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Abstract. The asymptotic distribution of estimates that are based on
a sub-optimal search for the maximum of the log-likelihood function is
considered. In particular, estimation schemes that are based on a two-
stage approach, in which an initial estimate is used as the starting point
of a subsequent iterative search, are analyzed. The analysis is relevant for
cases where the log-likelihood function is known to have local maxima
in addition to the global maximum, and there is no available method
that is guaranteed to provide an estimate within the attraction region
of the global maximum. In addition, an algorithm for finding the max-
imum likelihood estimator is offered. The algorithm is best suited for
scenarios in which the likelihood equations do not have a closed form
solution, the iterative search is computationally cumbersome and highly
dependent on the data length, and there is a risk of convergence to a
local maximum. The result on the asymptotic distribution is validated
and the performance of the offered algorithm is examined by computer
simulations.

1 Introduction

The maximum likelihood (ML) estimation method introduced by Fisher [1] is
one of the standard tools of statistics. Among its appealing properties are consis-
tency and asymptotic efficiency [2]. Furthermore, its asymptotic Normal distri-
bution makes the asymptotic performance analysis tractable [2]. However, one
drawback of this method is the fact that the associated likelihood equations
required for the derivation of the estimator rarely have a closed form analytic
solution. Therefore, suboptimal iterative maximization procedures are used. In
many cases, the performance of these methods depends on the starting point.
In particular, if the likelihood function of a specific statistical model does not
have a known strictly convex property and there is no available method that
is guaranteed to provide an estimate within the attraction region of the global
maximum, then there is a risk of convergence to a local maximum, which leads
to large scale estimation errors.

In the first part of this paper, the asymptotic distribution of estimates that
are based on a sub-optimal search for the ML estimate is considered. In partic-
ular, estimation schemes that are based on a two-stage approach, in which an



initial estimate is used as the starting point of a subsequent iterative search that
converges to a maximum point, are analyzed and shown to be asymptotically
mixed Normal distributed. The result is linked to previous results by Huber [3]
and White [4] as explained in detail below.

In the second part of the paper, an algorithm based on this result is offered.
The algorithm is best suited for scenarios in which the likelihood equations do not
have a closed form solution, the iterative search is computationally cumbersome
and highly dependent on the data length, and there is a risk of convergence to a
local maximum. The algorithm is performed in two stages. In the first stage, the
data are divided into sub-blocks in order to reduce the computational burden.
The second stage involves the estimation of a finite mixture model, which is
a classic problem in statistical pattern recognition (e.g. [5], [6], and references
therein).

2 Problem Formulation

The independent random vectors yn, n = 1, . . . , N have a common probability
density function (pdf) f(y,θ), which is known up to a vector of parameters
θ = [θ1θ2 . . . θK ]T ∈ Θ. The unknown true parameter vector will be denoted by
θ0. The log-likelihood of the measurements under f(y,θ) is

LN (Y;θ) =
N∑

n=1

ln f(yn,θ) (1)

where Y = [y1 y2 . . . yN ]. The ML estimator (MLE) for θ, which will be denoted
by θ̂N is

θ̂N = arg max
θ

LN (Y;θ). (2)

In many cases, the above maximization problem does not have an analytic so-
lution, and a sub-optimal maximization technique is used. One possible method
could be the following. First, a sub-optimal algorithm generates a rough estimate
for θ. Then, this rough estimate is used as the starting point of an iterative al-
gorithm, which searches for the maximum of the log-likelihood function. Among
those are the standard maximum search algorithms, such as the steepest ascent
method, Newton’s algorithm, the Nelder-Mead method, and the statistically de-
rived expectation maximization algorithm [7] and its variations. This method
will be referred to as the two-stage method, and the resulting estimator will
be denoted by θ̃N . If the starting point of the search algorithm is within the
attraction region of the global maximum (with respect to the specific search-
ing technique), then this approach leads to the MLE. However, if the likelihood
function has more than one maximum and if the staring point is not within the
attraction region of the global maximum, then the algorithm will converge to a
local maximum resulting in a large-scale estimation error. In the next section the
asymptotic pdf of θ̃N is derived. The derivation is performed using conditional
distributions, where the conditioning is on the location of the initial estimator
in Θ.
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Fig. 1. Estimates around θ0 = 5 normalized according to B(θ0)
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3 Asymptotic Analysis

