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Abstract—

The problem of sensor scheduling in multi-
modal sensing systems is formulated as the
sequential choice of experiments problem and
solved via reinforcement learning methods. The
sequential choice of experiments problem is
a partially observed Markov decision problem
(POMDP) in which the underlying state of
nature is the system’s state and the sensors’
data are noisy state observations. The goal is
to find a policy that sequentially determines
the best sensor to deploy based on past data,
which maximizes a given utility function while
minimizing the deployment cost. Several exam-
ples are considered in which the exact model of
the measurements given the state of nature is
unknown but a generative model (a simulation
or an experiment) is available. The problem is
formulated as a reinforcement learning problem
and solved via a reduction to a sequence of
supervised classification subproblems. Finally, a

automatically select the best sensing modality based on
past observations to maximize a given objective function
while minimizing the data collection cost.

When formulated as a sequential chdicd experi-
ments problem [8], the agile sensing problem consists of
an episodic task that is divided into a sequence of deci-
sion epochs. Each episode begins as the first observation
is collected. Then, at each subsequent decision epoch
two decisions are made. The first one is to decide if the
amount of information collected thus far is sufficient for
making inference (detection or estimation) on the data
with a desired accuracy or whether more observations are
required. This first decision also determines the choices
available at the second decision. If more observations
are required, the next best sensor modality needs to
be determined. If the information is deemed sufficient
for inference, the final estimation or detection decision
is made. Every sensor modality has an associated de-
ployment cost and a decision rule must balance the

simulation and an experiment with real data
demonstrate the promise of our approach.

expected information gain from a sensor deployment,
which results in improved inference capabilities, with
the deployment cost. The collection of decision rules,
i.e., the sequence of mappings from past observations

. INTRODUCTION . . .
_ _ to the decision space, is called a policy and the goal
The advent of agile sensing systems that collect dalay, fing 4 policy that optimally trades-offs the overall

through a variety of sensing modalities has brougite age sensor deployment costs and the estimation or

about new and exciting challenges to the field of signglyection performance, e.g., mean squared estimation
processing. Agile, multi-modal, sensing (see e.g. u@rror or classification error rate.

and [13]) exploit the capability of controlling the data |4 problem of finding optimal policies for sequen-

collection process. Examples of agile sensing system§ -hoice of experiments suffers from the curse-of-
include a radar that can control its beam direCtion'alardﬁjmensionality [4] and scenarios in which a closed
mine detector that can deploy radar or seismic Sensqfg, sojution for the optimal policy exists are rare.
ora LAN_DSAT satellite that can control the_freque_nq,sast research has focused on the asymptotic regime in
band of its radar. The key element that differentiatggichy one assumes a large number of data collection
agile sensing systems from other data collection systef3ations (or sensor dwells) and low sensor deployment

is a resource allocation constraint that precludes usiggs; (see [15] and references therein). Another focus has
all sensor modalities at all times. We formulate agile
sensing as an optimization in which the system mustThe key difference from the related sequential design of ex-
periment problem is that instead of adapting a set of continuous
This research was partially supported by DARPA-MURI granexperiment parameters, here we choose from a finite set of fixed
ARO DAAD 19-02-1-0262. experiments.



been on “experiment sufficiency” — when is one expeany observations), and hence, € {1,2,..., K}. Also
iment (or sensor modality) always better than anotheote thatrx; is used only if at all the decision epochs
experiment (see [11] and references therein). the decision was to defer the predictionYofand deploy
In this paper, we take a different approach. We aanother sensor. The decision rutg,; is a map from
sume that the underlying model is unknown and aim at x X, x ... x Xk to ). If the objective is to try to
finding approximatesolutions to the optimal policy. In minimize the detection error, then it is well known that
particular, in the absence of a model, optimal policighe optimal map is the Bayes classifier [12]
are approximated from data using a generative model,

where data is generated by a simulator or collected ™K+1(F1:72:- -5 TK) - arsnax
in a field experiment. It is shown that this problem p; {Y =y|X1 =21, X0 =29,..., X = 7K} .

