
1

Optimal Sensor Scheduling via Classification
Reduction of Policy Search (CROPS)

Doron Blatt and Alfred O. Hero
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan, USA

Abstract—
The problem of sensor scheduling in multi-
modal sensing systems is formulated as the
sequential choice of experiments problem and
solved via reinforcement learning methods. The
sequential choice of experiments problem is
a partially observed Markov decision problem
(POMDP) in which the underlying state of
nature is the system’s state and the sensors’
data are noisy state observations. The goal is
to find a policy that sequentially determines
the best sensor to deploy based on past data,
which maximizes a given utility function while
minimizing the deployment cost. Several exam-
ples are considered in which the exact model of
the measurements given the state of nature is
unknown but a generative model (a simulation
or an experiment) is available. The problem is
formulated as a reinforcement learning problem
and solved via a reduction to a sequence of
supervised classification subproblems. Finally, a
simulation and an experiment with real data
demonstrate the promise of our approach.

I. I NTRODUCTION

The advent of agile sensing systems that collect data
through a variety of sensing modalities has brought
about new and exciting challenges to the field of signal
processing. Agile, multi-modal, sensing (see e.g. [16]
and [13]) exploit the capability of controlling the data
collection process. Examples of agile sensing systems
include a radar that can control its beam direction, a land
mine detector that can deploy radar or seismic sensors,
or a LANDSAT satellite that can control the frequency
band of its radar. The key element that differentiates
agile sensing systems from other data collection systems
is a resource allocation constraint that precludes using
all sensor modalities at all times. We formulate agile
sensing as an optimization in which the system must

This research was partially supported by DARPA-MURI grant
ARO DAAD 19-02-1-0262.

automatically select the best sensing modality based on
past observations to maximize a given objective function
while minimizing the data collection cost.

When formulated as a sequential choice1 of experi-
ments problem [8], the agile sensing problem consists of
an episodic task that is divided into a sequence of deci-
sion epochs. Each episode begins as the first observation
is collected. Then, at each subsequent decision epoch
two decisions are made. The first one is to decide if the
amount of information collected thus far is sufficient for
making inference (detection or estimation) on the data
with a desired accuracy or whether more observations are
required. This first decision also determines the choices
available at the second decision. If more observations
are required, the next best sensor modality needs to
be determined. If the information is deemed sufficient
for inference, the final estimation or detection decision
is made. Every sensor modality has an associated de-
ployment cost and a decision rule must balance the
expected information gain from a sensor deployment,
which results in improved inference capabilities, with
the deployment cost. The collection of decision rules,
i.e., the sequence of mappings from past observations
to the decision space, is called a policy and the goal
is to find a policy that optimally trades-offs the overall
average sensor deployment costs and the estimation or
detection performance, e.g., mean squared estimation
error or classification error rate.

The problem of finding optimal policies for sequen-
tial choice of experiments suffers from the curse-of-
dimensionality [4] and scenarios in which a closed
form solution for the optimal policy exists are rare.
Past research has focused on the asymptotic regime in
which one assumes a large number of data collection
iterations (or sensor dwells) and low sensor deployment
cost (see [15] and references therein). Another focus has

1The key difference from the related sequential design of ex-
periment problem is that instead of adapting a set of continuous
experiment parameters, here we choose from a finite set of fixed
experiments.

2

been on “experiment sufficiency” – when is one exper-
iment (or sensor modality) always better than another
experiment (see [11] and references therein).

In this paper, we take a different approach. We as-
sume that the underlying model is unknown and aim at
finding approximatesolutions to the optimal policy. In
particular, in the absence of a model, optimal policies
are approximated from data using a generative model,
where data is generated by a simulator or collected
in a field experiment. It is shown that this problem
formulation falls into the class of reinforcement learning
problems and the Classification Reduction of Policy
Search (CROPS) methodology that has been recently
proposed by the authors [7] is applied. Two case studies
are reported as well. The first is the problem of finding
sensor scheduling policies for land-mine detection. For
this problem a simulator is used to generate data which
is then used for policy search. The second problem is
perform optimal waveform selection for a multi-band
radar on a land classification satellite. In this applica-
tion competitive policies are found from experimental
LANDSAT data.

