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Abstract — In this paper we use the uniform
Cramer-Rao (CR) lower bound [1] to generate bias-
variance tradeoff curves which separate achievable
from unachievable regions in the estimator bias vari-
ance plane.

I. Introduction

Let § = [01,...,8,]" € © be a vector of unknown parameters
which parameterize the distribution of an observed random
variable Y. Let §; = 6, (Y) be an estimator of the scalar §;
and define the estimator bias function b1 = b1 (8) = E@[él] —6;
and the variance function o2 = 02(2) = E@[(él — 91)2]. The
goal of this work is to quantify fundamental tradeoffs between
the bias and variance functions for any parametric estimation
problem. When considered as surfaces over the parameter
space O, the bias and variance provide a very informative de-
scription of estimator performance, for example they jointly
specify the MSE.However, since comparison of performance
surfaces over a large set © is usually impractical, the bias and
variance in a small neighborhood is of greater interest. In
this case, the bias gradient Vgb; is more useful since it is in-
sensitive to constant and hence removable biases. It can be
shown that Vb, is directly related to the width of the point
spread function for penalized maximum likelihood deconvolu-
tion problems [2]. The weighted norm of the bias gradient is
directly related to the variation of the bias function over ©
bys 261 (8)] = |[Vabull +o(det| DI, where lulf3, = u” DY Du
and D is an invertible matrix whose determinant is inversely
proportional to the volume of the region.

II. The Bias-Variance Tradeoff Curve

The tradeoff curve is derived from a generalization of the
bound on estimator variance presented in [1]. Unlike the
bound of [1], this bound applies to the case of singular Fisher
information matrices (FIM), an important case arising in de-
convolution problems, and permits use of any weighted I
norm of the bias gradient.
Theorem 1 For a fized scalar § € [0,1] let §; be an estimator
whose bias gradient satisfies the norm constraint |Vebi||3, =
wI'DTDu < 6%, where D is an arbitrary non-singular ma-
triz. Define the oblique projection operator (n x n matriz)
Pry, = Fy[FyDTDFyY FyDT D which maps n-dimensional
space onto the column space of the FIM Fy, and define the
n-element unit vector e, = [1,0,...,0]7. Then the variance of
él satisfies:

varg(61) > B(8, ), (1)

where if ||Pr,] while if

[Pry]_llo > & then:

o <

6 then B(8,6) = 0,

BO.8) = e Ffe, — < [FHO- D7D+ FH) T FE] e, A8 (2)
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In (2) X > 0 is determined by the unique non-negative solution
of the following equation:

(3)

By calculating the family of points {(B(8,6),8) : § € [0,1]}
we sweep out a curve in the bias-variance plane which lower
bounds any estimator plotted in the plane. Figure 1 illustrates

g(A) = €T [F;r (A\-DTD 4 Fy)~ F;r] e, =8

this curve for a simple one dimensional Gaussian deconvolu-
tion problem and the unweighted I norm (D=identity) [2].
The region above and including the curve is the so called
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Figure 1: Bias-Variance Plane and Lower Bound.

‘achievable’ region where all the realizable pairs of estimator
variance and bias-gradients exist. Note that if an estimator
lies on the curve then lower variance can only be bought at
the price of increased bias and vice versa. For this example
the regularized least squares estimator attains optimal bias-
variance tradeoff, i.e. it hits the lower bound for all values
of § [2]. In this case the bias gradient norm § was swept out
by varying the smoothing (regularization) parameter of the
estimator.

In general to place an estimator somewhere within the
achievable region of Figure 1 requires the variance and length
of the estimator bias gradient. In most cases the variance and
the bias-gradient length are analytically intractable and must
be empirically estimated. Since the sample mean estimate of
the bias gradient norm has severe positive bias some form of
bias correction is necessary. We have developed a bootstrap
estimator and a (1 — )% lower confidence bound for this pur-
pose.
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