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ABSTRACT 

Connectivity measurements, i.e., whether or not two sen- 
sors can communicate, can be used to cakulate localization 
in networks of inexpensive wireless sensors. We show that 
a Laplacian Eigenmaps-based algorithm, combined with an 
adaptive nei&hbor weighting method, can provide an ac- 
curate, low complexity solution. Laplacian Eigenmaps is 
a manifold learning method which optimizes using eigen- 
decomposition, thus is non-iterative and finds the global 
optimum. Comparatively, the new localization method is 
less computationally complex than multi-dimensional scal- 
ing (MDS), and we show via simulation that it has lower 
variance. 

1. INTRODUCTION 

Emerging applications of wireless sensor networks will de- 
pend on automatic and accurate locabun of thousands of 
sensors. Device cost will be a key factor. By eliminating 
the need for additional hardware, such as for GPS, ultra- 
sound, or high accuracy RF time-of-anival (KIA), we c m  
widen the sensor network application space. In this paper, 
we compare localization algorithms which use connectiv- 
ity measurements. If a sensor can successfulIy demodulate 
rhe packets transmitted by another sensor, then the TWO are 
considered to be connected. When received signal strength 
(RSS) is too low, packets can’t be demodulated, and sensors 
will not be connected. 

This paper emphasizes that connectivity is a measure- 
ment subject to error due to the unpredictable RF channel. 
Noisy measurements lead to noisy coordinate estimates. Lo- 
calization algorithms must be chosen to minimize the bias 
and variance of the coordinate estimates, and to keep com- 
putational complexity low, so that sensor localization will 
scale well with rhe size of the network. This paper in- 
troduces a Laplacian Eigenmaps based localization method 
which has both lower computational complexity and lower 
variance than MDS-based methods. 

1.1. Estimation Problem Statement: Formally stated, we 
consider a network of n unknown-location sensors, and m 
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reference (or anchor) sensors which have CI priori knowl- 
edge of their coordinates (for a total of N = n + m sen- 
sors). The cooperative localization problem we consider in 
this paper is the estimation of the unknown-location sensor 
coordinates { z i }  €or i = 1 . . . n, given: (1) Reference coor- 
dinates ( z ~ ) ~ = ~ + ~ . . . N ,  and (2) Pair-wise connectivity mea- 
surements { & i , j ] .  Connectivity measurements are random 
variables, subject to error, and their statjstical model js de- 
scribed in Section 2. In this paper, we do not consider mea- 
surements of TOA, RSS, or AOA; furthermore, references 
ate assumed to have exact coordinate knowledge. Extension 
of these results is future work, 

1.2. Relevant Research: Connectivity measurement-based 
localization, also called mnge ,free localization, has found 
considerable application in ad hoc networks and wireless 
sensor networks, eg., in [I, 2, 31. In particular, localization 
via MDS was introduced in [ 2 ] ,  which demonstrated that 
localization can be achieved without resorting to iterative 
optimization algorithms that don’t always converge to the 
global maxima. The MDS-MAP method in [2] effectively 
appjies the manifold learning technique called Isomap 141 
to the connectivity-based sensor localization problem. We 
compare our new method to the MDS-MAP method in Sec- 
tions 3.1 and 5. 

2. CONNECTIVITY MEASUREMENT MODEL 

The key to developing reliable localization systems is to ac- 
curately represent the severely degrading effects of the RF 
channel. We do nor consider two sensors to be connected 
solely based on the distance between them - iwo sensors are 
connected if the receiving sensor can successfully demodu- 
lare packets transmitted by the other sensor. The receiver 
fails to successfully demodulate packets when the received 
signal strength (RSS) is too low. Since RSS is a random 
variable due to the unpredictability of the fading channel, 
and connectivity is a function of RSS, connectivity is also a 
random variable. 

Specifically, the connectivity measurement of sensors i 
and j ,  QQ, is modeled as a binary quantization of RSS, 
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where E,j is the received power (dBm) at sensor i transmit- 
ted by sensor j, and PI is the receiver threshold (dBm) un- 
der which packets cannot be demodulated. This step func- 
tion is an approximation, but is an accurate model for most 
digital receivers. 

Received power Pi,j is strongly affected by shadowing 
and multipath fading. For a particular environment of de- 
ployment, the walls, furniture, buildings, trees and other 
obstructions in  the channel between the two devices cause 
these deleterious channel effects. Since we can’t predeter- 
mine the exact layout of every place of deployment, we have 
to consider these effects to be random, Both empirical and 
theoretical evidence shows that RSS i s  weII-modeled as a 
Iog-normal random variable [ 5 ] .  Since Pi:i is expressed in 
dB, it is Gaussian distributed, with mean P(di,j) and vari- 
ance oiB. The mean received power P is an exponentially 
decreasing function of the actual Iransmitter-receiver sepa- 
ration distance di.j = I(zi - zjI\, 

where Po is the received power (dBm) at a short reference 
distance do, and np is the ‘path-loss exponent’, typically 
between 2 and 4. Also, values for UdB are usually between 4 
and 12 [51. The precision possible from connectivity-based 
localization is proportional to the ratio u d ~ / n ~  [6] .  