II. PROBLEM FORMULATION

Let X1 ∈ X1, X2 ∈ X2, . . . , XK ∈ XK be K random
variables that correspond to the outputs ofK sensors
or K sensor modalities. Note that each of these random
variables lies, in general, in a different space. We append
each random variables with its index so that a value of
an observation also indicates which sensor was used to
collect it. Let Y ∈ Y be a discrete random variable
that represent the state of nature whose value we try to
predict. The presented results can also be applied when
Y is a continuous random variables, whose value we try
to estimate, but we focus on the detection problem for
concreteness.

A policy π specifies which sensor to deploy first, say
sensork. Then based of the value ofXk the policy
determines if an accurate prediction ofY is possible, and
if so, what is the best prediction, or, otherwise, which
is the next best sensor to deploy to collect additional
data. This process continues until either a prediction of
Y is made or all available sensors are deployed. We
assume that each sensor can be applied at most once
and hence, the total number observations is bounded by
K. Therefore, a policyπ is sequence ofK + 1 decision
rules π = [π1, π2, . . . , πK+1]. This assumption is valid
when the randomness in the process, e.g. the observation
noise, is governed by clutter that cannot be averaged out
by repeated measurements, rather than by thermal noise.
Note thatπ1 simply indexes the first sensor to deploy
(excluding the possibility of predictingY without taking

any observations), and hence,π1 ∈ {1, 2, . . . , K}. Also
note thatπK+1 is used only if at all the decision epochs
the decision was to defer the prediction ofY and deploy
another sensor. The decision ruleπK+1 is a map from
X1 × X2 × . . . × XK to Y. If the objective is to try to
minimize the detection error, then it is well known that
the optimal map is the Bayes classifier [12]

π∗
K+1(x1, x2, . . . , xK) = arg max

y∈Y

Pr {Y = y|X1 = x1, X2 = x2, . . . , XK = xK} .

The domain and range of the decision rules for stages
2, . . . , K depend on the sequence of sensors deployed
up to the decision time. For example, ifπ1 = k, then

π2 : Xk → ({1, 2, . . . , K} \ k)
⋃

Y.

If π2(xk) ∈ ({1, 2, . . . , K} \ k) then the decision is
to take another observation using sensorπ2(xk). Alter-
natively, if π2(xk) ∈ Y, then the decision is that the
amount of information is sufficient andπ2(xk) is the
predictor ofY . Instead of explicitly defining the policy
through a sequence of mappings whose domains and
ranges depend of past decisions and observations, we
let Z = [X1, . . . , XK] and define the policyπ as a two-
dimensional function ofZ. Given, the value ofZ, its first
argument[π(Z)]1 is the resulting sequence of sensors
that were deployed prior to the final decision and its
second argument[π(Z)]2 is the prediction forY . Note
that in general, only a subset of the elements ofZ are
observable at the time the final decision is made.

Denote byPc(π) = Pr{[π(Z)]2 = Y } the probability
of correctly predicting the value ofY based on the data
collected according to the policyπ, by C([π(Z)]1) the
cost associated with the sequence of sensor deployments
[π(Z)]1, e.g., the number of sensor dwells, and by
E {C([π(Z)]1)} the expected cost. We assume that the
cost of the deployment of a sequence of sensors is the
sum of the costs of deploying each of the sensors, and
hence, does not depend on the order of deployment. The
optimal policyπ∗ is the policy that maximizes

Pc(π) − λE {C([π(Z)]1)} , (1)

whereλ is a tuning parameter that trades off the cost of
data collection and the cost of prediction error. Under
certain regularity conditions, the optimal policy can
be defined though backward induction (see e.g. [19]).
However, whenX1, . . . ,XK are continuous or discrete
and large, the solution becomes intractable. Furthermore,
even whenX1, . . . ,XK are finite and relatively small,
the backward induction iterations require computing
expectations with respect to the joint distribution ofZ

andY .

3

In this paper we allowX1, . . . ,XK to be continuous
or discrete and large, and consider the case in which the
joint distribution of Z and Y is unknown. We assume
thatn realizations of(Z, Y) are available and the goal is
find a policy that maximizes (1) based on this data set.
Hence, this is a model free instance of the sequential
choice of experiments problem as formulated in [8],
which, to the best of our knowledge, has not been
considered previously in the literature.