problems and the Classification Reduction of Policy® domain and range of the decision rules for stages

Search (CROPS) methodology that has been recently- > dépend on the sequence of sensors deployed

proposed by the authors [7] is applied. Two case studigd t0 the decision time. For example,zf = k, then

are reported as well. 'I_'h_e first is the p_roblem of_finding T Xy — (11,2, .., KY\ k) Uy'

sensor scheduling policies for land-mine detection. For

this problem a simulator is used to generate data whithm(zx) € ({1,2,...,K}\ k) then the decision is

is then used for policy search. The second problemt take another observation using sensefz;,). Alter-

perform optimal waveform selection for a multi-bandhatively, if o (x,) € Y, then the decision is that the

radar on a land classification satellite. In this applic&mount of information is sufficient ands(zy) is the

tion competitive policies are found from experimentgiredictor ofY. Instead of explicitly defining the policy

LANDSAT data. through a sequence of mappings whose domains and

ranges depend of past decisions and observations, we

Il. PROBLEM FORMULATION let Z = [X1,..., Xk] and define the policyr as a two-

Let X; € X1, Xy € Xy, ..., Xk € Xk be K random dimensional function oZ. Given, the value o, its first
variables that correspond to the outputs i5fsensors argument(z(Z)]; is the resulting sequence of sensors
or K sensor modalities. Note that each of these randdh@at were deployed prior to the final decision and its
variables lies, in general, in a different space. We appesgicond argumeriir(Z)], is the prediction fory”. Note
each random variables with its index so that a value #fat in general, only a subset of the elementsZoére
an observation also indicates which sensor was usedofiservable at the time the final decision is made.
collect it. LetY € ) be a discrete random variable Denote byP.(r) = Pr{[n(Z)]s = Y’} the probability
that represent the state of nature whose value we tryabcorrectly predicting the value df based on the data
predict. The presented results can also be applied wiegllected according to the policy, by C([7(Z)]1) the
Y is a continuous random variables, whose value we @pst associated with the sequence of sensor deployments
to estimate, but we focus on the detection problem for(Z)]1, €.9., the number of sensor dwells, and by
concreteness. E{C([7(Z)]1)} the expected cost. We assume that the

A policy 7 specifies which sensor to deploy first, sagost of the deployment of a sequence of sensors is the
sensork. Then based of the value of; the policy sum of the costs of deploying each of the sensors, and
determines if an accurate prediction}sfis possible, and hence, does not depend on the order of deployment. The
if so, what is the best prediction, or, otherwise, whicptimal policy 7* is the policy that maximizes
is the next best sensor to deploy to collect additional
data. This process continues upnti?/either a prediction of Pe(m) = AB{C([7(2))} (1)
Y is made or all available sensors are deployed. Wehere )\ is a tuning parameter that trades off the cost of
assume that each sensor can be applied at most oda& collection and the cost of prediction error. Under
and hence, the total number observations is boundedd®ytain regularity conditions, the optimal policy can
K. Therefore, a policyr is sequence of + 1 decision be defined though backward induction (see e.g. [19]).
rulesm = [m,m9,...,Tx+1]. This assumption is valid However, whenXy, ..., Xx are continuous or discrete
when the randomness in the process, e.g. the observatiad large, the solution becomes intractable. Furthermore,
noise, is governed by clutter that cannot be averaged euen whenX’, ..., Xk are finite and relatively small,
by repeated measurements, rather than by thermal notke. backward induction iterations require computing
Note thatm; simply indexes the first sensor to deplogxpectations with respect to the joint distribution 6f
(excluding the possibility of predictiny without taking andY'.

formulation falls into the class of reinforcement Iearninj



In this paper we allowty, ...

, X to be continuous

or discrete and large, and consider the case in which the
joint distribution of Z and Y is unknown. We assume
thatn realizations of(Z,Y') are available and the goal is

find

a policy that maximizes (1) based on this data set.