The maximization of LN (Y;θ) is identical to the maximization of 1
N LN (Y;θ),

which, due to the law of large numbers, converges almost surely (a.s.) to the
ambiguity function

g(θ0,θ) = E {ln f(y;θ)} �
=

∫
Y

ln (f(y;θ)) f(y;θ0)dy, (3)

where E {·} denotes the statistical expectation with respect to the true parameter
θ0. Therefore, asymptotically, the two-stage method will result in an estimate
which is in the vicinity of one of the local maxima of the ambiguity function.
The ambiguity function has its global maximum at the true parameter θ0 [8],
and it is assumed to have a number of local maxima at points which will be
noted by θm, m = 1, . . . ,M . All the local maxima satisfy

∂g(θ0,θ)
∂θk

∣∣∣∣
θ=θm

= E
{

∂ ln f(y,θ)
∂θk

∣∣∣∣
θ=θm

}
= 0,

m = 0, . . . ,M, k = 0, . . . ,K (4)

by definition.
The computation of the asymptotic pdf is done using conditional pdfs. The

conditioning is on the event that the initial estimate is within the attraction
region of the m’th maxima, which will be denoted by Θm, i.e.

f(θ̃N ) =
M∑

m=0

f(θ̃N |Θm)P(Θm), (5)

where f(θ̃N ) is the distribution of θ̃N
1, f(θ̃N |Θm) is the distribution of θ̃N

given that the initial estimate was in Θm, and P(Θm) is the probability that
the initial estimate was in Θm. The prior probabilities P(Θm) are assumed to
be known in advance and can be found in the performance analysis of the initial
estimate. Here we implicitly assume that the entire space Θ can be divided into
disjoint subsets, each of which is the attraction region of one of the maxima of
g(θ0,θ), and that

⋃M
m=0 Θm = Θ.

For large N , given that the initial estimate is in Θm, θ̃N is assumed to be
in the close vicinity of θm, and the asymptotic conditional pdf can be found
using an analysis similar to that presented in [9] for the standard MLE and to
Huber’s derivation of the asymptotic pdf of the M-estimators [2]. The regularity
conditions on LN (Y;θ), which are needed for the derivation, are summarized
in [3]. One major difference of the present derivation from these methods is
that the Taylor expansion is performed around θm, which is not necessarily
the true parameter. In order to give a self-contained treatment, we give the

1 The dependency on the true parameter has been omitter in order to simplify the
notation.



complete derivation for the case of a scalar parameter. For the case of a vector
of parameters, we state the final result.

From the mean value theorem we have

∂LN (Y; θ)
∂θ

∣∣∣∣
θ=θ̃N

=
∂LN (Y; θ)

∂θ

∣∣∣∣
θ=θm

+
∂2LN (Y; θ)

∂2θ

∣∣∣∣
θ=θ

(θ̃N − θm) (6)

where θm < θ < θ̃N . Since θ̃N is a maximum point of the log-likelihood function,
we have

∂LN (Y; θ)
∂θ

∣∣∣∣
θ=θ̃N

= 0. (7)

Therefore, we get

√
N(θ̃N − θ) =

1√
N

∂LN (Y;θ)
∂θ

∣∣∣
θ=θm

− 1
N

∂2LN (Y;θ)
∂2θ

∣∣∣
θ=θ

. (8)

Next, ∂2LN (Y;θ)
∂2θ in the denominator is written explicitly

1
N

∂2LN (Y; θ)
∂2θ

∣∣∣∣
θ=θ

=
1
N

N∑
n=1

∂2 log f(yn, θ)
∂θ2

∣∣∣∣
θ=θ

. (9)

Since θm < θ < θ̃N and θ̃N → θm as N → ∞ a.s., we must have θ → θm as
N → ∞ a.s.. Hence

1
N

∂2LN (Y; θ)
∂2θ

∣∣∣∣
θ=θ

→ 1
N

N∑
n=1

∂2 log f(yn, θ)
∂θ2

∣∣∣∣
θ=θm

→ E
{

∂2 log f(yn, θ)
∂θ2

∣∣∣∣
θ=θm

}
a.s.