III. PARTIALLY OBSERVABLE MARKOV DECISION

PROCESSES ANDREINFORCEMENTLEARNING

The field of reinforcement learning is centered around
the challenge of designing agents that learn to act in a
stochastic environment by interacting with it [21]. As the
agent interacts with the environment it receives rewards,
and the goal is to eventually learn through these rewards
which actions maximize the future sum of rewards. A
common mathematical model for reinforcement learn-
ing is the problem of finding the optimal policy for
controlling a finite-horizon partially observable Markov
decision process (POMDP) [14]. The formulation of
our sequential choice of experiments problem as finite-
horizon POMDP consists of several elements:

• The decision epochsdetermine the times in which
the agent is to take an action. In the discrete model
adopted here, decision epochs occur att = 0, . . . , τ .
At every decision epoch either another observation
is collected, or a final prediction ofY is made. In
the later case the processes terminates. Therefore,τ

is a random variable that depends on the deployed
policy andZ.

• The system’s state is the realization ofY which is
fixed throughout the episode.

• The state at time zero is a random variable with
distributionD overY.

• The state of the system cannot be directly observed
but instead after every decision epocht = 0, . . . , τ ,
in which the decision is to collect another obser-
vation, a noisyobservation Ot of the systems’
state is collected. The domain and distribution of
the observation depends on the underlying sys-
tems’ stateY and the deployed sensor. Denote by
Ot = [O0, O1, . . . , Ot] the observations up to and
including timet < τ , and note thatOt is a subset
of Z.

• At every decision epoch0 ≤ t ≤ τ the agent
chooses anaction at, based on the past obser-
vations, from a set of possible actions called the
action spaceAt. Though not explicitly appearing
in the notation, the set of available actionsAt may

depend on the past actions. In our application, only
actions that correspond to sensors that have not be
previously deployed can be taken.

• There exists a termination action which ends the
process, such as the action of making the prediction
of Y .

• We note that even though in our formulation the
state of the system is fixed throughout the episode,
the results can be generalized to the case in which
upon taking actiona at statey, the system makes
a transition to statey′ according to atransition
probability Py,a. In other wards, it is possible to
generalize to the case in which the system’s states
evolve as a Markov process. This generalization
is important for cases in which sensor deployment
may be sensed by the target and lead to changes in
the target’s state as in [13].

• A reward r(Y, a) is received after each time an
action is taken. When a sensor is deployed to collect
another observation,r(Y, a) is minus the cost of
deploying sensora regardless of the state of the
system. When the final prediction is made a reward
of one unit is received only if the predictiona =
Ŷ (Oτ−1) equalsY , i.e.,r(Y, a) = I(a = Y), where
I is the indicator function that equals one when its
argument is true and zero otherwise.

• A policy π is a sequence of decision rules, or map-
pings from past observations to the action spaces,
which specifies the action to take at each decision
epoch. The policy is composed ofK + 1 decision
rules (π0, π1, . . . , πK), however, if the termination
action is taken prior to decision epochK then not
all decision rules are executed.

A typical episode is a sequence

a0 → O0 → a1(O0) → O1 → a2(O1) . . .

Oτ−1 → aτ (Oτ−1) = Ŷ (Oτ−1),

wherea0 is the first decision to deploy a sensor before
any observations were collected,O0, O1, . . . , Oτ−1 are
the observations whose domains and distributions depend
on Y and the decisionsa0, a1, . . . , aτ−1, respectively,
andaτ (Oτ−1) is a decision that the past observations are
sufficient for making a prediction onY , and it specifies
the predictorŶ (Oτ−1). The objective is to find a policy
π that maximizes the expected sum of rewards:

V (π) = Eπ

{
τ∑

t=0

r(Y, πt(Ot−1))

}
, (2)

where the expectation is taken with respect to the joint
distribution of Z and Y , which, throughπ, induce a
distribution on the observationsO0, O1, . . . , Oτ−1. The

4

expected sum of rewardsV (π) is called the value of the
policy π.