Hence, this is a model free instance of the sequential
choice of experiments problem as formulated in [8], o
which, to the best of our knowledge, has not been

considered previously in the literature.

PARTIALLY OBSERVABLE MARKOV DECISION
PROCESSES ANDREINFORCEMENTLEARNING

The field of reinforcement learning is centered around

the

challenge of designing agents that learn to act in a

stochastic environment by interacting with it [21]. As the

age
and

nt interacts with the environment it receives rewards,
the goal is to eventually learn through these rewards,

which actions maximize the future sum of rewards. A
common mathematical model for reinforcement learn-

ing

is the problem of finding the optimal policy for

controlling a finite-horizon partially observable Markov
decision process (POMDP) [14]. The formulation of

our

sequential choice of experiments problem as finite-

horizon POMDP consists of several elements:

The decision epochgletermine the times in which
the agent is to take an action. In the discrete modele
adopted here, decision epochs occurato, ..., 7

At every decision epoch either another observation
is collected, or a final prediction df is made. In

the later case the processes terminates. Therefore,
is a random variable that depends on the deployed
policy and Z.

depend on the past actions. In our application, only
actions that correspond to sensors that have not be
previously deployed can be taken.

There exists a termination action which ends the
process, such as the action of making the prediction
of Y.

We note that even though in our formulation the
state of the system is fixed throughout the episode,
the results can be generalized to the case in which
upon taking actioru at statey, the system makes

a transition to state/ according to atransition
probability P, ,. In other wards, it is possible to
generalize to the case in which the system’s states
evolve as a Markov process. This generalization
is important for cases in which sensor deployment
may be sensed by the target and lead to changes in
the target’s state as in [13].

A reward r(Y,a) is received after each time an
action is taken. When a sensor is deployed to collect
another observation;(Y,a) is minus the cost of
deploying sensor regardless of the state of the
system. When the final prediction is made a reward
of one unit is received only if the prediction =

Y (O,_1) equalsy, i.e.,r(Y,a) = I(a = Y), where

I is the indicator function that equals one when its
argument is true and zero otherwise.

A policy 7 is a sequence of decision rules, or map-
pings from past observations to the action spaces,
which specifies the action to take at each decision
epoch. The policy is composed &f + 1 decision
rules (mg, 71, ..., 7K ), however, if the termination
action is taken prior to decision epoch then not

all decision rules are executed.

The system’s state is the realization5fwhich is A typical episode is a sequence

fixed throughout the episode.

The state at time zero is a random variable with
distribution D over ).

The state of the system cannot be directly observe
but instead after every decision epack 0, .

in which the decision is to collect another obse
vation, a noisyobservation O; of the systems’
state is collected. The domain and distribution
the observation depends on the underlying syg
tems’ stateY and the deployed sensor. Denote b
O; = [0g,01,...,0,] the observations up to and
including timet < 7, and note that; is a subset

of Z.

At every decision epocl) < ¢ < 7 the agent

chooses araction a;, based on the past obser-

ag — Oo — al(OU) — 01 — ag(bl) e
Or-1 _>a’r(57' 1) Y(aT 1)

%ereao is the first decision to deploy a sensor before
any observations were collecte@,, O1, ..
the observations whose domains and distributions depend
g Y and the decisionsy, a1, ...

.,O0,_1 are

,ar_1, respectively,

nda,(O,_1) is a decision that the past observations are
ufficient for making a prediction olf, and it specifies

e predictory (O, _
« that maximizes the expected sum of rewards:

1). The objective is to find a policy

T

ZT(Y, 7(04-1))

t=0

V(m) = Ex { (2)

3

vations, from a set of possible actions called thehere the expectation is taken with respect to the joint
action space.A;. Though not explicitly appearing distribution of Z and Y, which, through=, induce a

in the notation, the set of available actiads may distribution on the observation8y, O, ...