�
= A(θm), (10)

where the last convergence is due to the law of large numbers. In order to evaluate
the numerator, the following random variables are defined

xn =
∂ ln f(yn, θ)

∂θ

∣∣∣∣
θ=θm

n = 1, . . . , N. (11)

Since the yn’s are independent and identically distributed, so are the xn’s. There-
fore, by the Central Limit Theorem , the pdf of the numerator in (8) will converge
to a Normal pdf with mean

E

{
1√
N

N∑
n=1

∂ log f(yn, θ)
∂θ

∣∣∣∣
θ=θm

}
= 0 (12)



and variance

E


(

1√
N

N∑
n=1

∂ log f(yn, θ)
∂θ

∣∣∣∣
θ=θm

)2
 = E

{(
∂ log f(yn, θ)

∂θ

∣∣∣∣
θ=θm

)2
}

�
= B(θm). (13)

Next, using Slutsky’s theorem [10], we arrive at the following result

√
N(θ̃N − θm) a∼ N

(
0,

B(θm)
A2(θm)

)
(14)

or, equivalently,

θ̃N
a∼ N

(
θm,

B(θm)
NA2(θm)

)
. (15)

In the case where θm is the true parameter θ0, we get the standard asymptotic
normality of the MLE

θ̃N
a∼ N

(
θo, I−1(θ0)

)
, (16)

where I(θ0) = NA(θ0) is the Fisher Information (FI) of the measurements.
However, it should be noted that in the general case A(θm) �= −B(θm).

In summary, the conditional pdf f(θ̃N |Θm) is asymptotically Normal with
mean θm and variance B(θm)

NA2(θm) , which equals I−1(θ0) only in the case where

m = 0. Using this result, we can state that the asymptotic distribution of θ̃N

in (5) is a Normal mixture with weights P(Θm), m = 0, . . . , M , which depend
on the initial estimator’s performance.

3.1 Generalization for a Vector of Parameters

In the case of a vector of parameters, the conditional pdf f(θ̃N |Θm) is asymp-
totically multivariate Normal with vector mean θm and variance

1
N

A−1(θm)B(θm)A−1(θm), (17)

which equals 1
N I−1(θ0) - the Fisher Information Matrix (FIM), only in the case

where m = 0. The matrices A(θ) and B(θ) are given by

A(θ) =
{

E
{

∂2 log f(yn,θ)
∂θk∂θl

}}
, (18)

and

B(θ) =
{

E
{

∂ log f(yn,θ)
∂θk

∂ log f(yn,θ)
∂θl

}}
. (19)

Therefore the asymptotic pdf of θ̃N is a multivariate Normal mixture.
The result on the asymptotic conditional pdf coincides with results reported

in [4] in the context of misspecified models. Indeed, under the assumption θ̃N ∈



Θm, m �= 0, the estimation problem can be viewed as a misspecified model.
The family of distributions is correct but the domain of θ does not contain
the true parameter. In addition, the conditional pdf can be found from Huber’s
work on M-estimators [2] by taking the target function that is minimized to be
the negation of the likelihood function restricted to the attraction region of the
specific local maximum.