It is well known that when the underlying joint distri-
bution of the system state and the observations is known
and the observations can take a finite number of possible
values, it is possible to formulate the problems in terms
of the information state and solve for the optimal pol-
icy [17]. In our setting, however, the joint distribution is
unknown and the observations are, in general, continuous
random variables. Approximating the optimal policy in
this case is a classic problem in reinforcement learning.
Here, we adopt the generative model assumption of [14].
Under this assumption, the initial distributionD and
the distribution of the observations conditioned on the
system state and the deployed sensor are unknown but it
is possible to generate realizations of the system stateY

according toD and observations conditioned on arbitrary
stateY and deployed sensor. In particular, we assume
that we haven realizations of the pair(Z, Y) denoted
by {(Z1, Y1), (Z2, Y2), . . . , (Zn, Yn)}. Note that given a
realization(Z1, Y1) it is possible to generate the entire
decision tree associated with the sequential choice of
experiment problem. An example of the decision tree in
a problem in which there are two sensorsK = 2 and
Y = {0, 1} is given in Figure 1. Given a realization
(Z1, Y1) and a policyπ, it is possible to follow the path
that a system that usesπ will follow and compute the
sum of rewards for this realization. Prior to the prediction
of Y , the rewards are minus the sensor deployment costs,
and, at the prediction epoch, a unit reward is received
only if Ŷ (Oτ−1) = Y1, where Ŷ (Oτ−1) is chosen by
following the path induced byπ.

Fig. 1. A decision tree for a sequential choice of experiment problem
with K = 2 andY = {0, 1}.

Now, consider a class of policiesΠ, i.e., each el-
ement π ∈ Π is a sequence of decision rulesπ =
(π0, π1, . . . , πK). It is possible to estimate the value
V (π) (2) of any policy in the class from the set of tra-

jectory trees by simply averaging the sum of rewards on
each tree along the path that agrees with the policy [14].
A policy specifies the action to take at each decision
epoch and so there is exactly one path in every tree
that agrees with a given policy. Denote bŷV i(π) the
observed sum of rewards on thei’th tree along the path
that corresponds to the policyπ. Then the value of the
policy π is estimated by

V̂n(π) = n−1

n∑

i=1

V̂ i(π). (3)

In [14], the authors show that with high probability (over
the data set)V̂n(π) converges uniformly (overΠ) to
V (π) with rates that depend on the VC-dimension of
the policy class. This result motivates the use of policies
π with high V̂n(π), since with high probability these
policies have high values ofV (π).

In [7] it is shown that while the task of finding the
global optimum within a class of non-stationary policies
may be overwhelming, the componentwise search, i.e.,
optimizing a single decision rule at a time, leads to
single step reinforcement learning problems which can
be reduced to a sequence of multi-class weighted clas-
sification problems. Multi-class weighted classification
problems can be solved using re-sampling methods or
heuristic extensions of methods for binary weighted
classification (see [2] for both approaches). Below, it is
shown how to convert a multi-action RL problem into
a binary RL problem by introducing dummy decision
epochs. Then, applying the method in [7] leads to a
sequence of binary weighted classification problems that
can be directly solved using off-the-self classification
methods.

IV. A N ONLINEAR GAUSS SEIDEL APPROACH

Suppose an initial policy is given and one wishes
to improve upon it by optimizing one of the decision
rules at a time while holding the rest fixed. In [7] it
is shown that this component-wise search is equivalent
to simple tree pruning operations. In particular suppose
πk is updated while the decision rules(π0, . . . , πk−1)
and(πk+1, . . . , πK) are held fixed. Since(π0, . . . , πk−1)
are held fixed, the path taken by the policy up to and
including epochk − 1 will not change when we update
πk. Hence, it is possible to prune the tree from the top
down to epochk by removing the branches that do not
agree with the actions taken according to(π0, . . . , πk−1).
Since(πk+1, . . . , πK) are held fixed, the path taken by
the policy after taking each of the possible actions at
epochk are known and will not change when we update
πk. Hence, it is possible to prune the tree fromk + 1 to

5

the leaves by removing the branches that do not agrees
with the actions taken according to(πk+1, . . . , πK).
Furthermore, since by the second pruning the path that
will be followed after taking each of the actions at
decision epochk is known, it is possible to obtain
realizations of the sum of future rewards that results in
taking each of the actions at decision epochk. In math-
ematical programming, a component-wise optimization
of a nonlinear function is often referred to as nonlinear
Gauss-Seidel algorithm [5]. It is in this sense that we
call the above component-wise policy search a nonlinear
Gauss-Seidel approach.