,Or_1. The



expected sum of rewardg(n) is called the value of the jectory trees by simply averaging the sum of rewards on

policy . each tree along the path that agrees with the policy [14].
It is well known that when the underlying joint distri-A policy specifies the action to take at each decision

bution of the system state and the observations is knoepoch and so there is exactly one path in every tree

and the observations can take a finite number of possibii@t agrees with a given policy. Denote B¥ () the

values, it is possible to formulate the problems in ternebserved sum of rewards on thieh tree along the path

of the information state and solve for the optimal pokhat corresponds to the policy. Then the value of the

icy [17]. In our setting, however, the joint distribution ipolicy = is estimated by

unknown and the observations are, in general, continuous n

random variables. Approximating the optimal policy in Vn(w) =n L Zf/i(ﬂ)_ (3)

this case is a classic problem in reinforcement learning. =1

Here, we _adopt the g_enerativg “_"_Ode' _ass_.um_ption of [14} [14], the authors show that with high probability (over
Under this assumption, the initial distributio® and the data set)f/ (=) converges uniformly (ovefT) to
the distribution of the observations conditioned on th‘(} ) with rateg that depend on the VC-dimension of
_system. state and the deplo.yed. sensor are unknown blfﬁ policy class. This result motivates the use of policies
is possible to generate realizations of the system sfate | i high ?n(ﬂ), since with high probability these
according toD and observations conditioned on arbitra&ﬂolicies have high values df ()

stateY and deployed sensor. In particular, we assu e [7] it is shown that while the task of finding the

that we haven realizations of the pai(Z,Y’) denoted global optimum within a class of non-stationary policies

by {(21, Y1), (22,Y2),. .., (Zn, Yn)}. Note that given a may be overwhelming, the componentwise search, i.e.,
realization(Z;, Y1) it is possible to generate the entlreO

. . ) i } timizing a single decision rule at a time, leads to
decision tree associated with the sequential choice s(ﬁgle step reinforcement learning problems which can

experiment_problgm. An example of the decision tree Bk reduced to a sequence of multi-class weighted clas-
a problem n Wh'Ch there_ are two s_ensdx’s: 2,6‘”‘?' sification problems. Multi-class weighted classification
Y = {01} is given in E|gure 1 Given a reaIIZat'onproblems can be solved using re-sampling methods or
(21,Y1) and a policyr, itis possible to follow the path heuristic extensions of methods for binary weighted

that a system that uses W'.” fO.IIOW a.nd compute t_hg classification (see [2] for both approaches). Below, it is
sum of rewards for this realization. Prior to the predwﬂoghown how to convert a multi-action RL problem into

of Y, the rewards. are minus the sensor deployment C_o%{sbinary RL problem by introducing dummy decision

and, _atAthg prediction epoch, a unit re\_/vard is rece“’%‘aochs. Then, applying the method in [7] leads to a

]?r;lly i Y(gT‘l) h: };1 Wget;eY(OT_l) Is chosen by sequence of binary weighted classification problems that

oflowing the path induced byt can be directly solved using off-the-self classification
methods.

Episode begins

Deploy sensor 1 Deplay sensor 2 IV. A NONLINEAR GAUSS SEIDEL APPROACH

Suppose an initial policy is given and one wishes
to improve upon it by optimizing one of the decision
rules at a time while holding the rest fixed. In [7] it

Make

prediction Deploy senser 1

‘ Y(01) ‘ \Og = Xz‘ ‘ Y(0y) ‘ ‘OQ = X1| is shown that this (_:omponenf[-wise search is equivalent
ke Viake to simple tree pruning operations. In particular suppose
prediclion prediction 7 IS updated while the decision ruldsy, ..., mx_1)

and(7mg41,...,mx) are held fixed. Sincény, ..., 7x_1)

are held fixed, the path taken by the policy up to and
including epochk — 1 will not change when we update

Fig. 1. A decision tree for a sequential choice of experiment problefi- Hence, it is possible to prune the tree from the top

with K =2 and) = {0, 1}. down to epochk by removing the branches that do not
agree with the actions taken according4e, . .., m;—1).
Now, consider a class of policieH, i.e., each el- Since(my1,...,7x) are held fixed, the path taken by
ementw € II is a sequence of decision rules = the policy after taking each of the possible actions at
(mo,m1,...,m). It is possible to estimate the valueepochk are known and will not change when we update