4 An Algorithm for Finding the MLE Based on the
Asymptotic Distribution Result

In the present section we offer an algorithm for finding the MLE. As mentioned
above, the algorithm was designed for scenarios in which the likelihood equations
do not have a closed form solution, and, therefore, one seeking the MLE must
rely on a search algorithm. If, in addition, the iterative search is computationally
cumbersome and highly dependent on the data length, it might be impossible to
find the MLE for the entire data set. In such cases, one can divide the complete
data set into sub-blocks and find the MLE for each sub-block. These estima-
tors will be referred to as sub-MLEs. If the ambiguity function has one global
maximum, then the average of the sub-MLEs will make a good solution to the
complete problem. However, if the ambiguity function has local maxima in ad-
dition to the global maximum, then some of the sub-estimators might converge
to those local maxima and contribute large errors to the sub-MLEs’ average.
A possible solution to this problem would be to cluster the sub-MLEs and to
choose the cluster whose members have the largest average likelihood value.
However, if the dimension of the parameter vector is large and the local maxima
of the ambiguity function are close to each other, the clustering problem becomes
numerically intractable as well.

Therefore, we resort to a solution that circumvents the clustering require-
ment. To this end, we first employ the the component-wise EM for mixtures
(CEM2) algorithm offered by Figueiredo and Jain in [6]. Recall that according
to the result presented in the previous section, if the length of each data sub-
block is large enough, the sub-MLEs are random variables drawn from a Normal
mixture distribution with means equal to the local maxima of the ambiguity
function and covariance matrices as specified in 3.1. Therefore, the model of the
mixture is known up to parameters that can be estimated directly using CEM2

without the need for an actual clustering of the sub-MLEs. The estimated means
serve as candidates for the final estimate, and the estimated covariances provide
the means for choosing the correct mean using the following property.

As observed first by White [4] in his work on misspecified models, later by
Gan and Jiang [11] specifically for the problem of local maxima, and can also
be seen from the derivation in section 3, only at the global maximum does the
expected value of the Hessian of the likelihood function equal the negation of the
expected value of the outer product of the first derivatives and, therefore, the
covariance matrix of the estimates equals the inverse of the FIM. Therefore, in
order to decide which local maximum is the global maximum, we can compare



the estimated covariance matrices with the analytical calculation of the inverse
of the FIM and choose the one with best proximity.

It should be noted that the tests offered in [4] and [11] cannot be directly
applied using the estimated means, since these may not necessarily be local
maxima of the complete data set, and, therefore, the assumption that the test is
performed on a local maximum of the complete data is violated. In fact, as seen
from our simulations, this violation tampers the validity of the test and leads
to over-rejection. In other words, only if several maximizations of the likelihood
of the entire data are possible, the estimated means of the mixture model can
be viewed as intelligent starting points, which should be tested one by one until
the test for a global maximum [11] is passed.

In order to explicitly state the algorithm, consider once more the following
statistical problem. The independent random vectors yn, n = 1, . . . , N have a
common probability density function (pdf) f(y,θ), which is known up to the
parameter vector θ that is to be estimated. The algorithm is stated as follows:

1. Divide the entire data set into sub-blocks of length L.
2. Find the MLE of each of the sub-blocks θ̂l, l = 1, . . . , L, by using any

initial rough estimator2.
3. Run the CEM2 algorithm on {θ̂l}L

l=1 and find the estimated means and
covariance matrices of the Normal mixture model.

4. Compute the inverse of the FIM at each of the estaimated means.
5. Choose the final estimate θ̂final to be the vector that minimizes the dis-

tance between the estimated and the calculated covariance matrices (in the
Forbenius norm sense, for example).

As for choosing the length of the data sub-block, we have seen in our simula-
tions that the choice of L in the range of

√
N gives the best results. However,

this still remains an open research question. Furthermore, since the covariance
matrices are known to be at least close to the inverse of the FIM, we can use
this information in the initialization of the CEM2 algorithm. In the following
section, we present simulation results that validate the asymptotic pdf derived
in section 3 and present a performance analysis for the offered algorithm for a
specific estimation problem.