This procedure is illustrated for the simple decision
tree of Figure 1 in Figure 2. Note that since after taking
an action at decision epoch1 the path of the tree is fixed
regardless of the policy (see Figure 1), there is no tree
pruning, only reward propagation according to the value
of Ŷ (O2). Specifically, after the reward propagation, we
can observe that taking action ’make prediction‘ results
in an immediate and final rewardI(Ŷ (O1) = Y) and
taking action ’deploy sensor 2‘ lead to an immediate
reward of minus the deployment cost associated with
sensor2 plus the subsequent rewardI(Ŷ (O2) = Y).
Since at epoch1 the future sum of rewards is determined
for every action, the task of updating policyπ1 is a single
step RL problem. Below it is shown that this problem
is equivalent to a certain supervised learning problem.
Before the conversion to supervised learning, we convert
the RL problem into a binary RL problem.

Fig. 2. Updatingπ1 while holdingπ0 andπ2 fixed.

V. FROM MULTIPLE-ACTION REINFORCEMENT

LEARNING TO BINARY REINFORCEMENTLEARNING

The nonlinear Gauss-Seidel approach of the previous
section breaks the multi-stage search associated with the
trajectory tree method into a sequence of single-stage RL
subproblems. In [7] these single-stage RL subproblems
were converted to multi-class weighted classification

problems, which can then be solved using, e.g., re-
sampling methods [2]. In this section it is shown that it is
possible to convert a single-stage RL problem into multi-
stage binary RL problem, apply the nonlinear Gauss-
Seidel approach, and arrive at a sequence of binary
single-stage RL subproblems.

Consider a single-stage RL problem withK possible
actions. It is possible to describe any action as the answer
to at most⌈log2(K)⌉ ’yes or no‘ questions, where⌈x⌉ is
the smaller integer larger than or equal tox. Then, the
single-stage RL problem is described by the decision
tree associated with these binary decision epochs. Once
an intermediate decision is made, it corresponds to a
transition to the same state, i.e., the state does not
evolve, but with a reduced (halved) action space. Only
when the decision is between two actions, does the
chosen action is executed and a state transition occurs.
Figure 3 demonstrate converting a4-action single-stage
RL problem into a two-stage binary RL problem.

Finally, reapplying the nonlinear Gauss-Seidel algo-
rithm of the previous section leads to a sequence of
single-stage binary RL subproblems.

Fig. 3. Converting a4 action single-stage RL problem into a two-
stage binary RL problem.

VI. A R EDUCTION FROM A SINGLE STEP

REINFORCEMENTLEARNING PROBLEM TO

WEIGHTED CLASSIFICATION

In this section we present the conversion of a single-
step binary RL problem into a supervised learning
problem, which is a special case of the classification
reduction in [7]. The goal is to leverage techniques and
theoretical results from supervised learning for solving
the more complex problem of reinforcement learning [3].
To simplify to presentation we do not carry the heavy

6

notation of the previous section but rather introduce
a simple generic notation to explain the conversion.
Consider a single-step binary RL problem. An initial
stateS0 ∈ S generated according to the distributionD

is followed by one of 2 possible actionsA ∈ {0, 1},
which leads to a transition to stateS1 whose conditional
distribution given that the initial state iss and the action
is a is given byPs,a. Given a class of policiesΠ, where
a policy in Π is a map fromS to A, the goal is to find

π̂ ∈ arg max
π∈Π

V̂n(π). (4)

In this single stage problem the data aren realizations
of the random element{S0, S1|0, S1|1}, where S1|0
(respectivelyS1|0) is a realization ofS1 after taking
action 0 (respectively1) at stateS0. Denote thei’th
realization by{si

0, s
i
1|0, si

1|1}. In this case,V̂n(π) can
be written explicitly by

V̂n(π) = En

{
1∑

l=0

r(S0, l, S1|l)I(π(S0) = l)

}
, (5)

where r(S0, l, S1|l) is the reward gained when taking
actionl at stateS0 and making a transition to stateS1|l,
for a functionf , En {f(S0, S1|0, S1|1)} is its empirical
expectationn−1

∑n
i=1

f(si
0, s

i
1|0, si

1|1), and I(·) is the
indicator function taking a value of one when its argu-
ment is true and zero otherwise.

The following theorem shows that the problem of
maximizing the empirical reward (5) is equivalent to a
binary weighted classification problem.

