a2 represents a constant residual error at the min- 
imizing solution. 

Assuming a noiseless system (g2 = 0),  substituting in 
i k  = b k - 1  - p v e(&-,), and retaining only terms that 
are linear in ek-1 (since e k - 1  << 1 near hpt in a noiseless 
system), one obtains 

Applying the modal decomposition Sz = L N - 1  Xigig: 
where is the i th eigenvector of sz, convergence of e k  can 
be achieved by the convergence of each of the modes. For 
the ith mode, one obtains 

where the last inequality comes from the fact that 11&k112 

is nondecreasing as a function of k. This nondecreasing 
property can be derived as follows: note from the definition 

then implies 
of ve(h) that /&-1(&-&-1) - H  = h k - 1 v e ( j i & l )  - H  = 0 which 

2 - 2  2 - . .  - 
- llhk -hk-lll + l l b k - 1 1 1  2 llhk-111 

thus establishing the nondecreasing property. 
If the initial guess is chosen on the unit circle (i.e. 

llhoII = 1) and is sufficiently close to the solution h p t ,  
the nondecreasing property and (3) can be used to show 

- 2  
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that convergence occurs in all of the modes if p < &. 
Since Amax is difficult to obtain, the conservative esti- 
mate p < -2- is used instead, where t r ( S z )  = L(N - 
1) C E i ’ ( E [ y i ( k ) 2 ]  - E[$(k)]), which can be readily esti- 
mated if the signal-to-noise ratio (SNR) is known. 

tr(Sz) 

3 

4 Trellis-Searching Algorithm 
In [6], an algorithm for blind equalization is introduced. 

It extends the Viterbi algorithm, the optimal sequence esti- 
mator for channels with known ISI, to perform blind equal- 
ization by allowing A4 survivors per state and peforming 
channel estimation for each survivor at each step using an 
LMS algorithm. To extend this algorithm to oversampled 
systems, a given branch metric is now calculated as the 
total Euclidean distance between the samples in a symbol 
period and the samples predicted aIong that branch in the 
trellis. 

The channel update algorithm is also altered. The min- 
imum mean squared error solution for the channel update 
is given by h:Pt(I) = & ( I )  = E [ y n ( k ) s ( k  - I ) ]  which is 
easily approximated. Thus, instead of using a gradient 
search algorithm, this ensemble average is approximated 
by a sample mean &(I) = $ yn(k)s^(k,- I )  where 
i(k) is the estimate of the kth data bit for the path under 
consideration. 

-1.221 f 1.455j 
0.752 f 2.0673 

5 Results and Conclusions 
The complexity of the two algorithms must be consid- 

ered in evaluating performance. The subchannel response 
matching (SRM) method, as mentioned earlier, involves 
O ( L 2 N )  operations per symbol to  perform one iteration of 
the gradient search. The trellis searching algorithm dis- 
cussed requires O ( L A L ~ ~ ~ N )  operations per symbol, signif- 
icantly more than the SRM estimator, but also decodes 
the bits as it runs with no need for an additional sequence 
estimator. 

For the case N = 4, L = 5, two channels labelled 
(‘good” and “bad” are considered with zeroes as speci- 
fied below. One hundred trials, each with a random ini- 
tial guess, were averaged over to  obtain Figures 1-3 on 
the following page. The gain factor from section 3.3 for 
these channels is approximately p = 0.07. The normallized 
mean squared error (NMSE) is used as the figure of merit 
and is defined for a channel trying to  identify h as 

I -0.800 f 1.385j 

1.034 f 0.376j 1 
0.393 f l .08lj 
-0.525 f 0.909j I 

One key item not displayed in Figures 1-3 for the SRM 
algorithm is that the plots are dominated by a few sam- 
ple paths that take a long time to converge. Since the 
complexity of the SRM algorithm is low, this suggests us- 
ing multiple starting points for one trial and choosing the 
one with the lowest e k  (calculated at each step to  form 
the gradient) at the k th  iteration. Using a small number 
of starting points would greatly increase performance with 
complexity still less than the trellis-searching algorithm. 
An example of the improved performance (averaged over 
30 sample paths) is shown in Figure 4. 

6 Future Work 
There are a few key areas still requiring work on this 

problem. The convergence analysis presented for the 
stochastic gradient algorithm must be updated to take 
into account variation of the sample data from the en- 
semble averages, and convergence in terms of mean and 
variance needs to be considered. Global convergence con- 
ditions must also be considered more closely. It would also 
be nice to  have an algorithm with faster convergence prop- 
erties; in particular, it would be desireable to find a fast 
method for computation of the Hessian so that a Newton- 
type algorithm could be efficiently implemented. 
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Figure 1: Normallized Mean Squared Error for the “Good” 
Channel, SNR = 18 dB: The gain factor of ,U = 0.07 ap- 
pears too conservative. 

Figure 3: Normallized Mean Squared Error for the “Bad” 
Channel, SNR = 18 dB: The “bad” channel adversely af- 
fects SRM but not TS. 
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Figure 2: Normallized Mean Squared Error for the “Good” 
Channel, SNR = 8 dB: The drop in SNR of 10 dB affects 
both algorithms the same. 

Figure 4: Normallized Mean Squared Error for the “Bad” 
Channel, SNR = 18 dB: The improved SRM algorithm 
shows a large gain vs. SRM on the “bad” channel. 
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