V(m) (2) of any policy in the class from the set of tras;. Hence, it is possible to prune the tree frém- 1 to



the leaves by removing the branches that do not agrgeeblems, which can then be solved using, e.g., re-
with the actions taken according tOrgy1,...,7x). sampling methods [2]. In this section it is shown that it is
Furthermore, since by the second pruning the path thpaissible to convert a single-stage RL problem into multi-
will be followed after taking each of the actions astage binary RL problem, apply the nonlinear Gauss-
decision epochk is known, it is possible to obtain Seidel approach, and arrive at a sequence of binary
realizations of the sum of future rewards that results gingle-stage RL subproblems.
taking each of the actions at decision epactin math-  Consider a single-stage RL problem with possible
ematical programming, a component-wise optimizatiarctions. It is possible to describe any action as the answer
of a nonlinear function is often referred to as nonlinedo at most[log,(K)| 'yes or no' questions, whergr] is
Gauss-Seidel algorithm [5]. It is in this sense that wihe smaller integer larger than or equalatoThen, the
call the above component-wise policy search a nonlinesingle-stage RL problem is described by the decision
Gauss-Seidel approach. tree associated with these binary decision epochs. Once
This procedure is illustrated for the simple decisioan intermediate decision is made, it corresponds to a
tree of Figure 1 in Figure 2. Note that since after takingansition to the same state, i.e., the state does not
an action at decision epodhthe path of the tree is fixed evolve, but with a reduced (halved) action space. Only
regardless of the policy (see Figure 1), there is no tregnen the decision is between two actions, does the
pruning, only reward propagation according to the valushosen action is executed and a state transition occurs.
of }7(52). Specifically, after the reward propagation, w&igure 3 demonstrate convertingdeaction single-stage
can observe that taking action 'make prediction‘ resul®L problem into a two-stage binary RL problem.
in an immediate and final rewarﬂ(f/(@l) =Y) and Finally, reapplying the nonlinear Gauss-Seidel algo-
taking action 'deploy sensor 2' lead to an immediatéthm of the previous section leads to a sequence of
reward of minus the deployment cost associated wisingle-stage binary RL subproblems.
sensor2 plus the subsequent rewaidY (O3) = Y).
Since at epoch the future sum of rewards is determinet
for every action, the task of updating poligy is a single  agien 1

Initial state Initial state

Decide to

step RL problem. Below it is shown that this problen Action 4 pecidalo take sither
. . . . . Ny tion 3 or 4
is equivalent to a certain supervised learning probler aclon 1 o2 i the future
. . . In the Tuture
Before the conversion to supervised learning, we conw Next Ned
. . siaie " .
the RL problem into a binary RL problem. after stale Remain Remain
action 1 after in the in the
action 4 initial initial
state state
Action 2 Action 3 Action 3 Action 4
Deplay sensor 1 Action 1 Action 2
Pruning tree down Next Next
according te x; state state
after after Next Next Next Next
action 2 action 3 state state state state
Updating =, is a single after after after after
stage RL problem action 1| | action 2 action 3 | | action 4
| Y(01) | [02= X2
Make
prediction Propagating rewards

up according lo 7, Fig. 3. Converting at action single-stage RL problem into a two-
stage binary RL problem.