Proposition 1: Given a class of policiesΠ and a set
of n trajectory trees,

arg max
π∈Π

En

{
1∑

l=0

r(S1|l)I(π(S0) = l)

}
= arg min

π∈Π

En

{
|r(S1|0) − r(S1|1)|I(π(S0) 6= arg max

k
r(S1|k))

}

Proof: TakeL = 2 in Proposition1 in [7].
The theorem implies that the maximizer of the empir-

ical reward over a class of policies is the output of an
optimal weights-dependent classifier for the data set:
{(

si
0, arg max

k∈{0,1}
r(si

1|k), |r(si
1|0) − r(si

1|1)|

)}n

i=1

,

where for each sample, the first argument is the example,
the second is the label, and the third is a realization of
the cost incurred when misclassifying the example. The
implication is that a variety of supervised learning meth-
ods, such ask-nearest neighbors [9], neural networks [6],
Boosting [10], and support vector machines [20], can be
applied to solve the single-stage binary RL problem.

VII. SENSORSCHEDULING FORLAND-M INE

DETECTION

This section reviews a sequential choice of experiment
problem that arises in the design of unmanned land-
mine detection vehicle. The vehicle carries three sensors
for performing the detection: an EMI sensor, a ground
penetrating radar (GPR), and an acoustic sensor. As
can be seen in Figure 4, the sensors have different
responses under different types of land-mines and clutter.
In addition, deploying a sensor takes time and energy
and hence not all sensors are deployed at every potential
land-mine location. Upon reaching a new location, in
which a land-mine is potentially present, a policy that
trades of the cost of a sensor deployment and detection
probability determines the first sensor to deploy. Based
on the collected measurement, either a prediction regard-
ing the presence of the land-mine is made or a second
sensor is deployed. Finally, based on the output of the
first two deployed sensors, either a prediction regarding
the presence of the land-mine is made or a third sensor
is deployed followed by the final prediction based on
all three measurements. The goal is to maximize the
probability of correct detection minus a constantc >

0 (1) times the number of sensor dwells.
Since there are a total of three sensorsZ =

[X1, X2, X3]. The state space is binaryY = {0, 1},
whereY = 0 means no land-mine is present andY = 1
indicates the presence of a land-mine. The decision tree
associated with this problem is presented in Figure 5.

Fig. 4. Sensors signatures for several land-mine and clutter types.

Figure 7 summarizes the features extracted from each
sensor and their expected signatures under different
scenarios. In the simulation, one of the possible eight
scenarios was first chosen randomly. Then, a realization
of each of the features, which together composeZ, is
generated as a Gaussian random variable with means
0, 0.5, or 1, corresponding to low, medium, or high,
respectively. The covariances of sensors1, 2, and 3,
were 0.5I, 0.45I and 0.1, respectively, whereI is the

7

Fig. 5. The decision tree associated with the land-mine detection
problem.

2-dimensional identity matrix. These values of means
and covariances were chosen in correspondence with
experiments that were conducted in a sand box [18].
Hence the marginal distribution of the vector of sensor
outputs is a five-dimensional eight-component Gaussian
mixture.

Before searching for the optimal sensor scheduling
policy, the classifierŝY (O1), Ŷ (O2), Ŷ (O3) for all pos-
sible combinations of sensor selections

X1, X2, X3,

(X1, X2), (X1, X3), (X2, X3),

(X1, X2, X3)

were found by training two-layer feed-forward neural
networks, each with ten input and two output nodes, on
1000 samples of(Z, Y). By testing the performance of
these classifiers on a separate test set of1000 samples,
we found that the best single sensor to use for detecting
a land-mine is the EMI sensor, that the two best fixed
sensors are GPR plus the Seismic, and that in this
scenario the classifier which is based on the output of
all three sensors has a probability of correct detection
of 0.887. The search for the optimal sensor scheduling
policy was conducted while these classifiers remained
fixed. In other words, only decisions regarding whether
or not to deploy a sensor, and which sensor to deploy
next were considered. Since the classifiers remained
fixed during the policy search, once a decision to make
prediction is made, the reward is gained according to
the classifier output, without trying to further optimize
its performance.

As explained above, the optimal policy was approxi-
mated by introducing dummy decision epochs, so that
all the decisions are binary. We then performed the
nonlinear Gauss-Seidel decomposition into a sequence

of single-stage binary reinforcement learning problems.
Each subproblem was then converted to a weighted
classification problem that was solved by a weights-
sensitive two-layer feed-forward neural network with
seven input and two output nodes.