Because of (Z), we can talk about the distance R at 
which the mean received power is equal to the receiver thresh- 
old Pi. 

R = d O ’ ‘ l n P  (3) 

We call R the ‘mean communication range’. Two devices 
separated by R have a 50% chance of being connected. 

In real networks, connectivity is not symmetric. If a pair 
of devices don’t have the same transmit power, they will be 
connected more often when the device with higher trans- 
mit power is transmitting. However, an asymmetric con- 
nectivity graph provides more information than a symmetric 
graph: devices are ‘in-range’, ‘our-of-range’, or ‘intermed- 
iate-range’ (when devices are connected in only one ditec- 
tion). Essentially, asymmetric Connectivity measurements 
are equivalent to 3-level quantized received signal strength 
(QKSS) [6]. Localization in this paper is limited CO less in- 
formative, symmetric connectivity measurements. 

3. LAPLACIAN EIGENMAPS 

The Laplacian Eigenmaps method considers the minimiza- 
tion of the cost SLE [7]: 

subject to the translation and scaIing constraints, 

The minimum of cost SLE without any constraints would 
occur when all the coordinates zi were equal. The con- 
straints in (5 )  remove the translation ambiguity by setting 
the origin as the center, and counteract the tendency IO put 
all points at the origin by mandating a unit norm average 
coordinate. 

The benefit of the formulation in  (4) and (5) is that the 
globally optimum solution can be found via eigen-decomp- 
osition. We define the N x N weight matrix W = [ [ w ~ , ~ ] ] ~ : ~  
and its column sums (or row sums, since W is symmetric) 
U i  = W i , j .  Then the graph Laplacian L is defined as 

(6) 

where diag[ul:. . . ,UN] is the diagonal matrix with {ut) 
on its diagonal. The eigen-decomposition of L is the set 
of ( .X , ,vk) ,  for eigenvalues Xk and eigenvectors vk, k = 
1 . .  . N .  Here, we assume w.1.a.g. that the eigenvectors are 
sorted in increasing order by magnitude of eigenvalue. As 
presented in detail by Belkin and Niyogi in [7], the VI; for 
i = 2 .  . . d+l  provide the optimal lowest-cost, d-dimensional 
solution to (4). Specificajly, 

L = diag[ul,. . . , UN] - W 

zi = [VZ( i ) ,  ...: V d + l ( z ) ] :  (7) 

where v k ( i )  is h e  ith element of the kth eigenvector. 
Finding the smallest eigenvalues and eigenvectors of a 

sparse and symmetric matrix is a problem which has been 
studied for decades in physics and chemistry IS, SI, and can 
be solved using distributed algorithms for parallel process- 
ing. The computational complexity is 6 ( K X 2 ) ,  where K 
is the average number of neighbors. Note that MDS requires 
decomposition of a full matrix, which is an S(Ar3) opera- 
tion. 

1.2. Multi-Dimensional Scaling: Classical MDS finds the 
coordinates {zi} which minimize the folIowiog cost func- 
tion: 

SMos = 1 (s$ - l lZ i  - zj112)2 8) 
i $3 

where & j  is a measured distance between sensors i and j. 
In MDS-MAP 121, S i , j  is set to the shortest-path number 
of hops between sensurs i and j. Note that the difference in 
(8) is not taken between distances, but between sguar-eddis- 
tances, in  order to linearize the optimization problem. Us- 
ing squared distances tends to emphasize the pairs with high 
di , j  and magnify their errors. 

More fundamentally, (8) is based on disfance rather than 
connectivity. Equation (8) asserts that the distance between 
zi and z j  should be equal to Si , j .  In comparison, the Lapla- 
cian Eigenmaps cost in (4) simply asserts that the distance 
between sensors i and j is IOW. 

4. WEIGHT SELECTION 

The selection of weights wi,j for neighboring sensors is 
critical to localization performance. In the original Lapla- 
cian Eigenmaps method 171, weights are selected by Jook- 
ing at the local geometric structure of neighboring high- 
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dimensional data points. This paper presents multiple meth- 
ods of weight selection, and then compares them via simu- 
lation in Section 5.  

First, in the E p ~ l  Weights method, we set W i , j  = Q j , j 7  

i.e.3 wij = 1 if i and j are connected and 0 if not. As will be 
shown in Section 5 ,  this is a poor weight selection method, 
because sensors with the most neighbors will tend to have 
too much ‘pull’, and will bias their neighbors’ coordinate 
estimates too close to their own. 