Fig. 2. Updatingr; while holding 7o and s fixed. VI. A REDUCTION FROM A SINGLE STEP
REINFORCEMENTLEARNING PROBLEM TO
WEIGHTED CLASSIFICATION

V. FROM MULTIPLE-ACTION REINFORCEMENT In this section we present the conversion of a single-
LEARNING TO BINARY REINFORCEMENTLEARNING  step binary RL problem into a supervised learning

The nonlinear Gauss-Seidel approach of the previopgblem, which is a special case of the classification
section breaks the multi-stage search associated with thduction in [7]. The goal is to leverage techniques and
trajectory tree method into a sequence of single-stage Rieoretical results from supervised learning for solving
subproblems. In [7] these single-stage RL subproblenige more complex problem of reinforcement learning [3].
were converted to multi-class weighted classificatiofo simplify to presentation we do not carry the heavy



notation of the previous section but rather introduce VII. SENSORSCHEDULING FORLAND-MINE
a simple generic notation to explain the conversion. DETECTION

Consider a single-step binary RL problem. An initial tpig section reviews a sequential choice of experiment
stateSp € S generated according to the distributidh ,,pjem that arises in the design of unmanned land-

is followed by one of 2 possible actions € {0,1}, ine detection vehicle. The vehicle carries three sensors
which leads to a transition to statg whose conditional for performing the detection: an EMI sensor, a ground
distribution given that the initial state isand the action penetrating radar (GPR), and an acoustic sensor. As
Is a is given by P .. Given a class of policieH, where ., he seen in Figure 4, the sensors have different
a policy inIl is a map froms to A, the goal is t0 find oqhnses under different types of land-mines and clutter.
7 c argmaxf/n(w). (4) In addition, deploying a sensor takes time and energy
mell and hence not all sensors are deployed at every potential

land-mine location. Upon reaching a new location, in

which a land-mine is potentially present, a policy that
trades of the cost of a sensor deployment and detection
probability determines the first sensor to deploy. Based
on the collected measurement, either a prediction regard-
ing the presence of the land-mine is made or a second
sensor is deployed. Finally, based on the output of the
} 5) first two deployed sensors, either a prediction regarding

In this single stage problem the data aresalizations
of the random elemen{Sy, 51/0, 51|1}, where S;]0
(respectively S1]0) is a realization ofS; after taking
action 0 (respectivelyl) at stateS;. Denote the:'th
realization by{s}, st|0, si|1}. In this case,V,(7) can
be written explicitly by

the presence of the land-mine is made or a third sensor
is deployed followed by the final prediction based on
where 7(Sy, [, S1|l) is the reward gained when takingall three measurements. The goal is to maximize the
action/ at stateS, and making a transition to statg|l, probability of correct detection minus a constant-
for a function f, E,, { f(So,S1/0, S1]1)} is its empirical 0 (1) times the number of sensor dwells.
expectationn=* 3" | f(si,st]0,st|1), and I(-) is the  Since there are a total of three sensafs =
indicator function taking a value of one when its argu=X1, X2, X3]. The state space is binaiy = {0,1},
ment is true and zero otherwise. whereY = 0 means no land-mine is present arid= 1

The following theorem shows that the problem dhdicates the presence of a land-mine. The decision tree
maximizing the empirical reward (5) is equivalent to associated with this problem is presented in Figure 5.
binary weighted classification problem.

Vo(7) = Ep {ZT(S@, 1, S1|1D)I(w(So) = 1)

1
=0

Proposition 1: Given a class of policie$l and a set o em o e
of n trajectory trees, 2 et W
A & .
1 T -
. - i
arg ErrleaﬁcEn Zr(Sﬂl)](ﬂ(So) =1) = arg min g el Bl
1=0 E_ “ rﬁ Plastic Anti-personnel
= | Mine
By 4 [r(5110) = r(S1[1)[1(w(S0) # arg maxr(S:|k)) Sed we Ll -
T ; T
Proof: Take L = 2 in Proposition1 in [7]. n JE I:"" Wealy st Antitank Mine
o B

The theorem implies that the maximizer of the empir-
ical reward over a class of policies is the output of ar
optimal weights-dependent classifier for the data set: rig. 4. sensors signatures for several land-mine and clutter types.

n
{ (367 arg max 7(s}|k),[r(s1]0) — 7“(831)>} ; Figure 7 summarizes the features extracted from each
ke{0,1} i1 . : .