Figure 6 summarizes the results. The horizonal axis is
the average number of sensor dwells and the vertical is
the probability of correct detection. The three solid cir-
cles correspond to the performance of the best single sen-
sor, best two sensors, and the performance when all three
sensors are deployed, respectively. These points are con-
nected by a solid line that corresponds to performance
that can be achieved by randomly selecting one of these
fixed sensor configurations. The crosses corresponds to
the performance (estimated from a1000 trail test set)
obtained by the approximated optimal sensor scheduling
policies. Each cross correspond to a different choice of
c (1), ranging fromc = 0.2 at the left lower corner and
c = 0 at the outmost upper right cross. Whenc = 0.2 the
price of taking more than a single measurement is too
dear compared to the improvement in the probability of
correct detection and the policy dictates making decision
using only a single sensor. Asc decreases, more and
more observations are allowed. It is interesting to see that
when c is zero, i.e, the sensor deployment cost is zero,
the algorithm does not always deploy all three sensors,
but achieves better performance than when all three
sensors are always deployed. This happens since the
classifiers used at the prediction stages are not the Bayes
classifiers (in which more information can never worsen
performance) but rather sub-optimal classifiers that were
found by training neural networks. It is encouraging
that by training the neural networks we found a policy
that accounts for generalization errors at the predictor
level and do not collect the third observation when
that observation might lead to a worse prediction. In
summary, it can be seen that through sensor scheduling
it is possible to achieve better classification performance
with fewer average number of sensor dwells. The actual
sensor sequences taken under the possible eight scenarios
when the policy whose performance cross is circled is
presented in Figure 7. It is seen that the optimal policy
dictates that the first deployed sensor is the GPR sensor
even though the optimal single sensor is the EMI sensor.
This is not surprising since an optimal sensor scheduling
optimizes the future sum of rewards rather than choosing
the sensor whose stand alone performance are the best.
Furthermore, only when the underlying system state is
a plastic anti-personal land-mine, which has the weakest
signature, does the policy dictate using all three sensors.
In other cases, two sensors are sufficient for the land-
mine detection.

8

Fig. 6. Performance of sensor-scheduling-based detection compared to detection under optimal fixed sensor allocations.

Fig. 7. Sensor mean responses under various scenarios. M-Metal, P-Plastic, AP-Anti personal, AT-Anti tank, Cltr-1-Hallow metal clutter,
Cltr-2-Hallow non-metal clutter, Cltr-3-Non-metal non-hallow clutter, Bkg-Background.

9

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

C = 0.03

C = 0

C = 0.06
C = 0.09

number of dwells

P
e

C = 0

C = 0.02

C = 0.04
C = 0.06

C = 0.08

C = 0.1

C = 0.12
C = 0.14

C = 0.16

C = 0.18

Neural Network
k−Nearest Neighbors

Fig. 8. Performance of sensor scheduling algorithm for the land
monitoring satellite problem.

VIII. W AVEFORM SELECTION FORLAND

MONITORING SATELLITE

In this section, the optimal sensor scheduling algo-
rithm is applied to real data for the problem of waveform
selection for a LANDSAT land monitoring satellite.
The satellite collects a radar backscatter on a patch of
land and the goal is to classify the land type based
on the returned signal. Given a new probing location,
the satellite can transmit one of four possible wave-
forms. The different waveforms correspond to different
frequency bands. Therefore,Z = [X1, X2, X3, X4].
Each of the observationsX1, . . . , X4 is a 9-dimensional
vector taking values in[0, 255]9, and hence,Z is a 36-
dimensional vector. There are six land types, and hence
Y = {1, 2, . . . , 6}. In the public data set [1], there are
4435 points in the training set and2000 in the test
set. For a more detailed explanation of the problem
see [12] chapter13. In this section we explore using
sensor scheduling for reducing the number of waveform
(frequency band) transmissions. In particular, we find
policies that select the first best two frequency bands
and based on the outcome determine if the remaining
frequency bands are required, or whether the first two
bands provide sufficient information for classifying the
land type. Hence, at the first decision epoch there are six
possible actions leading to siz possible measured pairs
of frequency bands:

{[X1, X2], [X1, X3], [X1, X4], ...

[X2, X3], [X2, X4], [X3, X4]}.