To counteract this tendency, we offer two alternatives 
which both affect the column sums of W ,  i.e., ui = 
Note that ui is analagous to the ‘pull’ of sensor i. In both al- 
ternative methods, we first set wi?j  using the equal weights 
method. Then, 

N 
wi,j. 

Equal Sum-ufweighrs : Adjust the weights such that the 
new column sums GLi = pu for all i = 1.. . N ,  where 
p u  is the average of the original column sums, pu = + g1 ui. 

Lineal- Sum-of-Weights : Adjust the weights such that the 
new column sums iii are linearly related to u j .  Specif- 
ically, let Ut = + ~ ( I L ~  - pU)/ru where uu is the 
standard deviation of {ua)E1. In this paper, slope 
/3 = 0.1 is used throughout. 

Ad-jusment of weights to achieve desired column sums is 
described in Section 4.1. The 1Y output by any neighbor 
weight selection method is then used to calculate coardinate 
estimates {&} via the Laplacian Eigenmaps algorithm in 
Section 3. 

4.1. Symmetric Adjustment of Weights: Matrix IY must 
remain symmetric after any weight adjustment, since it de- 
scribes a symmetric graph. If we just scaled the weights in 
column i by iii,/ui, column i would have the desired sum 
bi, but TY would not remain symmetric. In this weight- 
adjustment algorithm, we iteratively adjust wi,j (or equiv- 
alently wj, i)  untiI iii = ui. The inputs to the algorithm 
are: the original weights {wi,j}; the desired sum of weights 
{ i i i )  for i = 1 . . . N; and a convergence threshold E (here 
E = 0.01). The algorithm outputs the modified weight ma- 
trix. The steps are: 

N 1. Calculate ui = CjZ1 wi,j for i = 1 . . . N. 

2. Define “li = m, fori = I . .  . N .  

3. Assign wi:j = wj,* := y;wi,yyj V neighbors i, j .  

4. If Vi ,  1 - E < *ii < 1 + E ,  stop. Else go to 1. 

The algorithm requires O(KIV) multiplies, where K is the 
average number of neighbors. We do not address the con- 
vergence of this algorithm here, except to note that in simu- 
lations, it typically converges in 5-10 iterations. 

4.2. Two-Stage Weight Selection: In [lo], it was shown 
that localization estimates can be greatly improved by using 
a two-stage neighbor selection method. We consider the 
following two-stage algorithm for weight seIection: 

1. 

2. 

Using the linear sum-of-weights method to set W ,  
calculate the Laplacian Eigenmaps coordinate esti- 
mates {Zi). 

For the 2nd round, let the desired column sums be 

(9) 

where ki is the number of its neighbors j for which 
- i+ I{ < R, and R is the radius of coverage. Ad- 

just W to meet (&}, and then calculate final coordi- 
nate estimates { Z , ) . -  z r -1  ... N -  

Intuitively, if few of the neighbors of sensor i are estimated 
to be within its communication range, then we can guess 
that sensor i’s weights should be increased. The presented 
choices are by no means optimal, and other iterative algo- 
rithms or updates are certainly possible. We simply show 
that the performance of this ad hoc method does in fact dra- 
matically improve localization performance. 

5. SIMULATION RESULTS 

In this section we test the localization performance using 
different estimators in multiple sensor geometries. For each 
test, we run 200 independent simulation trials in order to 
determine the mean coordinate estimate zi for i = 1 . . . n, 
and the covariance matrix C. In each simulation, the statis- 
tical model in Section 2 is used to randomly generate con- 
nectivity measurements in the sensor network. Each plot in 
Fig. 1 shows f i  (7)  and the 1-0 covariance ellipse (-) for 
each sensor. For comparison, we always plot in gray (or 
red in the electronic vsrsion) the actual sensor coordinate 
( 0 )  and the CramQRao bound (CRB) for the ] - U  covari- 
ance ellipse (- - - -) [6 ] .  For each test, we summarize the 
mean bias 6 = 1(zi - Zill and the standard devia- 

tion, i? = m, of the localization estimator. Note all 
distances are in  terms of L, the chosen scale of the network. 

5.1. MDS-MAP 

We first test MDS-MAP in a 7 by 7 grid network, in which 
the four comer sensors are reference sensors, and the other 
45 are unknown-location sensors. For a communication ra- 
dius R = 0.5, the MDS method has standard deviation of 
location error @ = 0.218 and a bias of 6 = 0.087, as shown 
in Fig. l(a). At R = 0.5, almost all pairs of sensors are 
within 1 or 2 hops from each other, At lower radii R, the 
MDS-MAP achieves very low bias, as shown in Table 5, 
but the standard deviation of error is largely constant, con- 
sistently about twice the lower bound of the CRB. 