sensor and their expected signatures under different
where for each sample, the first argument is the exampdegnarios. In the simulation, one of the possible eight
the second is the label, and the third is a realization s€enarios was first chosen randomly. Then, a realization
the cost incurred when misclassifying the example. Tioé each of the features, which together compdseis
implication is that a variety of supervised learning metlgenerated as a Gaussian random variable with means
ods, such ag-nearest neighbors [9], neural networks [6]), 0.5, or 1, corresponding to low, medium, or high,
Boosting [10], and support vector machines [20], can Ivespectively. The covariances of sensars2, and 3,
applied to solve the single-stage binary RL problem. were 0.5/, 0.457 and 0.1, respectively, wherd is the



of single-stage binary reinforcement learning problems.
Each subproblem was then converted to a weighted

classification problem that was solved by a weights-
EMI GPR Seismic sensitive two-layer feed-forward neural network with
| Emidata | | cPRdaa | | seismic data | seven input and two output nodes.
“coet N - “eeet Figure 6 summarizes the results. The horizonal axis is
Vil ot S the average number of sensor dwells and the vertical is

the probability of correct detection. The three solid cir-
cles correspond to the performance of the best single sen-
sor, best two sensors, and the performance when all three
sensors are deployed, respectively. These points are con-
nected by a solid line that corresponds to performance
that can be achieved by randomly selecting one of these
Fig. 5. The decision tree associated with the land-mine detectiﬂQed sensor configurations. The crosses corresponds to
problem. the performance (estimated from1800 trail test set)
obtained by the approximated optimal sensor scheduling

2-dimensional identity matrix. These values of meaolicies. Egch cross correspond to a different choice of
and covariances were chosen in correspondence withl): ranging frome = 0.2 at the left lower corner and
experiments that were conducted in a sand box [18]= 0 &t the outmost upper right cross. Wher: 0.2 the
Hence the marginal distribution of the vector of sens@IC€ Of taking more than a single measurement is t0o
outputs is a five-dimensional eight-component Gaussidfa compared to the improvement in the probability of
mixture. correct detection and the policy dictates making decision

Before searching for the optimal sensor schedulittfind only a single sensor. As decreases, more and
policy, the cIassifier?(Ol) ?(52) ?(53) for all pos- More observations are allowed. It is interesting to see that

Final detection

Final detection

sible combinations of sensor selections whenc is zero, i.e, the sensor deployment cost is zero,
the algorithm does not always deploy all three sensors,
X1, X2, X3, but achieves better performance than when all three

(X1, X2), (X1, X3), (X2, X3), sensors are always deployed. This happens since the

(X1, Xa, X3) classifiers used at the prediction stages are not the Bayes

classifiers (in which more information can never worsen

were found by training two-layer feed-forward neurgberformance) but rather sub-optimal classifiers that were
networks, each with ten input and two output nodes, dound by training neural networks. It is encouraging
1000 samples of(Z,Y"). By testing the performance ofthat by training the neural networks we found a policy
these classifiers on a separate test set00f) samples, that accounts for generalization errors at the predictor
we found that the best single sensor to use for detectilegel and do not collect the third observation when
a land-mine is the EMI sensor, that the two best fixdtlat observation might lead to a worse prediction. In
sensors are GPR plus the Seismic, and that in tlsismmary, it can be seen that through sensor scheduling
scenario the classifier which is based on the output ibis possible to achieve better classification performance
all three sensors has a probability of correct detectiorith fewer average number of sensor dwells. The actual
of 0.887. The search for the optimal sensor schedulirggnsor sequences taken under the possible eight scenarios
policy was conducted while these classifiers remaingdhen the policy whose performance cross is circled is
fixed. In other words, only decisions regarding wheth@resented in Figure 7. It is seen that the optimal policy
or not to deploy a sensor, and which sensor to depldictates that the first deployed sensor is the GPR sensor
next were considered. Since the classifiers remainegen though the optimal single sensor is the EMI sensor.
fixed during the policy search, once a decision to maHéis is not surprising since an optimal sensor scheduling
prediction is made, the reward is gained according tptimizes the future sum of rewards rather than choosing
the classifier output, without trying to further optimizeéhe sensor whose stand alone performance are the best.
its performance. Furthermore, only when the underlying system state is

As explained above, the optimal policy was approxa plastic anti-personal land-mine, which has the weakest
mated by introducing dummy decision epochs, so thsignature, does the policy dictate using all three sensors.
all the decisions are binary. We then performed thHe other cases, two sensors are sufficient for the land-
nonlinear Gauss-Seidel decomposition into a sequemuie detection.
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Fig. 6. Performance of sensor-scheduling-based detection cethpadetection under optimal fixed sensor allocations.