The land type classifiers are thek-nearest neighbors
algorithm with k set to 5, as recommended in [12]

for the non-sequential problem. Two classifiers for the
policy search were considered. The first is a[7, 5, 2]
feed-forward weights-sensitive neural network. The sec-
ond is a weights-sensitivek-nearest neighbor, where
k = 30. The performance are summarized in Figure 8.
The crosses correspond to the performance of policies
that were found by weights-sensitivek-nearest neighbor
classifiers asc ranges from0 to 0.18. The squares
correspond to the performance of policies that were
found by weights-sensitive[7, 5, 2] feed-forward neural
networks for four values ofc. To study the effect of the
initial network weights distribution, for each value ofc,
the neural networks training was initiated at four random
weights selections, leading to four resulting policies.
As can be seen, under both learning configurations it
is possible to obtain a range of trade-offs between
sensor deployment cost and classification performance.
Particularly, the policy learned by thek-nearest neighbor
classifier with c = 0.02 almost achieves the same
performance as when all sensor modalities are used, but
with a significant reduction in deployment cost. From
comparing the performance of thek-nearest neighbor
classifier based policy with the one based on the neural
networks it is seen that the performance achieved by the
two architectures are comparable.

IX. CONCLUSIONS

Sensor scheduling for controlling agile sensing sys-
tems was formulated as a sequential choice of experi-
ments problem and solved via a reduction of the asso-
ciated RL problem to a sequence of supervised learning
problems. The method was applied to both real and syn-
thetic data – land mine detection and LANDSAT terrain
classification. Finally, the authors would like to thank
Jay Marble and Raviv Raich for helpful discussions.

REFERENCES

[1] The landsat data set.http://www.niaad.liacc.up.pt/
old/ statlog/ datasets/ satimage/
satimage.doc.html.

[2] N. Abe, B. Zadrozny, and J. Langford. An iterative method
for multi-class cost-sensitive learning. InProceedings of the
Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 3–11, 2004.

[3] A. G. Barto and T. G. Dietterich. Reinforcement learning
and its relationship to supervised learning. In J. Si, A. Barto,
W. Powell, and D. Wunsch, editors,Handbook of learning and
approximate dynamic programming. John Wiley and Sons, Inc,
2004.

[4] R. Bellman. Dynamic Programming. Princeton University
Press, Princeton, NJ, 1957.

[5] D. P. Bertsekas. Nonlinear programming: second edition.
Athena Scientific, Belmont, MA, 1999.

[6] C. M. Bishop.Neural Networks for Pattern Recognition. Oxford
University Press, Oxford, Great Britain, 1995.

10

[7] D. Blatt and A. O. Hero. From weighted classification to policy
search. In18th Annual Conference on Neural Information
Processing Systems (NIPS), 2005.

[8] M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill,
New York, 1970.

[9] L. Devroye, L. Gÿorfi, and G. Lugosi.A Probabilistic Theory
of Pattern Recognition. Springer, 1996.

[10] Y. Freund and R. E. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to Boosting.Journal
of Computer and System Sciences, 55(1):119–139, 1997.

[11] P. K. Goel and J. Ginebra. When is one experiment always
better than another.The statistician, 52(4):515–537, 2003.

[12] T. Hastie, R. Tibshirani, and J. Friedman.The elements of
statistical learning. Springer-Verlag, New York, 2001.

[13] C. Kreucher K. Kastella and A. Hero. Sensor management using
an active sensing approach.Signal Processing, 85(3):607–624,
March 2005.

[14] M. Kearns, Y. Mansour, and A. Ng. Approximate planning in
large POMDPs via reusable trajectories. InAdvances in Neural
Information Processing Systems, volume 12. MIT Press, 2000.

[15] R. W. Keener. Local information and the design of sequential
hypothesis tests.Journal of Statistical Planning and Inference,
130(1-2):111–125, 2005.

[16] V. Krishnamurthy. Algorithms for optimal scheduling and
management of hidden markov model sensors.IEEE Trans.
Signal Process., 50(6):1382–1397, June 2002.

[17] M. Littman L. P. Kaelbling and A. Cassandra. Planning and
acting in partially observable stochastic domains.Artificial
Intelligence, 101, 1998.

[18] J. Marble, D. Blatt, and A. Hero. Confirmation sensor schedul-
ing using a reinforcement learning approach. InSPIE Defense
and Security Symposium, Orlando, Florida, April 2006. to
appear.

[19] M. L. Puterman.Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, Inc, 1994.

[20] B. Scḧolkopf and A. J. Smola.Learning with Kernels. MIT,
Press, 2002.

[21] R. S. Sutton and A. G. Barto.Reinforcement Learning. MIT
Press, 1998.