5 Simulation Results

Consider the following estimation problem, which can be seen as a simplification
of problems related to the embedding of images in a manifold. The data are
independent random vectors y1, y2, . . . , yN each of which is composed of three
independent Cauchy random variables, with parameter α = 1 and mode equals

µ(θ) =

 µ1(θ)
µ2(θ)
µ3(θ)

 =

 θ
θ sin(θ)
θ cos(θ)

 , (20)

2 We assume that P(Θ0) > 0.



i.e.,

f(yi; θ) =
1/π

(yi − µi(θ))2 − 1
, i = 1, 2, 3. (21)

These data can be considered as measurements in R
3 that have a mode, which

is on the manifold (a spiral) defined by (20). Since there exists no finite di-
mensional sufficient statistic, the complexity of the estimation problem is highly
dependent on the number of samples. The ambiguity function associated with
this estimation problem is depicted in figure 3 for different values of the true
parameter θ0, and a cross section is presented in figure 4 for θ0 = 5 - the value
used in our simulations. The initial estimator is assumed to produce an estimate
which is uniformly distributed over [0, 6]. Numerical calculations showed that
the ambiguity function has two maxima in this region. One is the true param-
eter θ0 = 5 and another maximum at θ1 = 0.82. Further analysis revealed that
Θ0 = (2.56, 6) and Θ1 = (0, 2.56). In addition, the analytical result predicts that
in cases where the search algorithm converges to θ0, the estimate will be Normal
with mean θ0 and variance B(θ0)

NA2(θ0) = 1
NA(θ0) = 0.074

N , and in cases where the
search algorithm converges to θ1, the estimate will be Normal with mean θ1 and
variance B(θ1)

NA2(θ1) = 0.31
N . Since the initial estimate is Uniformly distributed, it is

easily found that P(Θ0) = 0.57 and P(Θ1) = 0.43. In our simulations, N = 200
and the initial estimate is used as the starting point for Matlab’s routine ’fmin-
search’, which implements the Nelder-Mead algorithm. 1000 Monte Carlo trials
showed good agreement with the analytical results. The estimates were divided
into two groups, one contained the estimates that were around θ0 and the other
group contained the estimates around θ1. Then, the two groups were centralized
according to the predicted mean, divided by the predicted standard deviation,
and compared against the standard Normal distribution. The resulting Q-Q plots
are depicted in figures 1 and 2.

Next, the performance of the offered algorithm was examined. The entire
data record was divided into sub-blocks for several choices of block lengths.
The CEM2 was used to find the estimated number of clusters their means and
variances. The variance of each cluster was compared to the inverse of the FI
at the mean of each cluster. The FI for this statistical problem can be found
analytically to be I(θ) = 2+θ2

2α2 . The final estimate was the mean of the cluster
that its variance was closer to the inverse of I(θ).

The probability of deciding on the wrong maximum and the small error
performance in cases where the decision was correct were estimated using 500
Monte Carlo trials. As expected, the small error performance in cases of estimat-
ing the correct maximum improved as the number of samples in each sub-block
increases. However, the probability of a large scale error has a minimum point
with respect to the sub-block length as seen in figure 5. An intuitive explanation
of this phenomenon can be the following. When the sub-block size is too large,
the Normal mixture approximation is good but the number of samples available
for the CEM2 is small, resulting in poor covariance estimation which leads to
estimation errors. On the other hand, when the number of sub-blocks is large



the amount of data available to the CEM2 algorithm is large. However, since
the number of samples at each sub-block is small, the data are far from being
distributed as Normal mixture, and the variance of the estimator around the
true parameter no longer equals the inverse of the FI, which again results in
estimation errors.

6 Concluding Remarks

In the present paper, we derived the asymptotic distribution of estimators that
are based on an iterative maximization of the likelihood function that may con-
verge to a local maximum. Based on this result, we designed an algorithm for
finding the MLE with good reliability in scenarios where the iterative compu-
tation of the MLE is computationally cumbersome. Finally, simulation results
validated the analytical results and characterized the performance of the offered
algorithm.
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