Object Type
1 2 3 4 5 6 7 8 Feature
M-AT M-AP P-AT P-AP Cltr-1 Cltr-2 Cltr-3 Bkg Description

EMI Conductivity
Sensor 1) Size

2

Seismic

3) Medium | Medium | Medium Resonance
Optimal 2 2 2 2 2 2 2 2
sequence for 3 1 3 1 3 3 3 3
mean state D D D 3 D D D D

D
Fig. 7. Sensor mean responses under various scenarios. M-M&tstc, AP-Anti personal, AT-Anti tank, Cltr-1-Hallow metal clutter,

Cltr-2-Hallow non-metal clutter, Cltr-3-Non-metal non-hallow clutter, B&gckground.
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5 Neural Network for the non-sequential problem. Two classifiers for the
+ k-NearestNeighbors | nolicy search were considered. The first is[7a5, 2]
feed-forward weights-sensitive neural network. The sec-
ond is a weights-sensitivé-nearest neighbor, where

k = 30. The performance are summarized in Figure 8.
The crosses correspond to the performance of policies
that were found by weights-sensitivenearest neighbor
classifiers asc ranges from0 to 0.18. The squares
correspond to the performance of policies that were
found by weights-sensitivér, 5, 2] feed-forward neural
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Scoos 0 ® networks for four values of. To study the effect of the
01- ‘c=006 Lc=00 initial network weights distribution, for each value af
+C=002 the neural networks training was initiated at four random

0.095 I I I I I I I )
1

i 12 15 e 15 15 17 15 1s 2 weights selections, leading to four resulting policies.

number of dwells . i . .

As can be seen, under both learning configurations it

Fig. 8. Performance of sensor scheduling algorithm for the la@ POSsible to obtain a range of trade-offs between

monitoring satellite problem. sensor deployment cost and classification performance.
Particularly, the policy learned by thienearest neighbor
classifier with ¢ = 0.02 almost achieves the same
VIIl. WAVEFORM SELECTION FORLAND performance as when all sensor modalities are used, but
MONITORING SATELLITE with a significant reduction in deployment cost. From

In this section, the optimal sensor scheduling alg§ompParing the performance of thienearest neighbor
rithm is applied to real data for the problem of waveforrilassifier based policy with the one based on the neural
selection for a LANDSAT land monitoring satellite.networks_ it is seen that the performance achieved by the
The satellite collects a radar backscatter on a patch P architectures are comparable.
land and the goal is to classify the land type based
on the returned signal. Given a new probing location, IX. CONCLUSIONS
the satellite can transmit one of four possible wave- Sensor scheduling for controlling agile sensing sys-
forms. The different waveforms correspond to differetéms was formulated as a sequential choice of experi-
frequency bands. Therefore] = [X;, X9, X3, X4]. ments problem and solved via a reduction of the asso-
Each of the observation¥y, ..., X, is a9-dimensional ciated RL problem to a sequence of supervised learning
vector taking values ir0, 255)°, and henceZ is a36- problems. The method was applied to both real and syn-
dimensional vector. There are six land types, and hernbetic data — land mine detection and LANDSAT terrain
Y =1{1,2,...,6}. In the public data set [1], there areclassification. Finally, the authors would like to thank
4435 points in the training set an@000 in the test Jay Marble and Raviv Raich for helpful discussions.
set. For a more detailed explanation of the problem
see [12] chaptef3. In this section we explore using REFERENCES
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