5.2. Laplacian Eigenmaps One-Stage 

Equal Weights: Next, we test Laplacian Ejgenmaps using 
the equal weights method (as described in Section 4). The 
sjmulation results show a heavily biased estimator. For R = 
0.5, the results are shown in Fig. I@), in which the mean 
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Fig. 1. Estimator mean (7)  and I-a uncertainty ellipse (-) for each blindfoIded sensor compared to the true location (e) 
and CRB on the I-U uncertainty ellipse (- - -), when reference sensors are located at each x. AI1 cases are R = 0.5 tests 
described in Section 5 and in Table 1,  
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6. DISCUSSION AND CONCLUSION bias b = 0.186 and the standard deviation of location error 
8 = 0.189. At 8 = 0.3 and R = 0.4, the biases 6 listed in 
Table 5 are lower but still very high. 

Equal Sum-of-Weights: The performance of Laplacian Eig- 
enmaps, when weights are determined by the equal sum-of- 
weights method, is dramatically better than the equal weights 
method, as shown in Table 5. For R = 0.5, the results 
shown in Fig. l(c) show that the edge nodes seem to have 
weights too high compared to the intenor nodes, the oppo- 
site bias pattem compared tu Fig. 1 (b). 

Linear Sum-of-Weights: The Laplacian Eigenmaps with 
adjusted sum-of-weights reduces the bias compared to equal 
sum-of-weights. As shown in Table 5 and in Fig. l(d), the 
bias has been reduced, especiaIIy at R = 0.4, even though 
Ihe values of 8 are largely unchanged. 

5.3. Laplacian Eigenmaps ’Ibo-Stage 

Using the two-stage weight adjustment described in Section 
4.2, bias is further reduced. Furthermore, as shown in Table 
5 ,  the variance for R = 0.3 and 0.4 is dramatically lower 
than the one-stage linear sum-of-weights method. These 
variances in the grid geometry are about 30-35% higher than 
the Cramir-Rao lower bound, so even an efficient estimator 
would not reduce 8 dramatically further. 

However, we certainly don’t expect that sensors will be 
manged in a perfect grid. The true test of sensor local- 
ization is performance sensor placement is random, which 
is presented next. Each test shows the performance of the 
Laplacian Eigenmaps two-stage weight selection method. 
Grid Plus Noise: First, we add a Gaussian random vec- 
tor to each unknown grid coordinate, i.e., for i = 1.. . n. 
zi = ii -k Zi/c, where z i  is the original coordinate on the 
7 by 7 grid, and {Z;) are independent Gaussian-distributed 
with mean zero and covariance (l/S)*Zz, and c = 2 or 4. 
Essentially, the standard deviation of the random addition 
is either one-fourth or one-half of the distance between grid 
nodes. We generate two geometries from this mode1 for 
c L 2 and c = 4, and show simulation results in Table 5 and 
in Fig. 3(f-g). For R = 0.4 and 0.5, the bias and standard 
deviation of location error increase only sIowIy. However, 
for R = 0.3, the bias and variance do increase consider- 
ably. We note that sensors actually located outside of the 
unit square EO, 112 have noticeably higher bias and variance. 

UniformRandom: Next, for i = 1. . .N,  xi are inde- 
pendently chosen from a uniform distribution over the unit 
square area, [0, 1J2. The sensors closest to each comer are 
selected as the 4 references, so in this test, even the refer- 
ences are randomIy deployed. The resulting @ are lower 
than in the 7 by 7 grid or the grid plus noise geome~ries. 
We note that the CRB for a is also about 15% lower far this 
deployment compared to the 7 by 7 grid, so it is legitimate 
to expect lower 8. Essentially, sensors very dose together 
can provide increased information about their relative loca- 
tion. However, the biases 6 are higher than the 7 by 7 grid, 
especially for €2 = 0.3. 

For random deployments, a low communication radius like 
R = 0.3 may cause some sensors to have very few neigh- 
bors, and localization performance will suffer. System de- 
signers should plan for the tendency of sensors outside of 
the convex hull of the reference nodes to experience higher 
iocahzation errors. 

Using a realistic statistical model for connectivity? simu- 
lations show the potential of the Laplacian Eigenmaps method 
to be a robust, low-bias and low-variance sensor location es- 
timator. It dues not suffer from local optima and it has IOW 
computational complexity compared to MDS-based estima- 
tors. The presented two-stage weight-selection method is 
used to achieve low bias and standard deviation within 35% 
of the lower bound. However, general analysis of weight se- 
lection methods has not been attempted. Finally, distributed 
algorithms have not yet been presented for the proposed 
methods. These issues remain open for future research. 
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